
ON TENSOR PRODUCTS OF BANACH SPACES

BY ICHIRO AMEMIYA AND Kόji SHIGA

Recently in his interesting paper [3] A. Grothendiek has successfully
developed a theory of tensor products on Banach space, which gives a wide-
scope to his previous work on topological vector spaces [1] . However, except
two fundamental theorems, he has given no demonstrations to his results,
some of which deserve our attention and demand non-trivial methods of the
proof. Therefore it will not be altogether meaningless to give the proofs of
them here (maybe different from the original ones) , though there is nothing
essentially new to the theory itself, except a slightly better results in respect
to Proposition 3 in § 3 of [3], showing that we have £{<M' in place of Si

We do not refer to some results of [3] which can be easily proved; nor
do we refer to any results stated after § 3, n° 4 in the cited paper, because,
as Grothendieck himself has remarked in it, they are easily checked accord-
ing to his directions.

§ 1. Tensor norms.

1. Preliminaries.

For the convenience of the reader, we first sketch the fundamental defini-
tions and notations of the original paper. Let E and F be Banach spaces.
A norm a given on the tensor product E (x) F is called reasonable if it satisfies

cί(x®y) = \\x\\-\\yl (x <=E,yeΞF) and a'(*®yr) = IUΊHI/H, (*' e E'9 / e ί"),
where a' denotes the dual norm on the E'®Ff\ the elements of Ef®Ff

is considered in the dual space of E (g) F. For a given reasonable norm
a

a, E® F means by definition the Banach space which is the completion
of E<S)F by the norm a. Then on the E®F there exist the smallest
reasonable norm V and the greatest one A. Specifically, V and A are
defined by the following:

(1) |w |v

(2) \u\Λ = sup \<u,v >|.
VSSCE.F)

INssi
A

From the definition it follows that the dual space of E®F is
A normed space E is called a numerical normed space if the underlying

Received September 12, 1957.
1) Notation V nas the same meaning as A which is used in [1].
2) B (E, F) denotes the Banach space consisting of all the continuons bilinear forms

on E x F with the bilinear norm.
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vector-space is isomorphic to an R" or a Cn3); the set of numerical normed
space is denoted by 91. An object a which is denned on all ordered paires
(E,F), E, Fe9l, is called a tensor norm (notation: (x)-norm), when it satis-
fies the following conditions: 1°. a induces a reasonable norm of E® F; 2°.
Let Ui be linear mappings of Et into Ft(i = 1, 2; Ei, Ft e 9fc). Then the tensor

05 05 05

product HI (x) «2f regarded as a mapping of Fj (g) E2 into F! (x) F2, fulfills the
as a

norm relation || Ui (x) w2 II ̂  II «ι || |l uz II- I*1 this case we denote by F(x)F the
space E (x) F with the norm #.

** 05

For a given (x)-norm #, tcL is defined by F(x) F = F(x) F. ta gives rise
obviously to a (g>-norm, which is called the transposed ®-norm of #. In case

05

where a — ^a, a, is called symmetric', hence the symmetry of a means E® F
cύ

and F (x) E are canonically isomorphic for all E, F e 9ΐ. Now consider £ (x) F
as the dual space of E/0F/; then the dual norm #' on F(x)F, induced by

Q5

E' (x) F', gives a new (x)-norm. #' is called the dual ®-norm of Λ. It is
easily seen that t(tά) = o:, (α:/)/ = a and ^(^0 = (^)x. We put a = t(a/) .

For tensor norms a,β and for a positive number X, a^\β is by defini-
tion I & |α < λ I ^ |β for all u e F (g) F (F, F e 91) . In particular, the relation
a<β induces an ordered-relation in the set of (x)-norms. The set of all
(x)-norms forms a complete lattice. It is easily verified that the reasonable
norms V and A naturally induce (x)-norms; besides, V is the smallest and
A is the greatest (x)~norm. Also it is evident that V and A are symmetric.
We have ( V X = A and (A)' = V .

In the preceding paragraphs the tensor norm has only been considered
for numerical spaces. We define it for all Banach spaces. Let a be a (x)-
norm; and let E and F be any two Banach spaces. Consider the set (£ and g
which consist of all finite-dimensional subspaces of E and F, respectively.
Then {M®A/";Me@, N e f?}, the family of finite-dimensional subspaces
of F(x)F, forms a filter by inclusion order and F(x)F= \JM®N. Let u

be an element of F(g)F, belonging to an M®N. \U\M®N denotes the norm
Cύ

ofumM®N. The condition 2° of the (x)-norm, applied to injection map-

ping, shows that if (M,N) C (Mί9 Λ/Ί), then | u U®^ ̂  | u Ul(§^r Hence

is well-defined furthermore, | u |α is actually a reasonable norm of E® F.
The reasonable norm #, obtained by the above procedure, is called a ®-norm
of the Banch spaces E and F. In particular, if α: is V or A, then \u\a is the
same as we have defined by (1) and (2), respectively, so that the notation
is compatible.

Let Ei9 Ft (i = 1, 2) be Banach spaces and Ui be the continuous linear mapping
of EI into Fί. Then it is evident that HI (x) u2: E1 (x) E2-+ F± (g) F2 induces

Λ α/ Λ 05

a continuous linear mapping Ui (x) w2 of Ft (x) F2 -> Fj (x) F2 and that || HI (x) ^2 1|

3) 7? and C denote the real number field and complex number field, respectively.



TENSOR PRODUCTS OF BANACH SPACES 163

The dual Banach space of E <g) F is denoted by Ba(E, F) . Since | u |« < \ u |Λ
.and the dual space of F(x)F is £(F,F), the element of Ba(E,F) is in
a natural way regarded as an element of B(E,F). A bilinear form A on
Ex Fis called ίjy^ a if 4̂. e £α(F, F); the norm of A in Ba(E, F) is denoted
by \\A\\a. L(E\ F)4) being canonically isomorphic to B(E,F'), the corre-
spondig definition to type a is possibly transferred to the elements of L(E\
F); the space of all linear mappings of type a, endowed with the norm
|| A\\a, is written by La(E\ F) . "Type A" is often replaced by the adjective
"integral".

The following fact is an easy consequence of the definition of (x)-norm.
Let A e Ba(E,F), and let Ft and Fl be Banach spaces. Assume that the
continuous linear mappings u: El-^E and v: Fl-^F are given. We define
the form A*(u(&υ) on £Ί x Fl by A <> (u (x) v)(x, y) = -A(«*, t y) . Then we
Ίiave A o (u® v) e= Ba(EίίEί) and |A * (w<g) 0) ||« ̂  || A ||α - |M || |k l In particular,
for any subspaces Fx C F and F! C F, we have

Al^x^eB-^FO
and

\\A\E! xFti^^Ai,
where A\E± x Ft means the restriction of A. to El x Fj.

2. Accessible (x)-norms.

Let E and F be Banach spaces. Given a (x)-norm #, we can construct

E®F and Ba(E',F'), both of which contain canonically E®F. For w
e F (x) F, the norms of w considered in each space are denoted by | u |α
and ||w||α, respectively. Then

||#||α^£|#|α. If E and F are metrically accessible,^ then \u\a = |^|«.

Proof. Let F! and Ft be any finite-dimensional subspaces of E and F such
that u e F! (x) Flf and let ^t and £2 be the injection mappings Eί -> F and
F!->F, respectively. Then ^x is a linear mapping F'-^F^ with norm one;
the same holds for F^, F' and ^2. Consider u\E[x F{, the restriction of ^

to F; x F;. Then we have || u \ E{ x F[ |« = | u \ E{ x F{ |« = | ̂  UI&Ί On the

other hand, || u \ E{ x F{ o (̂  (x) ̂ 2) ||α <\\u\E[x F{ ||α, since || tιl (g) U Λ 2 1| ̂  1. It

is clear that the left member is equal to || u ||α. Hence we have || u ||α < \ u \El§)Fl

which shows || u ||« < \ u \a by the definition of | u |α.
Now we assume that E and F are metrically accessible. We wish to

show ||«||α = I w|α. For that purpose, it is sufficient to prove \\u\\a > 1 when-
ever I u |α > 1.

4) L(E\ F) denote the Banach space consisting of all the continuous linear mappings
from E into F with the usual norm.

5) As to the notion " metrically accesible ", see [1], Chap. 1, Def. 10.
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Write u = S?-ι #« ® #• Put ̂  = Maxi-s^ {|| Xt \\, II yt ||}, and let £ be any posi-

tive number smaller than | u \a — 1. Since E and F are metrically accessible,
we can find a linear mapping φv of E1 into a finite-dimensional subspace ̂
and a ^2 of F into jFΊ, such that

and that the norm of ψi (i = 1, 2) is ^ 1. Without losing generality, we may
obviously assume u e £Ί (x) Flβ We have

+ Σ3 <P& (

I +

Besides, we have | « U !̂ ί̂  | # U > 1. Hence we obtain

Accordingly, there is a ^ e -Eί (x) -Fί such that | #ι |α/ = 1 and that

(3) I < (9>ι ® %) «, fli >I>1.

Put z; = ( Vi Θ Va) tfi- Then t; e E' §) F7 and 1 1; |α/ ̂  1, because || tφl (
^ 1. Moreover, by (3) we have

I < u,v > I > 1,

which gives || u ||α > 1. This completes the proof.

A tensor norm a is called accessible, if || u ||α = | u \a always holds under the
assumption that E or F is finite-dimensional. In case where a is accessible,
the above proof remains valid when φ^ or φz is replaced by the identity
operator. Hence we get

If a is an accessible ®~norm, \\ u ||α = I u |α holds when E or F is metrically-
accessible.

If a is accessible, then <%' is accessible. This is simply a translation of
the following fact to the dual spaces: the accessibility of a means that the

Λ

canonical mapping E/ (g) F/ -> Ba(E, F) is an isomorphism onto when E is
finite-dimensional. It is trivial that under the same assumption of a, ta
and a are also accessible. Finally we note that it is always valid ||^||v

Thus the (x)-norm A is accessible.

3. Canonical prolongation.

B(E,F] is canonically isomorphic to L(E',F'). Since F/ is in an obvious
way imbedded into (F')", u e L(E; F') is regarded as an element of L(E\(F')")*
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This fact can be interpreted in terms of B(E,F)\ thus A& B(E,F) corre-
sponds canonically to an element A&B(E,F'r). A is called the canonical
prolongation of A.

THEOREM 1. For a given A e B(E, F), let Ά be the canonical prolongation of
A: A e B(E,Fff). Then in order that A is of type a it is necessary and suffi-
cient that Ά is of type a. Furthermore we have

LEMMA. // E is finite-dimensional, then L(E\Fn) ^ L(E\F)n (canonically) for
-any Banach space F.

v
Proof of LEMMA. Since E is finite-dimensional, L(E F) =£'(x)F. The

(x)-norm A being accessible, we have L(E',F)' ^ (E' (x) F)' = E® F'. Hence

we have L(E;F)"r ^ (E®F')f = B(E,Ff) = L(E;F»).

Proof of THEOREM. Sufficiency of the condition and || A ||α ̂  || Ά ||α are clear.
We must prove the necessity and the converse inequality. Assume that A
is of type a and that || A ||α = 1. We wish to show || Ά ||α < 1. Let Et and Fr

be any finite-dimensional subspaces of E and FH, whose basis, suitably
chosen, are denoted by {#1, ••-,#„*} and {y[', •• ,̂ /}, respectively. Now apply
Lemma to ί\ and F". We have L(F,\F'!) ^L(F^ F)» (canonically). It fol-
lows that the injection operator L\ Fl-^Fn in L(Fί\F)H is weakly approxi-
mable by elements belonging to the unit sphere of L(F1;F)t where by the

weak topology we mean the one induced by the duality between Fl (g) F'

We identify A e B(E,F) with an element of L(E F') and so Axt(i = 1, •••,
m) are the elements of F'. -Consider the y" (x) Axt(i = 1, ~,m\ j = 1, •••, n),
which lie in the dual space Fx (x) F' of L(Fl\F). Then from the above we
find that there is a uEiL(F1-)F) such that ||^||^1 and that

< u9y'j®Axi > = < ι>,y'j ®Ax% > (i = 1, ~,m; j = 1, ••-,«).

It is easily seen that this implies

( 4 ) A(xt,u(y?)) ^A(xlίyj

f) (i = 1, —,!»;/ = !,—,«).

Let F2 be the subspace of F spanned by u(y"), j = 1, - - ,ίw. We see that
1 (x) ^ induces the linear mapping

E^F^E!® F2

with the norm ^ 1, and that by (4)

Ά I El x F! = A I E, x F2 o (1 (g) «) .

Therefoe we obtain

IlIlEi xFJU^MI^ xF,I.^|-AI. = l>

whence we have ||-3||α<l. This completes the proof.

From the polarization we have
oί cύ

COROLLARY. The canonical injection E®F-*E®F" is an isomorphism (into) .
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4. Relations between α-mappings and δ-mappings.

THEOREM 2. Let u e La(E\ F) and v e L*(F; G). Suppose that a is an acces-
sible ®-norm, or that F is metrically accessible. Then v °u is an integral
operator which satisfies

lbo^IU^IMblMU.
Proof. As ||#°^|U (or ||^||α) is the supremum of the Λ-norms of v ° u

(resp. α-norms of u) restricted to finite-dimensional subspaces of E, we may
assume E to be finite-dimensional; hence we have u e E' (g) F. Observe
that the assumption on a or on F now gives ||̂ ||α = \u\a. For every x e E
and zf e G', we have

< x (x) 2', z; ° u > = < t; o ^ (#), 2' > = < WΛΓ, W >

= < U, X (X) W > = < U,*V ° (X ® Z?) >,

where in the last bracket x®z? is regarded as an operator of Ef into G''.
Hence for any w e j£(g) Gf with | w; |v ̂  1, we have

I < wy v o ^ > I = I < u, *v ° w > I ̂  I w |α || tv ° w ||«'

^M«IMU
because | w |v < 1 is nothing but || w \\ ̂  1, if w is considered as an element of
L(E' G'). Thus, by \\u\\a = |w|«, we obtain

I < w, z; o u > I ̂  || u \\a || *t; ||α/.

By the definition of || v ° u ||A, this yields the desired result.

§ 2. Projective and injective (x) -norms.

1. Banach spaces of class (C) and class (L).

According to Grothendieck [2], we say a Banach space E to be of clasz
(L) or (L}-space, if, for any Banach space G and its closed subspace F, the

A Λ
canonical injection E<S)F-*E®G is an isomorphism; we say a Banach
space E to be of class (C) or (C)-space, if the dual E' is of class (L).

If E is of class (L), then the dual E' is of class (C). If E is isomorphic
to an U(μ) for a suitable measure space on a locally compact space, then E
is of class (L). Thus, by a result due to Kakutani, we see that the usual
Banach space, composed of all continuous functions vanishing at infinity on
a locally compact space, is of class (C). These lead to the fundamental
fact that any Banach space is on the one hand regarded as a subspace of
a (C)-space and on the other hand as a quotient space of an (L)-space. At
least in case where the scalar field is R, the notion of class (L) is known to
be essentially equivalent to the one of L^μ). In what follows, we mean
by the notations L and C Banach spaces of class (L) and (C), respectively.
From the definition, the following results are immediately obtained [2] :

1) Let E be a Banach space and F its closed subspace. Then for any con-
tinuous linear mapping u e L(F\ C), there exists a ΰ e L(E\ C") which satisfies:
ΰ I F = u and || u || = || u ||.
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2) Let E and F be as above. Then for any continuous linear mapping u
<Ξ L(L\ E/F), there exists a u e L(L\ E''} which satisfies: p° u = u and \\u\\
= || #||, where p denotes the canonical homomorphism E" -> Erf/F°°(D E/F) .

2. Injective and projective (x)-norms.

A tensor norm a is called left-injective (abbreviated: /-injective) if, for any
Banach spaces E, G and a closed subspace F of E, the canonical injection

is an isomorphism, a is Mnjective if and only if the above property holds
when E, F and G are numerical normed spaces, a is called right-in jective
(abbreviated: r-injective) if ta is /-injective. A left- and right-injective (g)-
norm a is simply called injective. a is called left-projective (abbreviated:
/-projective) if a' is /-injective; in a similar way, the r~projective and the
projective ®-norms are defined.

It is easily seen that V is injective and A is projective.
The supremum of any family of /-injective (resp. r-injective) (x)-norms

is /-injective (resp. r-injective) . Hence for any (x)-norm a the following
definition is meaningful:

la = sup β,
β^Oί
β : ί-inj.

α\ = sup β.
β^<*
β:r-mj.

la is /-injective and a\ is r-injective. Correspondingly, we put

\a = inf β,
β^Λβ . Z-proj.

a/ = inf β.
β^<*
β:r-proj.

Then \a is /-projective and a/ is r-projective.

THEOREM 3. For any Banach space E, we have

C (g) E - C <g) E,

L (§) E = L (§) E.

Proof. We shall prove C (x) E — C® E. For this purpose, we need a lem-
ma:

LEMMA. Let C be a Banach space of class (C) . Suppose that a Banach space
G contains the C as a closed subspace. Then for any Banach space E the cano-
nical injection

is an isomorphism.

Proof of LEMMA. Consider the identity mapping I: C-+C. From the pro-
perty of C as stated in 1) of the preceding section, it follows that there is

a £eL(G;C"), satisfying p\C = ι and ||£l = l. Then £(x)l induces a
linear mapping
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whose norm is <l. On the other hand, let t, be the injection C->G; then
t (x) 1 induces a linear mapping

whose norm is ^ 1. Hence (p (x) 1) o (i ® l) gives rise to a linear mapping

Besides, it is obvious that || (p (x) 1) o (L ® 1) || ̂  l and that, if u<=C®E, then
the image of u is just the canonical image in C" (x) E. This, combined with
Corollary to Theorem 1, yields that (p (x) 1) o (^ (g) 1) is norm-preserving,
a fortiori Λ (x) 1 has the same property. This completes the proof.

Now we come back to the proof of Theorem. Let E and F be any Banach
δ

spaces. Let C be a Banach space of class (C) which imbeds E. Put F(x)F
Λ δ

for the closed subspace of C (x) F, spanned by E® F. We consider E® F
as a Banach space corresponding to the ordered pair (E,F). By Lemma

δ
we know that F(x)F is not dependent on the choice of C and so uniquely

2
determined up to an isomophism by (E,F). We denote by \u\z, u^ F(x)F,

a.

the norm of u in E® F.

We shall prove that E® F actually gives a (x)-norm to E and F. Let
(FjjFi) be another pair of Banach spaces and suppose that the linear map-
pings HI e L(E\ Fj) and u2 e L(F; Fj) be given. We shall first see that

δ δ δ
UI®HZ induces a continuous linear mapping tti®uz: F® F—^Ft (x) Ft. Let
F C C and Fj C Cj be the imbeddings into (C)-spaces of E and F!, respec-
tively. The mapping ul9 being regarded as one of E into Cl9 has a norm-pre-

*
serving extension ύ^ of C into C(': || #ι || = |( ύl |(. Then the ΰl (g) ̂ 2 gives rise to

Λ a,
a continuous linear mapping : C (x) F -> C '̂ (x) F, which satisfies

Observe that ̂  g) F is considered as a closed subspace of C" (g) F, because
C" is of class (C) . Besides, the restriction of ύl ®uz to E (g) F is the same
mapping as ^ ® uz. Hence the definition of c6 gives

δ

II «ι® w e l l ^11 «ιll 1^2 1-
Now let u be an element of E (x) F belonging to an Eσ g) Fσ, where by Eσ

and Fσ we mean finite-dimensional subspaces of E and F, respectively. We
wish to show

j^σ; u^Eσ(g)Fσ, Eσ d E, Fσ C F>

Suppose that E is imbedded into C. By the definition | u \ 2*jσ®Fσ = I

whence we have | u Uτ&σ ̂  | u \Eσ®Fσ, where Eτ is any finite-dimensional
subspace of C such that u e Fτ (x) Fσ. So we have



TENSOR PRODUCTS OF BANACH SPACES 169

\u\z=mf\u \ur§>Fσ ^ inf | u U |F_.
E F τ σ E F σ σ

T, σ σ, σ

Since the converse inequality is trivial, we get \u\z- inf | u \E & . From
these properties of c6 we can easily conclude that 3 is a (x)-norm.

From the defintion it follows that if El is a closed subspace of E2, then
δ U

EI (x) F is a closed subspace of E2 (x) F, so that ώ is /-injective. Since for
Λ a

EdC the canonical injection E (x) F'-> C (x) F is of norm ̂  1, c6 ̂  # is clear.
We have thus

dί^/a.
Now let /3 be any /-injective (x)-norm such that β 5g α. Then for any Banach

spaces F,F and C(DF), the canonical injection F (x) F->• C (x) F is norm-
Λ β α

preserving and the canonical injection C(x)F->C(5<)Fisof norm ̂  1. E® F
Λ

faeing defined as the closed subspace of C (x) F, we have | u \β < \ u |δ for u
<Ξ E® E. Hence β < dί and so

/# = SUp β^ά.

This combined with the above yields c6 =/a. Thus by the definition of c6

we have finally C®E^C®E.
The second assertion of Theorem with respect to \a can be proved by the

same lines as in /a. The corresponding lemma in this case becomes as
follows: If L is a quotient space of an E, then the canonical mapping

Oύ Oil

J£(x).F->Z,(x)Fis an onto-homomorphism. This is an alternation of the
2

fundamental property of L stated in 1), n° 1. Put E®F for the quotient
Cί

space of L®F induced by the canonical injection L (x) F -> E (x) F, where F
is assumed to be a quotient space of L. Then by the lemma and by the

\Λ a
similar disscussions we can prove c6 = \cc and hence L(§) E = L® E. This
completes the proof.

IΛ a\ IΛ\
COROLLARY 1. F(x)F, E®F and F(x)F are identified with the closures of

E (x) F in C, ® F, E (§) C2 flWί/ d (§) C2 (F C Clf F C C2), respectively.
\Λ al \al

COROLLARY 2. F (x) F, E (8) F ^^J F (x) F «re identified with the quotient spaces
a a, Λ

•of Li (x) F, F (x) L2 ΛWί/ L! (x) L2 by the canonical homomorphisms, respectively,
where E = L^/Γ α ί̂f F = L2//.

Related to § 1, n° 2, we have

COROLLARY 3. Notations being as in § 1, τz° 2, ||^||α = |w|α, ί/ a is injective.
If a is protective, then it is accessible.

Proof. Let a be projective. Express E and F as quotient spaces of (L)-

spaces: E = Zα//ι, F = L2//2. Then F(g) F is identified with LI <g) L2//! (g) /2.
Let w e Fx (x) Fr. ,̂ being in Ba'(E, F), naturally induces a bilinear form
on L! x L2, which we denote by u. We have obviously
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I *!.' = !« I.-
and u e L\ (g) L'y Put M = Σ #* ® #• Let φl and ^2 be the canonical homo-
morphisms: φt: L^-^E, φz: L2->F. Then tφ^ and fφz are the isomorphisms
of E'-*L\ F'-*L'2 respectively, and u = 5] VΛ ® ̂ jVi Now L! and L2

being metrically accessible, we have

(6) |*||.' = |«l.'
On the other hand, as #' is injective, the canonical injection Vi ® ̂ 2:

<&' Λ'

E' ® F' -> Li (x) Z4 is an isomorphism. Hence from (Vi (8) *%) u = ύ it follows
that

(7) |«I«' = |«U

(5), (6) and (7) yield || u ||Λ' = | w |Λ'. Since any injective (x)-norm can be ex-
pressed as of, this proves the first assertion. The second assertion is an
immediate consequence.

From the above proof we further find the following

COROLLARY 4. For any ®-norm a., the ®-norms /a, α\, \α and a/ become
all accessible.

§ 3. Tensor-norm related to Hubert spaces.

1. Hilbertian tensor-norms.

THEOREM 4. There exists a unique ®-norm &, which is called the Hilbertian
®-norm, with the following properties:

Let E and F be any Banach spaces, and let u be a bilinear form on E x F.
Then | |w|U<l if and only if

u(x,y) = < φy, Φy > for all x & E and y e F,

where φ is a linear mapping of E into a Hilbert space H with || φ || < 1, and
ψ is one of F into H (the dual space of H) with \\ ψ || < 1.

Proof. If such a (x)-norm exists, the uniqueness is almost evident. Hence
we shall only prove the existence of the (x)-norm <$£; the proof will be
devided into four steps.

1°. Put U for the subset of B(E,F), consisting of all u with the properties
stated in the theorem:

u = {u\ u(x,y) = < φx, ψy >, φ and ψ being as above}.

Then the elements of U are also characterized by the following properties
(H): there are Hilbert spaces H and K, and linear mappings φ and ψ such that

φ: E-+H, with \\ φ \ < 1,

ψ: F-+K, with I^I^l,
for which we have

\u(X,y}\<\\φ(x)\\Λ\ψ(y)\\.
In fact, the elements of U clearly fulfill the property (H). Conversely

assume that u^ B(E,F) have the property (H). Then \u(x, y)\^\\φ(x)\\
II Ψ (y) ll We may assume that H and K are spanned by {φ(x) x e E} and
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i.Φ(y)\ y e }̂» respectively. Put %(φ(x)9ψ(z)) — u(x,y). It is evident that v
induces the unique bilinear form on Hx Kby the continuity; besides, || v \\ ̂  1.
Hence v is considered as a linear mapping of K into H' with the norm < 1.
Putting ψi^υoψ, we see that u(x,y) = <ψ(x), Φ\(y}> with ||^||^1 and
II Φ\ II ̂  1, which implies u e U.

A semi-norm on E is called a Hilbertian norm if it has the form <£>(#, #)1/2,
where φ(x,y] means a quasi-inner product on E. Then the condition
(H.) is interpreted in terms of Hilbertian norms as follows: u<=B(E9F)
fulfills the condition (H) if and only if the bilinear-norm of u becomes ̂  1,
when E and F are endowed with a suitable Hilbertian norm φ and a ψ,
respectively, such that φ(x,x)ίl2 < \\x\\ and Φ(y,y)112 ^ ||jy ||. We say a pair
of Hilbertian norms {φ, φ} to be an H-attendant of u, if the above relation
holds for u, φ and ψ.

2°. We prove that U is convex (and circular in the complex case) and
that it is compact with respect to the simple convergence.

Let HI and u2 be elements in U\ let {<pif ψi} be the H-attendants of Ui
(i = 1, 2) . Then λ^ + X2^2 (Xx ̂  0. X2 > 0, λx + X2 = 1) has the H-attendant
{\ιΨι + ^2^2, ^iΦi + ^2^2}- In fact, applying the Schwarz's inequality, we
have

4-
besides,

, y) + ^2^2(3^, ̂ )}1/2 ̂  II ̂  II,
If follows that λ,̂  + X2w2 e C7, whence C7 is convex. It is clear that U is
circular in the complex case.

In order to prove the compactness of £/, it is sufficient to show that U is
closed in B8(E, F) . Let u\ e U and assume that u\ converges to u in BS(E, F) .
Let { λ̂, ̂ λ} be an H-attendant of u\. Since the totality of inner products
on£(or F), with the norm ^1, is compact in B8(Et E) (resp. BS(F,F)), we
may assume that { λ̂, ̂ λ} simply converges to a pair of Hilbertian norms
{φ, </>}. Then it is clear that -[φ, ΨJ gives rise to an H-attendant of u and
so u e U.

3°. For υ<= E®F, put
| t ;U'= sup I (̂  (g) ψ) t; L^,ψ

where the supremum runs over all such pairs of {φ, ψj that φ is a linear
mapping of E into an arbitrary Hubert space H and ^ is one of F into K

Λ
each of whose norm is at most 1, (φ®ψ}v being considered in H®K. Put
£7° be the polar set of U in E® F. Then as is easily seen

Also it is evident that \v\&' is actually a reasonable norm of
Now let Ui(i = 1,2) be the continuous linear mappings of E into E1 and

into Fί9 having the norm 1, respectively. Then, for v^ E®F, we have
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I («ι (X) U2) V U' = SUp I (φ, (g) ψi) o (Ul (g) wa) 0
*!,*!

= sup I ( î o Uί) (g) (^ o H,) v |A
*lA

fg sup I (9? (g) ^) t; |A = |

where ̂  means linear mapping of Et into a Hibert space of norm <Ξ 1 and
Arr

ψι has the same meaning with respect to Fί9 Consequently || #1(8)^2 II
^I*ι| |«.|.

4°. We wish to show that | υ \&> is a (x)-norm. For this it remains to prove

that for any fixed v e E (x) F, \ v \w is equal to the infimum of | v \Eσ %F , where
Eσ and Fσ mean finite-dimensional subspaces of E and F, respectively, such
that v e Eσ (x) Fσ(σ e 2) . From the result of 3°, it follows | v \ < \ v UσΊVσ

We must prove the converse inequality. For this aim, making the assump-

tion of inί\v\Έjσ^Fσ> 1, we shall show that this leads to |z ; | Λ />l . For u
e B(E,F), we denote by \\u\\& the norm of u induced by the "unit sphere "
U if its norm exists. From the above assumption, for all <τ e 5] there
is a bilinear form uσ on Eσ x Eσ such that

\\uσh<l
and

\<uσ,υ>\>l.

Let S and T be the unit spheres of E and F, respectively. We denote by $
the space of all functions on S x T with suppξ=Sχτ\f(P) \ ̂  1 and assume that
g have the simple convergence topology. Observe that § is compact. For
all σ e Σ, associate the closed set gσ of $, consisting of all functions fs
such that the restriction of / to (S x T) Γ) (Eσ x Fσ) is equal to the one of
Ua to (S x T) Π (Eσ x Fσ) . Q σ is not empty, since it contains a function /σ

defined as follows: fσ(x,y) = wσ(ΛΓ,^) f or # e ̂ σ Π 5, y e Fσ Π T, and fσ(x,y)
= 0 otherwise. Besides it is clear that $σ has the finite intersection pro-
perty. Hence we can conclude that Πσesδσ is not empty. Take a func-

tion /o from Π δσ and put

Then a familiar discussion yields that u (x, y) is a bilinear function on .E x F
and that

|< u,v>\ > 1.
Hence |#U'>1 will be proved if we can succeed in obtaining ||^IU^1.
From the existince of an H-attendant of uσ it follows that there are a Hil-
bertian norm φσ on Eσ and a φσ on Fσ such that

φσ(χ,χ}<\\χf, ψσ(y, y}< II y f
and that

for all # e Eσ and ̂  e Fσ. Applying the same arguments as above, we find
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a Hilbertian norm φ on E and a ψ on F, obtained by the " limit " of
φσ and ψσ, respectively, the pair of which serves as an H-attendant of u.
Hence we get ||^||Λ^1. Thus, we come to a conclusion that

I v U' = inf I v UσΊ>Jv

which, together with the preceding results, shows that Sίf is a (x)-norm.
If follows simultaneously that the dual norm Sί of Sίf gives the desired
Hilbertian ®-norm. This completes the proof.

REMARK 1. From the definition it results that the (x)-norm £f' is the small-
est one in all the (x)-norms oc's with the following property: Let E and F
be any Banach spaces; let φ and ψ be any linear mappings from E and F
into Hubert spaces H and K, respectively. Then φ® ψ induces a linear

a Λ
mapping E0F into H0K with the norm < \\<P \\-\\ Ψ\.

Hence, by the duality, we find:

REMARK 2. The (x)-norm $[ is the greatest one in all the (x)-norms /5's.
with the following property: Let E and F be as above; let φ and ψ be any
linear mappings from Hubert spaces H and K into E and F, respetively.

v β
Then φ®φ induces a linear mapping H®K into E®F with the norm

2. ^-forms on C0(Λf) X C0(Jf).

Let us recall some known definitions. Assume that E and F be linear
spaces. A form u on E X F is called sesquilinear if u(x,y) is linear with
respect to ΛΓ and anti-linear with respect to y. If we introduce the space ~F
which is anti-linearly isomorphic to F in a canonical way, then a sesquilinear
form u on E x F is regarded as a bilinear form on E x F. By this corre-
spondence between sesquilinear forms and bilinear ones, the notions on
bilinear forms such as type a, #-norm, etc. are naturally inherited to ses-
quilinear forms. A sesquilinear form u on E x E is called Hermitian if
u(x9y) = u(y,x), and positive if w(#,#)>0. In a usual manner, the order
relation is introduced in the family of Hermitian forms on E x E, which
is denoted e. g. by u > v .

For later use, we shall give a characterization of the elements in E (x) F,
M

belonging to the unit sphere in E® F. Assume that v be an element in
E0F with I^U^l. Since ^Γ is injective, by Corollary 3 to Theorem 3
I v U ̂  1 is equivalent to || v |U ̂  1, where v is regarded as an element of
B*(E'9F'). Let an H-attendant of v be {φ, ψ}:

(8) ψ:E'-+H, wit

(9) ψ: F'-+H, with
and

(10) z; (*',/)- «?(*'),
As is easily verified, we may assume without loss of generality that H is
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finite-dimensional and that φ and ψ are both onto-mappings. Let et(i = 1,
•• ,w) be an orthonormal basis in H, and let e\(ι = 1, ••-,#) be the dual basis
in H'. Since for a fixed / #(#',/) is σ(E', ^-continuous in #', it follows that
φ(xf) is weakly continues. Similary ψ(y') has the same property. Hence
there exist #< e E and jy« e F(ι = 1, ••-,«) such that

Thus we have

Consequently, z; can be expressed as follows:

(ll)
where we have

(12)

in fact, for example the first inequality (12) is deduced from

Σil < *

Conversely, assume that v <^ E® F have an expression (11) satisfying the
supplementary conditions (12) and (13). Consider H = /2(1, •••, w). Define the
linear mappings ^ and ψ by

Then it is obvious that (8), (9), (10) can be satisfied and so \υ\$ < 1. In con-
clusion, the conditions (11) , (12) and (13) together give a complete charecteri-
^ation to elements which belong to the unit sphere of E (x) F with respect
to ^

THEOREM 5. Let M be any locally compact space. Put E = CQ(M) , where
•Co(M) donates the Banch space, consisting of continuous functions on M which
vanish at infinity, the norm of functions being defined as its least upper bound.
Assume that a sesquilinear M'-form u on E x E be given. Then there exists
a positive measure μ on M which satisfies the following properties:

(14) \u(f,f)\<\\f\* dμ,

l/*l^l«k'.
If u is further assumed to be positive, then μ can be taken such that

Proof. We shall first establish:

(15) I Σ y« ® h( u < II Σ I yι I2 1"2 II Σ3 1 h f ||"2

ι = l ι=l ι = l

for any y*,^ e E(i = 1, --,ri). Consider the Hubert space H = /2 (1, « ,
let <p be a linear mapping of H into j£: {A,i}->5j?-i^iyi» and ^ De °ne °f
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into E: {λ,<}->Σj?.ι^<fc Since we have clearly

it follows that I ?> || = I Σ I y. I2 H1 / 2 and I ̂  I = II Σ I ** I2 II1'2- Therefore by Re-
mark 2 in n° 1 we have

(16) II Ψ <g> Φ II < II Σ I y« I2 11'1 1| ΣJ I A, I2 ||"2,
i-l t=l

V Λ
φ® φ being regarded as a mapping /2 (x) /2 -̂  E (x) F. On the other hand, it
is evident that (φ® φ}"Σ\ei®ei^^gi®hi and that 1 2?-ι^i ® ̂  Iv = 1, where
0ί denotes the elements {0, --,0, 1, -",0} of H(i — 1, ••-,«). Hence (16) shows

/̂ -N
t-tΛ.

the validity of (15).
Now let u be a sesquilinear f̂'-f orm on E x E. We may assume || w ||̂ '

= 1. Denote by £# the real Banach space which consists of all real-valued
functions in E, with the same norm as in E. For / e ER, put

(17) P (/) - inf {\\f + S I ̂  |2 1| - S \u (3i. fr) |},

^where the infimum is taken all over the family of finite elements {y«},
$i e E. We show:

ii)
iii) P(0)=0;
iv)
Ad i).

Ad ii) . Clear.
Ad iii). We first prove that P(0) is non-negative. Since

for this it is sufficient to show

(18)

Choose S i 9 \ S i \ = 1, such that u(gt,€tfft) = U(y<,yί)|; put Aj = θ4y4(ί = 1, — ,w).
Then it turns out that (18) becomes an immediate consequence of (15) in
view of U & I U ' = 1. This being established, it is trivial to verify P(0) = 0
by taking y< as 0.

Ad iv). This is also a consequence of (15).
The above mentionned properties i),ii) and iii) mean that P ( f ) is subad-

ditive. We are now in a position to apply the Hahn-Banach extention
theorem. Hence there exists a linear functional /^ on E#9 which satisfies

(19) /*,(/)

From iv) it follows that for / e ER
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(20) - I/I s£ - P(-f) £ μι(f) <P(f}< 11/11-

Moreover, by (17) and (19) we have

μι(- |/n <£ || - I/I2 + |/Π| - I «(/,/) I,
for any / e E, so that

(21) M/jOl^d/P).
(20) and (21) imply that μ1 induces a positive measure μ on M, satisfying

Hence, /-t gives a required measure.
Now, we go on the second part of Theorem; we further assume that u is

positive. It should be noted that in case E = C0(M), the conditions (11), (12)
Λ

and (13) mean that the unit sphere of E (x) E is the closure of the elements

{Σ/, ® ffi; Σ IΛ I2 ̂  i, Σ I y I2 < 1},
the index ί running over {1, ,̂ }, n arbitrary. Therefore for any <${'-

f orm u on E X E we have

II « IU' - sup {Σ I «(/„ yι) I; S I/, I2 ̂  1, S I y, |2 < 1}.

On the other hand, as u is positive, by the successive application of Sch-
warz's inequality we obtain

From this it follows directly that

(22) || u Ik = sup {Σ » (

Since μ satisfies

we have

Σ«(/«/i)^
Accordingly by (22) we obtain

This, together with the converse inequality obtained in the first part, yields
which completes the proof.

3. Consequences.

For a positive measure μ on M, we put

(23) M/,y)

Vμ is clearly a Hermitian form on C0(M) x C0(Λf). Theorem 5 shows that
for any j^-from w on C0(M) x C0(M), there exists a positive measure />&
such that I u (/,/) | < Vμ.(f,f) and || />t || ̂  || u |U/. In case where ^ is Hermitian,
this is expressible as follows:
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— Vμ.<u<Vμ., with (I μ || < (I u |Λ/

Further, it holds || μ\\ = || u \\#', when u is positive. Observe that by (23) we
can also write vμ as a weak integral on the unit sphere B of Ef such that

where £» and £.». denote the Dirac measure at x in C0(Af ) and C0(M), respec-
tively, M being regarded as a subset of B. This in turn implies that Vμ, is
an integral operator [1],

These results can be immediately extended to general cases according to
the following considerations. Let E be a Banach space and assume that E

M
is imbedded into a C0(M). Si being injective, E® E is regarded as a closed

Λ
subspace of C0(M) (x) C0(M) . Let u be any given ^f-f orm on -E x E. By
the Hahn-Banach extension theorem, u is extended in a norm-preserving
way to an j^'-form u on C0(M) x C0(M), to which the results mentioned
above can be just applied. Then, it is easy to see that the restriction of ύ
to E x E allows us to formulate its results in terms of u as follows:

THEOREM 6. Let E be a Banach space and let u be a sesquilinear M'-form
on Ex E. Then there exists a positive Hermitian integral form υ stick that

\u(x9x)\^v(x9x).

v admits an expression as a weak integral on the unit sphere B of EΊ

(24)
JB

where μ is a positive measure on B satisfying

(25) IMI^NIU'.
As a consequence, if u is a Hermitian M'-form on E x E, then there exists a v
with the expression (24) (μ satisfying (25)), such that

-v<u<v.

In a special case where u is positive, the equality holds in (25) .

We shall again consider Thorem 5. Making use of the notations there,
we find that for a Hermitian j^'-form u on C0(M) x C0(Λf) (14) means

α \ l / 2 //• \ l / 2

\ffdμ) (\\fffdμ) .
/ * J /

Accordingly, by the continuity u is uniquely extensible to a form on D(μ)
x U(μ) with the norm ^ 1.

We proceed to generalize this result to a sesquilinear J{'-form on C0(M)
x CQ(N), where M and N denote locally compact spaces. Put R = M+ N
(topological union). M x N are canonically imbedded into P x P, so that
C0(M> x C0(N) is regarded as a subspace of C0(P) x C0(P). Define U by

U(f+ y, / + yO = «(/,yO + «(Λy) (/> / e C0(M), y, y' e C0W).

It is clear that Z7 is a Hermitian form on C0(P) x C0(P) and the restric-
tion of U to M x N is nothing but u. j}(' being protective, we have
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\\U\\x- <2\\uh'

Apply the arguments in the preceding paragraph to C/, we know that there
exist positive measures μ on M and v on JV such that

furthermore, U is uniquely extended to a form on Lz(μ + z>) x L?(μ + v) with
the norm ^ 1. By the definition of U, these properties however remain
true, even when μ is replaced by cίμ and v by v/ci(a >0). Hence, as is
easily seen, we may assume that μ and v are chosen so as to satisfy

Therefore we obtain

Let u be a sesquilinear Mr~form on C0(M) x CQ(N) . Then there exist positive
measures μ on M and v on N such that u is uniquely extended to a form on
L2(μ) x L?(v] with the norm ^1; besides

IH, IHÎ IMU.

This implies that u is a Hilbertian form and || u ||Λ < \\ u \&>. In order to
state this result in a more general form, we consider Banach spaces E and
F. Assume that E is imbedded into CQ(M) and F into CQ(N) . Then any
^f-f orm u on E x F is extended in a norm-preserving way to an ̂ f-f orm
u on C0(Λf ) x CoC/V) . By the above, we have || ύ \\Λ ̂  || u |U' = || u ||Λ/, which in
turn implies that || u |U ̂  || u \\^.

Thus we finally arrived at the following theorem:

THEOREM 7. We have M^M'

As stated in Introduction, this result is somewhat better than that due to
Grothendieck ([3], § 3, Proposition 3).
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