
WEAK COMPACTNESS IN AN OPERATOR SPACE

BY HISAHARU UMEGAKI

1. Introduction. Many important theorems in measure theory have been
extended to W*-algebras by many authors, especially, Dixmier [2], Dye [3]
and Segal [8]. Considered as non-commutative extensions, these extensions
are interesting themselves and provide powerful tools in the further investi-
gations of PF*-algebra. In the previous papers ([11] and [12]), we have
discussed and extended the concepts of conditional expectations, which have
been introduced by Dixmier in the operator theoretical term [2], and martin-
gales in the probability theory into finite and semi-finite W*-algebras. The
concept of the former has been also discussed in a general situation by
Nakamura-Turumaru [6].

The purpose of the present paper is to extend certain compactness theorems
in U on measure space to Lr on W*-algebra in the sense of [8] and [2].
Firstly, as a preliminary we shall prove the extension of Vitali-Hahn-Saks's
Theorem for any W*-algebra A with a regular gage μ> (cf. § 3) (that is, a regular
gage space (A, μ) in the sense of [8]), which implies the equi-absolute con-
tinuities of weakly convergent sequence in LI (A, μ). Secondly, we shall
extend the Lebesgue's compactness theorem to PP*-algebra with respect to
a finite gage and give a sufficient condition for a subset in (A*)+ to be weakly
compact (A* being a Banach space in the notation of [2], cf. § 4 as below).
The former characterizes the weakly conditional compactness of a subset in
L'(A), and the latter is possible to extend a Kakutani's compactness theo-
rem in Z/(with respect to measure space) to the present Lf{A) with respect
to arbitrary gage (cf. § 4). In the last part of § 4, we shall also characterize
the weakly sequential compactness of subset in LJ (A, μ)+ by a uniform con-
tinuity of the set in the form of Bartle-Dunford-Schwartz [1], and further
prove weakly sequential completeness of LI (A, μ) for A of finite type and any
gage μ.

2. Preliminary and notations. Let " 5β " be the set of all projections in the
J^-algebra A acting on a Hubert space H. For any p e *β there corresponds
uniquely a closed linear subspace Tip C H such that the projection from H
onto Tip coincides with p. For any p, q <Ξ $, the meet p A q and the join
p V q are uniquely defined as the projections onto Tip Π WIQ and TlP®TlQ

respectively. Whence φ is a complete lattice with respect to the A and V.
Let μ be a gage of A in the sense of [8], i.e. non-negative valued, unitary
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invariant and completely additive function on φ satisfying that every ̂ G ^
is 1. u. b. of /-t-finite projections q <Ξ $ within q< p. Denote by Pμ(or merely
P) the set of all //--finite projections in $. A gage μ of A is called to be
regular if it is faithful (cf. [8]), which coincides with the contraction onto
$ of the " normale, fidele, essentielle et maximale " trace in the sense of
[2]. Let L'(A,μ) and L2(A,μ)(or merely L'(A) and L2(A)) be the space
of all integrable or square integrable operators with respect to a fixed gage
μ with the norms :i x \ and ! x\2 respectively. The gage μ is uniquely exten-
ded to a positive linear functional on L'{A)> which is also denoted by μ(x)

For any T7*-subalgebra Bι of A, let /0 = l . u . b . { ί ; ί 6 ? n Bt} which be-
longs to the center of Bί and IQBι (= B, say) is considered as a J^-algebra
on the Hubert space I0H. The contracted function of μ onto $ Π B (denote
it by the same notation μ) is also a gage of B and L'(B, μ) is a subspace of
L'(A, μ), which is uniquely determined by (Blf μ). We denote it by L'(Bίf μ).
If μ is regular on A, then it is also regular on B.

Denote the set of all non-negative operators in L'(A) by L'(A)+. Any x e
L'{A) is uniquely expressed by x = ΛΓ(1) — # ( 2 ) + ixo>> — ix^ with x^ e L'{A)+.
Put xf = Λrα) — ΛΓ(2) and x"'= ΛΓ(3) — # ( 4\ which are real and imaginary parts
of x respectively.

For any x^U{A), W(x) denotes the T^*-subalgebra generated by {eκ (xf),
eκ(x")}\ where x' = jλdfβλίΛΓ') and Λ;" = \λrfeλ(Λrf') Further for any subset
S in L'(A), "W(S)" denotes the TF*-subalgebra generated by {W(x) x e S}.

If £ is a Banach space, EΛ denotes the conjugate space of E. The weak
topology in E as point is merely called by weak topology or <r(E, EΛ) -topo-
logy, and the weak topology in EΛ as functional is called weak* topology or
σ(EΛ,E)-topology. The conjugate space of L'(A) is denoted by L°°(A).

3. Έqui-absolute continuity of a convergent sequence of functionals.
Firstly, we give a fundamental definition:

DEFINITION 1. Let A be a TF*-algebra with a gage μ. A set S of linear
functionals on A is called to be equi μ-absolutely continuous, if for any real
8 > 0 there exists a real δ > 0 such that

(1) μ(p) < δ (p e φ) implies ! f(p) \<S for all /e= S.

Similarly if S is a subset of Z/(A, ̂ ) and {fx; x e S}(where/»(^) = /*(#y) for
all jy e A) satisfies (1), then S is called to be equi μ-absoluiely continuous.

For any given semi-finite ]¥*-algebra A acting on a Hubert space H and
a regular gage μ oί A (it is known by Dixmier that such A has always
regular gage), Vitali-Hahn-Saks's Theorem can be extended to this {A, μ):

THEOREM 1. Let {/k} be a sequence of linear functionals on A which are
strongly continuous on the unit sphere of A. If for every projection p in A
\imn^oc fn(p) exists and is finite, then the set {fu} is equi μ-absolutely continuous.
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LEMMA 1.1. For any pair p,q<=P, putting p {p, q) = \/μ( P' — Q I2)» P satisfies
the metric conditions and (P, />) /s # complete metric space.

Proof. It follows from [2] or [8] that p satisfies the metric conditions.
Now let us prove the completeness of (P,p). Taking {pn} C P such that
P (pm, Pn) -> 0 (as m, n -> oo), by the completeness of L2(A, μ), there exists an
x e L*(A, μ) such that /*(j# — £»j2) ->0 (as w->oo). Since 0<pn<l, pn
converges strongly to x on the Hubert space H and 0 < x < 1 on H. Hence
for any ξ, v e H

(xξ,V) = lim (pnξ,V) - lim (pnξ,pnv) = (xξ,xv) = (x2?, ̂ 7).
7i—> oo W—> oo

Since ΛΓ* = ΛΓ in L2{A,μ), we get /*(#) < oo and ΛΓ e P.

LEMMA 1.2. For any δ > 0 «nJ ^0

 e P> putting Us (p0) = {P ^ P; P (po, P)
and Vt(po) ={P^P; μ(P) < μ(Po) + δ, μ(PPo) > μ(Po) - δ}, then

Proof. If p €= Fδ(A), then

~P)2) =μ(Po) + μ(P) -

(p) (^) 2δ = 3δ.

Therefore £ e ί/

Proof of Theorem 1. Since each / n is a continuous function on (P, p), for
any fixed integer n0 > 0 and any fixed 8 > 0 putting

^ 0 = {p(ΞP; sup !/„(/>) - Λ(i>) ( < 6/4},
?n,wSn0

each Eno is closed in (P, p) and U^=I^WQ= ^ by the assumption of {/«}. By
Lemma 1.1 and Baire's category theorem, for some nQ EnQ has a non-empty
interior in {P, p). Therefore there exist p (Φ0 ) e P and δ > 0 such that
UssiP) is non-empty and contained in EUQ. Let q be any fixed projection in
P with μ(#) < δi = min (δ, μ(p)). Putting r - p\J q, we have

μ(q) ~ μ{p) = μ(q) < δ

and μ(rp) = (̂/>) > /Λ(^) — δ, i. e. r e Vg(^). Furthermore, since μ(q)
<μ(p), we get r> q, μ(r — q) < μ(p)< μ{p) + δ and

μ((r-q)p) =μ(p) -μ(qp) > μ(P) ~ δ,

i.e. f - ^ G F δ ( / > ) . Hence we deduce that r, r — q e J5Wϋ. Since # = r — (r

:/*(^) - Λ ( ^ ) : ̂  l / » W - Λ W ! + fΛr -q)- Mr - q) \

< 8/2 for all m,n^n0.

For w = 1, 2, •••, «0, we can find a δ2 > 0 (δ2 < δt) such that

( 2 ) . Mq) I < θ/2 for any q e= P with /A(^) < δ2
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and n = 1,2, •••, n0. Consequently we obtain that μ{q) < δ2 implies

(3) \Mq)\<\Mq)-fno(q)\ + \fnQ(q)\<8 f o r all n^n0.

(2) and (3) imply the equi ^-absolute continuity of {/»}.

REMARK 1. The above proof has done under the Lemmas 1.1 and 1.2 by
a similar proof of classical Vitali-Hahn-Saks's Theorem1), in which the metric
p is defined (denote it px as the following) by the Z/-norm, i.e. Pi{p,q) = μ(p
— q\) for p,q<= P. If the gage μ is finite, then the metrics p and pλ are
equivalent, and the neighborhood topologies in P defined by {Uδ{p)} and
{Yt(p)}(cf. Lemma 1.2) are also equivalent to the metric topology.

4. Weak compactness of subset in L'(A, μ). A subset K oί a Banach space
E is called to be weakly (or equally o-(E,EΛ)-) conditionally compact, if the
weak (σ(E,EΛ)-)closure of K is weakly (<τ(E,EA)-)compact subset of £. 2 )

Firstly we shall extend Lebesgue's compactness theorem to a W*-algebra A.

THEOREM 2. Let μ be a gage of A with μ(I) < oc. Then, for a subset K
of L' (A, μ) to be weakly conditionally compact it is necessary and sufficient that
K is equi μ-άbsolutely continuous and K'', K" are bounded in the Ll-norm where
K' = -O'; x e K} and K" = {#"; x e= K}.

LEMMA 2.1. For any equi μ-absolutely continuous subset K of Lf(Ayμ),Kj
(j = 1, •••,4) are also equi μ-absolutely continuous, where Kj = {Λ:(J); X G K}.

Proofs Since for every projection p

K' and K" are equi /^-absolutely continuous. For fixed xr, there exists q e 5β
such that # ( 1 ) = ̂  = xrq and ΛΓ(2> = (1 — q)xf = ̂ ( 1 — ̂ ) . For any 8 > 0 and
i^, take δ > 0 as in (1). Since μ(p) < δ (ί>G φ) implies AA(^^) < δ and

δ,

< ε

and similarly 0 ^ μ{px^) < 6. Hence iΓi and K2 are equi /^-absolutely con-
tinuous, and also similarly for K3 and iΓ4.

Proof of Theorem 2. (Sufficiency). Let J5Γ,(/ = 1, —,4) be ^(L^L0 0^-closures
of Kj respectively which are σ-(L°°,Z°°A)-compact in LoeA. For any j ) G $
with μ(£) < δ and for any fixed / <B Kλ there exists x ^ K such that

1) See Saks [7] for finite measure space and also see e. g. Sunouchi [10] for σ-
finite measure space.

2) Further, a subset K of E is called to be iveakly (or equally σ (E, EΛ) -) sequentially
conditionally compact, if any countable subset C of K contains always a sequence {xn}
which converges weakly to some x e E.

3) This proof also holds for any gage without finiteness μ (/) < o o .
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Since 0 <, μ (xa>>p) < S for every such p,

o < f(P) ^ I f(P) — μ(χ^P) I + At(^(1)i>) < 2θ,

i.e. 0<f(p) <28 for every p(Ξ?β with μ(p) <S. Therefore by Radon-

Nikodym's Theorem of Dye [3] there exists z e L'{A) such that f(y) =
for every jy e A. This means that Kx is weakly conditionally compact in
L'(A, μ). Similarly we get Kj(j = 2,3,4). Consequently K is weakly con-
ditionally compact in Lr{A,μ).

(Necessity). For this purpose we can assume μ to be regular without loss
of generality, and hence A is countably decomposable and of finite type,
because μ(I) < oo. Since K! and K" are weakly sequentially conditionally
compact (cf. [9]), they are bounded in the Z/-norm. Assuming the contrary
of the equi /^-absolute continuity of K, there exist {pn} C 5β and a weakly
convergent sequence {xn} C K such that

(4) μ(Pn)<-τr and \μ(xnpn)\>£

for some 8 > 0 and for all n = 1,2, •••. Putting /Λ(.y) = μ(xny) for jy G 4̂,
limn̂ oo/ (̂jy) exists for every y e A which contradicts (4) by Theorem 1.

In a general situation, we can give a sufficient condition for weak com-
pactness: Let A be a W*-algebra and A* be the Banach space of all linear
functionals on A which are strongly continuous on the unit sphere of A.
Then (A*)Λ = A (cf. [2]). Denote the set of all non-negative functionals in
A* by (A*)+, then

COROLLARY 2.1. / / a subset K of (A*)+ is bounded in the norm of A* and
satisfies

( 5 ) for any decreasing directed set {£<*} of projections in A with pa 4- 0, f(pa)
converges to 0 uniformly for every f ^ K,

then K is <τ {A*, A)-conditionally compact.

Proof. Since any completely additive positive linear functional on A belongs
to A* by Dixmier (cf. Theoreme 1 and footnote 6 of [2]), the proof will be
obtained by the method almost similar with the proof of suίiciency of Theorem
2, that is, let K being <r{A, AΛ) -closure of K, then every / e K is non-negative
linear functional on A, and by (5) / is completely additive. Hence by the
theorem of Dixmier / belongs to (A*)+, and K is <r(A*9 A)-conditionally
compact.

By Corollary 2.1, Kakutani's compactness Theorem (cf. Theorem 10 of [5])
will be extended to the following:

COROLLARY 2.2. Let A be a W*-algebra with gage μ. Let xux2 e L'(A, μ) +

with Xί < x2. Then {x\ Xι ̂  x ̂  x2j is weakly conditionally compact in L'(A, μ)+.

Uuder the same notation of the above Corollary 2. 2, we prove the following:
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THEOREM 3. For a subset K(Z L((A> μ) + to be weakly sequentially conditional-
ly compact, it is necessary and sufficient that K is bounded in L'-norm and
satisfies

(5r) for any sequence of projections {pn} in A with pnlO, μ{xpn) converges
to 0 uniformly for every x e K.

Proof of sufficiency. In this case we can also assume μ to be regular with-
out loss of generality. Let {xn} C K. Putting Bx = W({xn}) and B = weak
closure of J5A Π V {A, μ), B is a countably decomposable T^-algebra on a
closed linear subspace of L2{A, μ). Further {xn} is contained in Lf(Blf μ) and
satisfies (5') on (B, μ). Therefore by Corollary 2.1, {xn} is weakly condition-
ally compact in JJ {Blf μ), and there exists a subsequence {xnjc} C {xn} which
converges weakly to an x e Lf(Blfμ), i.e. μ(xy) = limfcμ(xnjcy) for all y e B.
Let jyβ be the conditional expectation of y e A relative to Bu^ then μ(zye)
= yA(^) for all ^ ε ^ n L'(A,μ) (cf. [2] or [12]). Since Lf(Buμ) coincides
with the L'(μ)-closure of B1 Π L'(A,μ), μ{zye) = /χ(^) for all 2 e L ' ^ , /Λ).
Moreover ΛΓ and xn(n=l,2," ) belong to Lf(Blf μ) and therefore for every y ^ A

(6) μ(xy) = jEA(Λτ.yβ) = lim /^(ΛΓ^6) = lim/Λ(Λτnfcy),

that is, Xnjc converges weakly to x in D(A,μ) and iΓ is weakly sequentially
conditionally compact.

Proof of necessity. The boundedness of K in the L'-norm is obvious. As-
suming the contrary of (5'), there exist 8i > 0, {pn}C. $ and weakly conver-
gent sequence {xn} C K such that

(7 ) ί» 10 and μ(xnpn) > S, for all w = 1, 2, •••.

P u t t i n g fn(y) =μ(xny)(n = l,2,.>.) andv(y) ^J]^iMy)/c'2n(c = sup { j ! * J i ;

ΛΓ e ϋC}), /» are absolutely continuous with respect to v. Let C be W*-suh
algebra generated by {pnj which is commutative. Hence by VitaliΉahn-Saks's
Theorem on commutative case of Theorem 1 or on usual measure space, for
any 6 > 0 there exists δ > 0 such that ' fn(p)\ < B for every p e $ Γ) C with
v{p) <h. Since v{pn)-+0 (as w-^oo), μ{xnpn) =fn(pn)->0, (7) yields a con-
tradiction.

REMARK 2. This theorem has been proved by Bartle-Dunford-Schwartz
(cf. Theorem 1 of [1]) for subset of space of measures on abstract set and
the proof of necessity is done by a method similar with that. If A is com-
mutative, then we get a similar fact with [1], i.e. taking a gage μ of A, for
subset K of L'(A,μ) without the restriction that K(Z Lr(A,μ)+, Theorem 3
will be obtained by our proof, because any countably additive linear func-
tional on the I7*-algebra B (cf. proof of Theorem 3) is strongly continuous
on its unit sphere. We have also the same fact for subset K in A*, because A%
is isometrically isomorphic to L'(A,μ) with respect to a regular gage μ on A.

4) The notion of the conditional expectation refers to [12].
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REMARK 3. In Theorem 3, applying the Eberlein's Theorem (cf. [4]), if ϋC

is weakly closed, then the condition is necessary and sufficient for K to be

weakly compact.

Applying Theorem 2 and the proof of Theorem 3, we have

COROLLARY 3.1. Let A be a finite W*~algebra and let v> be any fixed gage.
Then Lf(A,μ) is weakly sequentially complete.

Proof. Again we can assume μ to be regular. Let {xn} C L' (A, μ) be
a sequence with finite \im μ(xny) for all y e A. For this {xn}, we take the
I7*-algebras B± and B as in the proof of Theorem 3. Then B has a finite
regular gage T. Putting fn(y) = μ(xny) for y e A, fn are strongly continuous
on the unit sphere of B and there exists zn e L'(B, τ) such that/ w (y) —τ(zny)

for all y e B and n = 1,2, •••. Since lim /,*(y) ( — f(y) say) exists and is finite
for every y <= ̂ 4, {zro'} and {zn"} are bounded in Z/(τ)-norm and by Theorem 1
{zn} is equi τ-absolutely continuous, and by Theorem 2 {^} is weakly con-
ditionally compact in Lf(B, T ) . Consequently /(jy) is strongly continuons on
the unit sphere of B, and there exists x e L'(Buμ) such that f(y) = μ(#y)
for all y ^ B. Let jyβ be the conditional expectation of y <Ξ ̂ 4 relative to Bu

then by the same computation of the proof of Theorem 3, we get the equa-
tion (6) for {xn} in the place of {xnis}.
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