ON TENSOR PRODUCTS OF BANACH SPACES

By IcHiRo AMEMIYA AND KoJ1 SHIGA

Recently in his interesting paper [3] A. Grothendiek has successfully
developed a theory of tensor products on Banach space, which gives a wide-
scope to his previous work on topological vector spaces [1]. However, except
two fundamental theorems, he has given no demonstrations to his results,
some of which deserve our attention and demand non-trivial methods of the
proof. Therefore it will not be altogether meaningless to give the proofs of
them here (maybe different from the original ones), though there is nothing
essentially new to the theory itself, except a slightly better results in respect
to Proposition 3 in § 3 of [3], showing that we have 4/< 4{’ in place of 9(
=29

We do not refer to some results of [3] which can be easily proved; nor
do we refer to any results stated after § 3, n°4 in the cited paper, because,
as Grothendieck himself has remarked in it, they are easily checked accord-
ing to his directions.

§ 1, Tensor norms.

1. Preliminaries.

For the convenience of the reader, we first sketch the fundamental defini-
tions and notations of the original paper. Let E and F be Banach spaces.
A norm « given on the tensor product E Q F is called reasonable if it satisfies

ax®y) =1zllyl, s €E ye F) and /&’ @)= &Iy, & € E', y € F),
where «’ denotes the dual norm on the E’Q F”; the elements of E/ & F’
is considered in the dual space of EQ F. For a given reasonable norm

a, E éF means by definition the Banach space which is the completion
of EQ F by the norm ««. Then on the E® F there exist the smallest
reasonable norm \VV and the greatest one A. Specifically, Vv and A are
defined by the following:

(1) lul, = sup| < u,2' @ y>|"
v li=1

(2) lul, = sup |<wu,v >
YvEB(H.F)

.
Iwll=1

From the definition it follows that the dual space of E(/>\9 Fis B(E,F).»
A normed space E is called a numerical normed space if the underlying
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1) Notation \/ has the same meaning as A which is used in [1].

2) B(E, F) denotes the Banach space consisting of all the continuons bilinear forms
on E x F with the bilinear norm.
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vector-space is isomorphic to an R” or a C®®; the set of numerical normed
space is denoted by R. An object « which is defined on all ordered paires
(E,F), E,F 9N, is called a tensor norm (notation: ®-norm), when it satis-
fies the following conditions: 1°. « induces a reasonable norm of EQ F; 2°.
Let u; be linear mappings of E; into Fy(i = 1,2; E;, F, € RN). Then the tensor

product #, éuz, regarded as a mapping of E, ngz into F,&)Fg, fulfills the

@ @
norm relation ||, @ u. | < | u, |- %] In this case we denote by E ® F the
space E& F with the norm «.

td @
For a given ®-norm «, '« is defined by EQ F=FQE. ‘a gives rise
obviously to a @-norm, which is called the transposed @—norm of ««. In case

13
where a = ‘a, « is called symmetric; hence the symmetry of & means EQ F

and F é E are canonically isomorphic for all E, F € . Now consider EQ F
as the dual space of E’® F’; then the dual norm «’ on E® F, induced by

E’(;)F ’, gives a new ®-norm. « is called the dual ®-norm of a. 1t is
easily seen that ‘Ca) = «, (@) = a and ‘(') = (‘). We put & = ).

For tensor norms «,8 and for a positive number A, «a <AB is by defini-
tion |#l. <N|uls for all u€ EQ F(E,FMN). In particular, the relation
o < B induces an ordered-relation in the set of ®-norms. The set of all
&®-norms forms a complete lattice. It is easily verified that the reasonable
norms V and A naturally induce @®-norms; besides, V is the smallest and
A is the greatest ®-norm. Also it is evident that Vv and A are symmetric.
We have (VY = A and (A) =

In the preceding paragraphs the tensor norm has only been considered
for numerical spaces. We define it for all Banach spaces. Let a be a ®-
norm; and let E and F be any two Banach spaces. Consider the set € and &
which consist of all finite~-dimensional subspaces of E and F, respectively.
Then {MQN; M €, Ne T}, the family of finite-dimensional subspaces
of EQ F, forms a filter by inclusion order and EQ F=UM®N. Letu

be an element of E® F, belonging to an M® N. |u|x@y denotes the norm
@

of uin M@ N. The condition 2° of the ®-norm, applied to injection map-

ping, shows that if (M,N)C (M,,N,), then |u|u@y =|u|x,é~,. Hence

|u |a = Il’lfM,N l uIMéN

is well-defined; furthermore, |«|. is actually a reasonable norm of E® F.
The reasonable norm «, obtained by the above procedure, is called a Q-norm
of the Banch spaces E and F. In particular, if a is V or A, then |#/, is the
same as we have defined by (1) and (2), respectively, so that the notation
is compatible.

Let E;, F, (i = 1, 2) be Banach spaces and »; be the continuous linear mapping
of E; into F;. Then it is ev1dent that s Ru.: E, ®E2—+F1 R F, 1nduces

a continuous linear mapping #, ® u, of E, ® E,—~ F, ® F, and that [« ® u, ||

3) R and C denote the real number field and complex number field, respectively.



TENSOR PRODUCTS OF BANACH SPACES 163

=lu ||| 2 |l
ar’
The dual Banach space of E® F is denoted by B*(E,F). Since |u|. <|%|a

and the dual space of E@F is B(E,F), the element of B*E,F) is in
a natural way regarded as an element of B(E,F). A bilinear form A on
E x F'is called type a if A € B*(E, F); the norm of A in B*(E, F) is denoted
by |Al.. L(E; F)® being canonically isomorphic to B(E, F’), the corre-
spondig definition to type « is possibly transferred to the elements of L(E;
F); the space of all linear mappings of type «, endowed with the norm
| Ala, is written by L*(E; F). “Type A” is often replaced by the adjective
“integral ’’.

The following fact is an easy consequence of the definition of ®-norm.
Let A B*(E,F), and let E, and F; be Banach spaces. Assume that the
continuous linear mappings «#: E, > E and v: F, — F are given. We define
the form Ao (u@v) on E;, X F;, by Ao (u@v)(x,y) = A(ux,vy). Then we
have Ao (u®v) € BY(ELE) and |[Ae (@ 0) o < | Afla-|#|-|v]. In particular,
for any subspaces E; C E and F, C F, we have

A|E, X F, € B*E,, F),)
and
IAIE, X Fill. < A0,

where A|E; X F, means the restriction of A to E, X F,.

2. Accessible X-norms.
Let E and F be Banach spaces. Given a @-norm «, we can construct

E(;)F and B*(E’,F’), both of which contain canonically E®Q F. For u
€ EQ F, the norms of # considered in each space are denoted by |#].
and | «|., respectively. Then

lule<|#l.. If E and F are metrically accessible,” then |ul. = |u|..

Proof. Let E, and F, be any finite~dimensional subspaces of E and F such
that u € E, ® F,, and let ¢; and ¢, be the injection mappings E, — E and
F,— F, respectively. Then %, is a linear mapping E’ — E; with norm one;
the same holds for Fi, F’ and %,. Consider u|E] X F;, the restriction of

to E; x F;. Then we have |4|E; X Fi|. =|#|E; X F}|. = |#t|5,&r,- On the
other hand, |#|E; X F;o (t; @) o < 2| E; X Filla, since %, @%,[|<1. It

is clear that the left member is equal to | #[.. Hence we have |#|. <|#|s,&r,
which shows [ #[. <|#]|. by the definition of |#%|..

Now we assume that E and F are metrically accessible. We wish to
show |#|l. = |#|.. For that purpose, it is sufficient to prove |#|. > 1 when-
ever |ul. > 1.

4) L(E; F) denote the Banach space consisting of all the continuous linear mappings
from E into F with the usual norm.
5) As to the notion ‘‘ metrically accesible ”’, see [1], Chap. 1, Def. 10.
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Write » =31 % ®y. Put M = Maxi<izn {| x: |, | : |}, and let & be any posi-

tive number smaller than |#|. — 1. Since E and F are metrically accessible,
we can find a linear mapping @, of E into a finite-dimensional subspace E,
and a @, of F into F),, such that

&
“ X, — P1%, “ < W’

13— 2oyl < onp
and that the norm of @;(z =1,2)is <1. Without losing generality, we may
obviously assume # € E; Q F;. We have
| — (P, @ Ps) 5,87,
=320 — Pux) ® yi + 2P ® (95 — Poyi) |miéry
=% — e 3l + 22 -1l 96 — 2e3: |
<E&<|ul.—1.
Besides, we have |#|s,&r, =|%#l. > 1. Hence we obtain
(21 ® ®2) #|m,@ry > 1.
Accordingly, there is a v; € E; ® F7 such that |v|.»=1 and that
(3) | < (91 @ @e) 0, > | > 1.

Put v = (P, @ ‘@) v,. Then ve E’Q F and |v]w=1, because ||'®, ® @,
=< 1. Moreover, by (3) we have

|<u,0>]|>1,
which gives |#|. > 1. This completes the proof.

A tensor norm « is called accessible, if | #|. = |#|. always holds under the
assumption that E or F is finite-dimensional. In case where « is accessible,
the above proof remains valid when @, or @, is replaced by the identity
operator. Hence we get

If a is an accessible @-norm, |ull. =|ul. holds when E or F is metrically
accessible.

If «a is accessible, then a’ is accessible., This is simply a translation of
the following fact to the dual spaces: the accessibility of & means that the

canonical mapping E’éF’—rB"(E, F) is an isomorphism onto when E is
finite-dimensional. It is trivial that under the same assumption of «, ‘«
and & are also accessible. Finally we note that it is always valid | «|.
= |#|. Thus the ®-norm A is accessible.

3. Canonical prolongation.

B(E, F) is canonically isomorphic to L(E;F’). Since F’ is in an obvious
way imbedded into (F")", u € L(E;F")is regarded as an element of L(E;(F")").
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‘This fact can be interpreted in terms of B(E, F); thus A = B(E, F) corre-
sponds canonically to an element A< B(E, F"). A is called the canonical
prolongation of A.

THEOREM 1. For a given A € B(E,F), let A be the canonical prolongation of
A:Ae B(@‘, F"). Then in order that A is of type a it is necessary and suffi-
cient that A is of type a. Furthermore we have

IANe =1 4.
LemMma. If E is finite-dimensional, then L(E;F") = L(E;F)" (canonically) for
any Banach space F. y
Proof of LEMMA. Since E is finite-dimensional, I(/(E;F) = ?\’@F. The
®@-norm A being accessible, we have L(E;F) = (E'Q FY = EQ F’. Hence
we have L(E;F)" = (E® F'y = B(E, F) =L(E;F").

Proof of TeEOREM. Sufficiency of the condition and | A|l. <| 4 |. are clear.
We must prove the necessity and the converse inequality. Assume that A
is of type «a and that |Al. =1. We wish to show |A|.<1. Let E, and F,
be any finite-dimensional subspaces of E and F", whose basis, suitably
chosen, are denoted by {x, -, 4»} and {37, -, y.}, respectively. Now apply
Lemma to F, and F". We have L(F,;F")= L(F,;F)"(canonically). It fol-
lows that the injection operator ¢: F;,— F" in L(F,;F)" is weakly approxi-
mable by elements belonging to the unit sphere of L(F,;F), where by the
weak topology we mean the one induced by the duality between F, (/>\9 F
(= L(Fy;FY) and L(Fy;F)".

We identify A € B(E, F) with an element of L(E;F’) and so Ax;(i =1, -,
m) are the elements of F”. .Consider the 3/ @ Ax; (i =1,--,m;j=1,--,n),
which lie in the dual space F;® F’ of L(F,;F). Then from the above we
find that there is a & L(Fy;F) such that |#[|<1 and that

<,y @ Az > =<1, 3] @ Ax, > (=1,m;j=1-,n).
It is easily seen that this implies
(4) Az u(yy)) =A%, 57) (=1, m;j=1,-,m).

Let F, be the subspace of F spanned by u(y}'), j=1,---,m. We see that
1® # induces the linear mapping

E, é F,—~E, é F,
with the norm <1, and that by (4)
A|E,x F,=A|E, x F,o(1Qu).
‘Therefoe we obtain
IA|E X Fie | A|E X Falla <[ Al =1,
whence we have | A|. < 1. This completes the proof.

From the polarization we have

a
CoRrOLLARY. The canonical injection E é F—> EQ F" is an isomorphism (into) .
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4. Relations between a-mappings and &-mappings.

THEOREM 2. Let u s L*(E; F) and v € L“(F; G). Suppose that a is an acces-
sible Q-norm, or that F is metrically accessible. Then vou is an integral
operator which satisfies

loeoul=lvllula.

Proof. As ||veu|, (or |«|.) is the supremum of the A-norms of vou
(resp. a—norms of %) restricted to finite-dimensional subspaces of E, we may
assume FE to be finite-dimensional; hence we have u € E'Q F. Observe
that the assumption on « or on F now gives | «#|. = |#|.. For everyxe F
and 2’ € G, we have

<xQZ,vou>=<vou(x),z > = <ux'vz >
=< uxQwZ > =<u,ve(xR2) >,

where in the last bracket x Q) 2z’ is regarded as an operator of E’ into G’.
Hence for any w e E® G’ with |w|, <1, we have

[<w,vou>|=|<u,vow> ||t owla
=|wlal|*0lar,
because |wl, =<1 is nothing but |w| <1, if w is considered as an element of
L(E;G’). Thus, by |#|. =|%|., we obtain

|<w,veu>|=|ulal V.
By the definition of [|v o #|,, this yields the desired result.

§ 2. Projective and injective X-norms.
1. Banach spaces of class (C) and class (L).

According to Grothendieck [2], we say a Banach space E to be of class
(L) or (L)-space, if, for any Banach space G and its closed subspace F, the

canonical injection E(% F—~FE CQ)G is an isomorphism; we say a Banach
space E to be of class (C) or (C)-space, if the dual E’ is of class (L).

If E is of class (L), then the dual E’ is of class (C). If E is isomorphic
to an L'(p) for a suitable measure space on a locally compact space, then E
is of class (L). Thus, by a result due to Kakutani, we see that the usual
Banach space, composed of all continuous functions vanishing at infinity on
a locally compact space, is of class (C). These lead to the fundamental
fact that any Banach space is on the one hand regarded as a subspace of
a (C)-space and on the other hand as a quotient space of an (L)-space, At
least in case where the scalar field is R, the notion of class (L) is known to:
be essentially equivalent to the one of L'(x). In what follows, we mean
by the notations L and C Banach spaces of class (L) and (C), respectively.
From the definition, the following results are immediately obtained [2]:

1) Let E be a Banach space and F its closed subspace. Then for any con-
tinuous linear mapping u € L(F; C), there exists a u € L(E; C") which satisfies:
#|F=uand || =|ul.
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2) Let E and F be as above. Then for any continuous linear mapping u
€ L(L: E/F), there exists a i = L(L; E") which satisfies: pou=u and | u|
= |ull, where p denotes the canonical homomorphism E" — E"/F*(D E/F).

2. Injective and projective X-norms.

A tensor norm « is called left-injective (abbreviated: /-injective) if, for any
Banach spaces E,G and a closed subspace F of E, the canonical injection
FOGCE®G
is an isomorphism. « is /~injective if and only if the above property holds
when E, F and G are numerical normed spaces. « is called right-injective
(abbreviated: r-injective) if *a is /-injective. A left- and right-injective -
norm « is simply called injective. « is called left-projective (abbreviated:
I-projective) if a’ is [-injective; in a similar way, the r—projective and the

projective @—-norms are defined.

It is easily seen that V is injective and A is projective.

The supremum of any family of /~injective (resp. r-injective) ®-norms
is /-injective (resp. 7-injective). Hence for any @-norm « the following
definition is meaningful:

/a = sup 3,
B%ﬁinj.
a\ = sup B.
B:é;img.
/a is -injective and «\ is 7-injective, Correspondingly, we put
\a = inf B,
ﬂ.;lazpro_]‘
a/ = inf B.
=
B : r-proj.

Then \a is /-projective and «/ is r—projective.

THEOREM 3. For any Banach space E, we have

CQE=CQE,
LOE=LSE.

| o

Proof. We shall prove CQ E=CQ® E. For this purpose, we need a lem-
ma:

LeEMMA. Let C be a Banach space of class (C). Suppose that a Banach space
G contains the C as a closed subspace. Then for any Banach space E the cano-
nical injection

a a
CRE~-GXE
is an isomorphism.

Proof of LEmMa. Consider the identity mapping ¢: C— C. From the pro-
perty of C as stated in 1) of the preceding section, it follows that there is
a pe L(G;C"), satisfying p|C=¢ and ||p]|=1. Then p®1 induces a
linear mapping
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GRE—C'QE,
whose norm is < 1. On the other hand, let ¢ be the injection C — G; then
¢ ®1 induces a linear mapping
CRE->GRE,
whose norm is < 1. Hence (p ®1)o (¢ ® 1) gives rise to a linear mapping
CRE—~C'QE.
Besides, it is obvious that | (p ® 1) o (¢ ®1)| <1 and that, if x€ CQ E, then
the image of # is just the canonical image in C" @ E. This, combined with
Corollary to Theorem 1, yields that (p®1)o(¢®1) is norm-preserving,

a fortiori ¢ ® 1 has the same property. This completes the proof.
Now we come back to the proof of Theorem. Let E and F be any Bangch

spaces. Let C be a Banach space of class (C) which imbeds E. Put Eé) F

for the closed subspace of Cé F, spanned by EQ F. We consider Eé)F
as a Banach space corresponding to the ordered pair (E,F). By Lemma

we know that Eé F is not dependent on the choice of C and so uniquely
determined up to an isomophism by (E,F). We denote by |ul;, u € Eé F,
the norm of # in Eé) F.

We shall prove that EéF actually gives a ®-norm to E and F. Let
(E;, F;) be another pair of Banach spaces and suppose that the linear map-
pings u, € L(E; E,) and u, = L(F; F,) be given. We shall first see that

u, ® u, induces a continuous linear mapping u, é) u,: E (;19 F—E, (;) F;. Let
EC C and E, C C, be the imbeddings into (C)-spaces of E and E,, respec-
tively. The mapping u,, being regarded as one of E into C;, has a norm-pre-

a
serving extension @, of Cinto C{": |u,|| = |4 |. Then the % ® u, gives rise to

@
a continuous linear mapping: CQ F— C/ C;) F, which satisfies

YA TALTA)

A a

Observe that E; ® F is considered as a closed subspace of C;”® F, because
C" is of class (C). Besides, the restriction of %, ® u, to EX F is the same
mapping as #, ® #,. Hence the definition of & gives

26y & vz || < || 201 ||- (| 262 |I.
Now let # be an element of E® F belonging to an E, ® F,, where by E,

and F, we mean finite-dimensional subspaces of E and F, respectively. We
wish to show

lule = inf{|u|y &r ; u€ E,QF,, E,CE, F,CF}
Suppose that E is imbedded into C. By the definition |#]| Eo@'"?ﬁq = |ulo@r,,

whence we have |u|ET(§Fag|uIEU§F¢, where E. is any finite-dimensional
subspace of C such that € E. ® F,. So we have
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|z =Ein1f |%|n, &r, %Eian |%|s_&r,-
T, o o, o
Since the converse inequality is trivial, we get |« |z = inf |#|s &n,. From
these properties of & we can easily conclude that & is a ®-norm.
From the defintion it follows that if E, is a closed subspace of E, then

E1C;<) F is a closed subspace of EzéF, so that o is /~injective. Since for

E C C the canonical injection E é F—>C é F isof norm <1, 4 < « is clear.
‘We have thus
ad</a.
Now let 8 be any /-injective ®-norm such that 3 < «. Then for any Banach
8 B
spaces E,F and C(D E), the canonical injection EQ F—-C® F is norm-
P B @

preserving and the canonical injection CQ F—>C® Fis of norm <1, E é() F

being defined as the closed subspace of CéF, we have |u|s < |ulz for u
€ EQ E. Hence B<d and so

/a = sup B < d.
This combined with the above yields & =/a. Thus by the definition of o

we have finally C& E = C® E.

The second assertion of Theorem with respect to \a can be proved by the
same lines as in /a. The corresponding lemma in this case becomes as
follows: If L is a quotient space of an E, then the canonical mapping

E é) F ——>L(>§ F is an onto-homomorphism. This is an alternation of the
fundamental property of L stated in 1), n° 1. Put EéF for the quotient

space of Lé F induced by the canonical injection LQ F— EQ F, where E
is assumed to be a quotient space of L. Then by the lemma and by the

\a @
similar disscussions we can prove o =\a and hence LQ E=LQE. This
completes the proof.

COROLLARY 1. Eéﬁ) F, E&BF and EE;Q\F are identified with the closures of
EQF in C,®F, EQC, and C,® C,(EC Cy, F C Cy), respectively.

COROLLARY 2. E (\5 F, E % F and E \59’ F are identified with the quotient spaces
o L, éF .EéLz and L, éLZ by the canonical homomorphisms, respectively,
wheve E = L,/K and F = L,/].

Related to § 1, n° 2, we have

CoroLLARY 3. Notations being as in § 1, n° 2, |ule = |ule, if a is injective.
If a is projective, then it is accessible.

Proof. Let a be projective. Express E and F as quotient spaces of (L)-

spaces: E=L/J,, F=Ly/J,. Then E® F is identified with L, ® Lo/J; ® Ja.
Let ue€ E'® F'. wu, being in B¥(E, F), naturally induces a bilinear form
on L, X L,, which we denote by #. We have obviously



170 ICHIRO AMEMIYA AND KOJI SHIGA

I e = 2 llar
and e L] Q L;. Put u=31x&y. Let @, and @, be the canonical homo-
morphisms: @,: L~ E, @,: L,—~ F. Then !¢, and ‘@, dre the isomorphisms
of E/— L] F’— L, respectively, and % = >)'¢x, ® ',y Now L, and L,
being metrically accessible, we have
(6) o =2 a
On the other hand, as « is injective, the canonical injection @, & '®,:

a o’

E'® F’—~ L, ® L,is an isomorphism. Hence from (@, ® *®,) u = # it follows
that
(7) |d|a’=|u~|a’-
(5),(6) and (7) yield | %« = |#|er. Since any injective ®-norm can be ex-
pressed as «’, this proves the first assertion. The second assertion is an
immediate consequence.

From the above proof we further find the following

COROLLARY 4. For any @Q-norm o, the Q-norms /a, a\, \& and o/ become
all accessible.

§ 3. Tensor-norm related to Hilbert spaces.
1. Hilbertian tensor-norms.

THEOREM 4. There exists a unique Q-norm 9, which is called the Hilbertian
Q-norm, with the following properties:

Let E and F be any Banach spaces, and let u be a bilinear form on E X F.
Then |ully <1 if and only if

u(x,y) = <Py, ¢y > for all x€ E and y< F,
where ¢ is a linear mapping of E into a Hilbert space H with |@| <1, and
¢ is one of F into H (the dual space of H) with | ¢ || < 1.

Proof. If such a ®-norm exists, the uniqueness is almost evident. Hence
we shall only prove the existence of the ®-norm 9(; the proof will be
devided into four steps.

1°. Put U for the subset of B(E, F), consisting of all # with the properties
stated in the theorem:

u={u; u(x,y) = <Px,Yy >, @ and ¢ being as above}.

Then the elements of U are also characterized by the following properties
(H) : there arve Hilbert spaces H and K, and linear mappings @ and  such that
@: E-~>H, with |P|=1,

g: F>K, with |¢I<1,

lu(x, y) | =@ @) Il o) |
In fact, the elements of U clearly fulfill the property (H). Conversely
assume that » € B(E, F) have the property (H). Then |u(x, y)|<|®(x)]|-
[¢(»)|. We may assume that H and K are spanned by {#(x); x € E} and

for which we have
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{¢(9); y € F}, respectively. Put (@ (x),¢(2)) = u(x,y). It is evident that ¥
induces the unique bilinear form on H x K by the continuity; besides, | 7] < 1.
Hence 7 is considered as a linear mapping of K into H’ with the norm <1.
Putting ¢, =7 ¢, we see that u(x,y) = < P(x), ¢,(y)> with @[ <1 and
| £.1=<1, which implies » € U.

A semi-norm on E is called a Hilbertian norm if it has the form @ (x, x)'/%,
where @(x,y) means a quasi-inner product on E. Then the condition
(H) is interpreted in terms of Hilbertian norms as follows: u € B(E, F)
fulfills the condition (H) if and only if the bilinear-norm of » becomes <1,
when E and F are endowed with a suitable Hilbertian norm @ and a ¢,
respectively, such that @ (x,x)'* <| x| and ¢(3,9)'* <|y|. We say a pair
of Hilbertian norms {®, ¢} to be an H-attendant of u, if the above relation
holds for %, @ and ¢.

2°. We prove that U is convex (and circular in the complex case) and
that it is compact with respect to the simple convergence.

Let #, and u, be elements in U; let {®;, ¢;} be the H-attendants of u;
(=1,2). Then Nu + Agtts Ay =0. A; =0, A; + A, = 1) has the H-attendant
{P1 + NPy, Ny + Ao} In fact, applying the Schwarz’s inequality, we
have

[ Nty (%, 3) + Notta(, ) | < NP1 (%, x) D1 NP 4 N Po(x, %) oy, y)P

= M@, %) + NaPalx, )N 1%, %) + NaPalys )
besides,
DuPi(%, %) + NaPe(%, 2) P2 SN Pu(%, )1+ Ny Do, 2)E < 2,
{Mdi(9,9) + Ny, )P <N 9l
If follows that \,u, + A.u, € U, whence U is convex. It is clear that U is
circular in the complex case.

In order to prove the compactness of U, it is sufficient to show that U'is
closed in By(E, F). Let u\, € U and assume that », converges to # in By(E, F).
Let {®x, ¢2} be an H-attendant of #,. Since the totality of inner products
on E (or F), with the norm <1, is compact in By(E, E) (resp. Bs(F, F)), we
may assume that {®,, ¢.} simply converges to a pair of Hilbertian norms
{®,¢}. Then it is clear that {@, ¢} gives rise to an H-attendant of » and
so uecs U.

3°. For ve EQ F, put

[vlg = sq}lfl(¢®¢)vlm

where the supremum runs over all such pairs of {®, ¢} that ¢ is a linear
mapping of E into an arbitrary Hilbert space H and ¢ is one of F into K

each of whose norm is at most 1, (@ ® ¢)v being considered in H @) K. Put
U° be the polar set of U in EQ F. Then as is easily seen

U= {v;|v|e =<1}
Also it is evident that |v|g is actually a reasonable norm of E® F.

Now let #;(: = 1,2) be the continuous linear mappings of E into E, and F
into F,;, having the norm 1, respectively. Then, for v € EQ F, we have
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[ (0, @ t) v |9 = 21141‘) (P, Q ¢y) o (4, @ us) v,
1,71
= sup | (P, o #;) @ (P10 ) v

¢1,%

éswufl(¢®</’)vh=lvlw,

where @, means linear mapping of E,; into a Hibert space of norm <1 and

¢; has the same meaning with respect to F,. Consequently | u,éé)uz I
= AN

4°. We wish to show that|v|4 is a ®-norm. For this it remains to prove
that for any fixed v € EQ F, |v|4 is equal to the infimum of Ivlya‘g r,, Where
E,; and F, mean finite-dimensional subspaces of E and F, respectively, such
that ve E, ® Fo(c € 33). From the result of 3°, it follows |v|< lvlycg Foe
We must prove the converse inequality. For this aim, making the assump-
tion of inf|v|y §r, > 1, we shall show that this leads to|v|s >1. For u
€ B(E,F), we denote by | u|4 the norm of # induced by the ¢ unit sphere”’
U if its norm exists. From the above assumption, for all ¢ € 3} there
is a bilinear form u, on E, X E, such that

" Uo ]I.% é 1
and
| < #te,v >|> 1.

Let S and T be the unit spheres of E and F, respectively. We denote by &
the space of all functions on S X T with suppesxr| f(#)| =<1 and assume that
& have the simple convergence topology. Observe that % is compact. For
all o € ), associate the closed set ., of &, consisting of all functions f’s
such that the restriction of f to (S x T) N (Es X F,) is equal to the one of
s to SXT)N(E; X F,). F. is not empty, since it contains a function f,
defined as follows: f,(x,9) = u.(x,y) for x€ E, NS, y F, N T, and fo(x,9)
= 0 otherwise. Besides it is clear that $, has the finite intersection pro-
perty. Hence we can conclude that N,es%, is not empty. Take a func-

tion f, from N &, and put
wix,3) ==y 1A (Fop 1o7)-
Then a familiar discussion yields that #(x, y) is a bilinear function on E X F
and that
| <u,v>|>1
Hence |v|4r > 1 will be proved if we can succeed in obtaining ||y <1.

From the existince of an H-attendant of #, it follows that there are a Hil-
bertian norm @, on E, and a ¢, on F, such that

P, %) =2 IP, Yol ) =Ny
and that
Lo (%, 9) | < Po(x, %) Poly, M2
for all x € E, and y € F,. Applying the same arguments as above, we find
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a Hilbertian norm @ on E and a ¢ on F, obtained by the ‘‘limit”’ of
@, and ¢,, respectively, the pair of which serves as an H-attendant of u.
Hence we get |ully <1. Thus, we come to a conclusion that

lole = inf|v]s, %5,
which, together with the preceding results, shows that 4{’ is a ®-norm.

If follows simultaneously that the dual norm 4 of J{’ gives the desired
Hilbertian @-norm. This completes the proof.

ReMaRrk 1. From the definition it results that the ®@-norm 4" is the small-
est one in all the ®-norms a’s with the following property: Let E and F
be any Banach spaces; let @ and ¢ be any linear mappings from E and F
into Hilbert spaces H and K, respectively. Then @ ® ¢ induces a linear

@ A
mapping EQ F into HQ K with the norm < | #|-| ¢|.
Hence, by the duality, we find:

ReMaRrRk 2. The ®-norm J{ is the greatest one in all the ®-norms B’s
with the following property: Let E and F be as above; let ¢ and ¢ be any
linear mappings from Hilbert spaces H and K into E and F, respetively.

v B
Then @@ ¢ induces a linear mapping H® K into E® F with the norm
=lel-l ¢

2. 9{’-forms on C,(M) X C,(M).

Let us recall some known definitions. Assume that £ and F be linear
spaces. A form u on E X F is called sesquilinear if u(x,y) is linear with
respect to x and anti-linear with respect to y. If we introduce the space F
which is anti-linearly isomorphic to F in a canonical way, then a sesquilinear
form u# on E X F is regarded as a bilinear form on E X F. By this corre-
spondence between sesquilinear forms and bilinear ones, the notions on
bilinear forms such as type a. a-norm, etc. are naturally inherited to ses-
quilinear forms. A sesquilinear form # on E X E is called Hermitian if

u(x,y) = u(y,x), and positive if u(x,x)=0. In a usual manner, the order
relation is introduced in the family of Hermitian forms on E x E, which
is denoted e.g. by u > v.

For later use, we shall give a characterization of the elements in ER F,

belonging to the unit sphere in E(fé F. Assume that » be an element in
EQ® F with |v|y <1. Since 4( is injective, by Corollary 3 to Theorem 3
|v|lg =<1 is equivalent to |v4 <1, where » is regarded as an element of
B%(E’,F’). Let an H-attendant of » be {®, ¢}:

(8) @: E'—H, with |p|<1,
(9) ¢: F'—>H, with [¢[<£1,
and

(10) (&, y) = < P&), P(y)>.

As is easily verified, we may assume without loss of generality that H is.
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finite-dimensional and that @ and ¢ are both onto-mappings. Let ¢;(: =1,
---,) be an orthonormal basis in H, and let ¢;( =1, ---, n) be the dual basis
in H’. Since for a fixed ¥ v(x’,y’) is o(E’, E)-continuous in &/, it follows that
@(x’) is weakly continuos. Similary ¢ (y’) has the same property. Hence
there exist ;€ E and v, € F (i =1, ---,n) such that

La 4> =< P, e >,

<y, >=<e,y)>.
“Thus we have

v, y) = < P),e; ><ei, P (y)>
=3 <%, ><y,y >.

Consequently, v can be expressed as follows:

(11) v=2%%Q ¥
where we have

(12) Sil < >F=I«F,
(13) Sul< Y,y > =1y P

in fact, for example the first inequality (12) is deduced from
SHl< a2, >F=3< @), e, >
=|e@)F =1z
Conversely, assume that v € E® F have an expression (11) satisfying the

supplementary conditions (12) and (13). Consider H = [*(1,---,#). Define the
linear mappings ® and ¢ by

@: ¥ >{< x,%, >} < H,

$: y 2 {<y.m>reH.
Then it is obvious that (8),(9),(10) can be satisfied and so [[v]s =<1. In con-
clusion, the conditions (11), (12) and (13) together give a complete charecteri-
zation to elements which belong to the unit sphere of EQ F with respect
to J{~norm.

THEOREM 5. Let M be any locally compact space. Put E = Cy\(M), where
Co(M) donotes the Banch space, consisting of continuous functions on M which
vanish at infinity, the norm of functions being defined as its least upper bound.
Assume that a sesquilinear J—form u on E X E be given. Then there exists
a positive measure w on M which satisfies the following properties:

(14) (£, NI (17F dw,
Tl < lula.
If u is further assumed to be positive, then @ can be taken such that
el = ol
Proof. We shall first establish:
(15) DPAPE [ PAR T DPAR S

for any g, ;€ E(i=1,---,sm). Consider the Hilbert space H= [*(1,---,n);
let @ be a linear mapping of H into E: {A\;} = 31*. . \;g9;, and ¢ be one of H’
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into E: {A}— 31" Nk Since we have clearly
sup [ X Nagill =122 g: P I,

3iAP=1
it follows that || =22 . EI2 and | ¢ = 22| & B|'"®. Therefore by Re-
mark 2 in n° 1 we have

(16) 12 ® PI=<13 geF PP IS AP I,

v %

@ Q) ¢ being regarded as a mapping *® I?—> EX® F. On the other hand, it

is evident that (P ® ¢) Yle; R e; = 31 9: ® Ay and that |32, e; ® e; |, = 1, where

¢; denotes the elements {0,--,0,1,---,0} of H( =1,---,n). Hence (16) shows
~

-th

the validity of (15).

Now let # be a sesquilinear 4J('~form on E x E. We may assume [« |4
= 1. Denote by Ej the real Banach space which consists of all real-valued
functions in E, with the same norm as in E. For f € Ey, put

(17) P(f) =it {f + B g:F I~ Zlulge 99Dy

where the infimum is taken all over the family of finite elements {g;},
g€ E. We show:

i) Plaf)=aP(f) (a>0);

i) P(fi+fi)=P(f)+ P(f);

ili) P(0) =0;

iv) P(f)=Ifll

Ad i), Plaf) =inf{Jaf+ 3| gl - Zlu(gs g [}

= aint{ly+ 30| o[ |- Du (G g 90}
= aP(f).
Ad ii). Clear,

Ad iii). We first prove that P(0) is non-negative. Since
P(0) = inf {I 33| g: Pl — 2 w(gs, g:) I

for this it is sufficient to show
(18) I3 9P 1= 2l w(g0 901

Choose &;,|&| =1, such that u(g:,&9:) = |u(g, g:)|; put b= &g:(6 =1, -, n).
Then it turns out that (18) becomes an immediate consequence of (15) in
view of |u#l4- = 1. ‘This being established, it is trivial to verify P(0) =0
by taking g; as 0.

Ad iv). This is also a consequence of (15).

The above mentionned properties i),ii) and iii) mean that P(f) is subad-
ditive. We are now in a position to apply the Hahn-Banach extention
theorem. Hence there exists a linear functional x, on Ez, which satisfies

(19) wm(f) = P(f).

From iv) it follows that for f & Ex
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(20) —AIE=P(—=H=mNH =P =IfI
Moreover, by (17) and (19) we have

(=B == 1P+ 1R =1u(f, )]
for any f € E, so that

(21) lu(f, )= ml FF).
(20) and (21) imply that u, induces a positive measure w on M, satisfying
Ixl=1,

lu(£ )= [\FF di.

Hence, @ gives a required measure.
Now, we go on the second part of Theorem; we further assume that u is
positive. It should be noted that in case E = C,(M), the conditions (11), (12)

and (13) mean that the unit sphere of E(%E is the closure of the elements
A ®gs DAP=L Xlgif =1},
the index { running over {1,-.--,n}, » arbitrary. Therefore for any 4—
form # on E X E we have
lulla = sup {31 |u(fi, g0 |; DIAF =1, 2] g:F =1}

On the other hand, as #» is positive, by the successive application of Sch-
warz’s inequality we obtain

Sulf 90| = SulFf) P ulge 90"

= Y ulfo NS (g0 90).
From this it follows directly that
(22) Il = sup (S u(ff); SIAF =1}

Since w satisfies

u(f,f) =|IfF dp,
we have
Du(fuf) =X (| filF) = n2fF).
Accordingly by (22) we obtain
flaella <l Il
This, together with the converse inequality obtained in the first part, yields
l#lls = | #], which completes the proof.

3. Consequences.

For a positive measure » on M, we put

(23) o f,9) = | fg du;

v, is clearly a Hermitian form on C,(M) X C,(M). Theorem 5 shows that
for any J{’'-from u on Cy(M) X Co(M), there exists a positive measure u
such that |u(f,f)|<vu.(f.f) and [ p| <] #|ls.. In case where « is Hermitian,
this is expressible as follows:
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—vu L Loy, with [p|=(ule.
Further, it holds ||« | = |#|l4, when « is positive. Observe that by (23) we
can also write v, as a weak integral on the unit sphere B of E’ such that

Vp = Sﬂgm ® gmd/"’(x),

where &, and &, denote the Dirac measure at x in Co(M) and C,(M), respec-
tively, M being regarded as a subset of B. This in turn implies that v, is
an integral operator [1].

These results can be immediately extended to general cases according to
the following considerations. Let E be a Banach space and assume that E

%
is imbedded into a Co(M). 9 being injective, EX E is regarded as a closed

subspace of C,(M) éCo(M ). Let u be any given 9{-form on E X E. By
the Hahn-Banach extension theorem, « is extended in a norm-preserving
way to an J{’~form @ on C,(M) X C,(M), to which the results mentioned
above can be just applied. Then, it is easy to see that the restriction of #
to E X E allows us to formulate its results in terms of # as follows:

THEOREM 6. Let E be a Banach space and let u be a sesquilinear 9{’-form
on E X E. Then there exists a positive Hermitian integral form v such that
lu(x,2)| < v(x, x).
v admits an expression as a weak integral on the unit sphere B of E’:

(24) v=| ¥ @¥auw),
where p is a positive measure on B satisfying
(25) el =luly-

As a consequence, if u is a Hermitian 9{—form on E X E, then there exists a v
with the expression (24) (i satisfying (25)), such that

—v<Lu<k.
In a special case where u is positive, the equality holds in (25).

We shall again consider Thorem 5. Making use of the notations there,
we find that for a Hermitian 9J{-form u on C,(M) x Cy(M) (14) means

lu(f 9) = (Slfl2 d,u)ll2 (flyF d/w)

Accordingly, by the continuity # is uniquely extensible to a form on L*(u)
X L*w) with the norm < 1.

We proceed to generalize this result to a sesquilinear 4{’~form on Cy (M)
X Cy(N), where M and N denote locally compact spaces. Put R=M+ N
(topological union). M X N are canonically imbedded into P X P, so that
Co(M) X C4(N) is regarded as a subspace of C,(P) X Cy(P). Define U by

Uf+g.f+9)=ulf,g)+ulf.g9 (f,feCM), g, g€ CN)).

It is clear that U is a Hermitian form on C,(P) X Ci(P) and the restric-
tion of U to M x N is nothing but ». 9{’ being projective, we have

1)2
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Ul <20 9.

Apply the arguments in the preceding paragraph to U, we know that there
exist positive measures ¢ on M and v on N such that

le+vi=lel+1vi=1Uls;

furthermore, U is uniquely extended to a form on L¥u + v) X L¥r + v) with
the norm <1. By the definition of U, these properties however remain
true, even when u is replaced by ap and v by v/a(a >0). Hence, as is
easily seen, we may assume that x and v are chosen so as to satisfy

fel fvi=luls
Therefore we obtain

Let u be a sesquilinear {"—form on Co(M) X Co(N). Then there exist positive
measures  on M and v on N such thal u is uniquely extended to a form on
L¥(w) X L¥v) with the norm <1, besides

Fel Brl <1l

This implies that «» is a Hilbertian form and |u |4 <|#|4. In order to
state this result in a more general form, we consider Banach spaces E and
F. Assume that E is imbedded into Cy(M) and F into Cy(N). Then any
IY{'—form u on E X F is extended in a norm-preserving way to an J{—form
% on Cyo(M) X Co(N). By the above, we have | |4 =%y = | # |4, which in
turn implies that |u |y < | |4

Thus we finally arrived at the following theorem:

THEOREM 7. We have (= 9{'.

As stated in Introduction, this result is somewhat better than that due to
Grothendieck ([3], § 3, Proposition 3).
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