WEAK COMPACTNESS IN AN OPERATOR SPACE

By HisaHARU UMEGAKI

1. Introduction. Many important theorems in measure theory have been
extended to W*-algebras by many authors, especially, Dixmier [2], Dye [3]
and Segal [8]. Considered as non-commutative extensions, these extensions
are interesting themselves and provide powerful tools in the further investi-
gations of W#*-algebra. In the previous papers ([11] and [12]), we have
discussed and extended the concepts of conditional expectations, which have
been introduced by Dixmier in the operator theoretical term [2], and martin-
gales in the probability theory into finite and semi-finite W*-algebras. The
concept of the former has been also discussed in a general situation by
Nakamura-Turumaru [6].

The purpose of the present paper is to extend certain compactness theorems
in L’ on measure space to L’ on W#*-algebra in the sense of [8] and [2].
Firstly, as a preliminary we shall prove the extension of Vitali-Hahn-Saks’s
Theorem for any W#*-algebra A with a regular gage w(cf. § 3) (that is, a regular
gage space (4, ) in the sense of [8]), which implies the equi-absolute con-
tinuities of weakly convergent sequence in L'(A, x). Secondly, we shall
extend the Lebesgue’s compactness theorem to W*-algebra with respect to
a finite gage and give a sufficient condition for a subset in (Ax)* to be weakly
compact (Ay being a Banach space in the notation of [2], cf. § 4 as below).
The former characterizes the weakly conditional compactness of a subset in
L'(A), and the latter is possible to extend a Kakutani’s compactness theo-
rem in L’'(with respect to measure space) to the present L’'(A) with respect
to arbitrary gage (cf. § 4). In the last part of § 4, we shall also characterize
the weakly sequential compactness of subset in L'(A4, #)* by a uniform con-
tinuity of the set in the form of Bartle-Dunford-Schwartz [1], and further
prove weakly sequential completeness of L'(A, ) for A of finite type and any

gage w,

2. Preliminary and notations. Let “’’ be the set of all projections in the
W+*-algebra A acting on a Hilbert space H. For any p € P there corresponds
uniquely a closed linear subspace M, C H such that the projection from H
onto M, coincides with p. For any p, g =P, the meet p A ¢ and the join
PV g are uniquely defined as the projections onto M, N M, and My, B M,
respectively. Whence P is a complete lattice with respect to the A and V.

Let © be a gage of A in the sense of [8], i.e. non—-negative valued, unitary
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invariant and completely additive function on P satisfying that every p € P
is 1. u.b. of u-finite projections ¢ € P within ¢ =< p. Denote by P, (or merely
P) the set of all u—finite projections in . A gage p of A is called to be
regular if it is faithful (cf. [8]), which coincides with the contraction onto
B of the ‘“ normale, fidele, éssentielle et maximale’ trace in the sense of
[2]. Let L'(A, ») and L*(A, p) (or merely L'(A) and L*(A)) be the space
of all integrable or square integrable operators with respect to a fixed gage
w with the norms ; x ; and ' x|, respectively. The gage p is uniquely exten-
ded to a positive linear functional on L'(A), which is also denoted by wx(x)
(x = L'(A)).

For any W+*-subalgebra B, of A, let I, = 1l.u.b.{p; p € PN B,} which be-
longs to the center of B, and I)B,(= B, say) is considered as a W*-algebra
on the Hilbert space I)H. The contracted function of w onto P N B(denote
it by the 'same notation y) is also a gage of B and L'(B, u) is a subspace of
L' (A, p), which is uniquely determined by (B, #). We denote it by L' (B, u).
If p is regular on A, then it is also regular on B.

Denote the set of all non-negative operators in L'(A) by L'(A)*. Any x €
L'(A) is uniquely expressed by x = x® — x® + x® — 4@ with 2P e L' (4)*.
Put & = 2O — x® and x"= x® — x®, which are real and imaginary parts
of x respectively.

For any x € L'(A), W(x) denotes the W*-subalgebra generated by {e.(x'),
ex(x")}r where x' = \Ader(x’) and x" = gxde;\(x"). Further for any subset
S in L’(A), “W(S)”’ denotes the W*-subalgebra generated by {W(x); x € S}.

If E is a Banach space, E~ denotes the conjugate space of E. The weak
topology in E as point is merely called by weak topology or o (E, E~)-topo-
logy, and the weak topology in E~ as functional is called weak* topology or
o (E», E)-topology. The conjugate space of L'(A) is denoted by L=(A4).

3. Equi-absolute continuity of a convergent sequence of functionals.
Firstly, we give a fundamental definition:

DerFINITION 1. Let A be a W*-algebra with a gage . A set S of linear
functionals on A is called to be equi u-absolutely continuous, if for any real
€ > 0 there exists a real § > 0 such that

(1) w(p) <& (pP) implies | f(p)| <& for all feS.

Similarly if S is a subset of L'(4, 1) and {fz; x € S}(where f,(y) = w(xy) for
all y € A) satisfies (1), then S is called to be equi u-absolutely continuous.

For any given semi-finite W+*-algebra A acting on a Hilbert space H and
a regular gage u of A (it is known by Dixmier that such A has always
regular gage), Vitali-Hahn-Saks’s Theorem can be extended to this (A4, u):

THEOREM 1. Let {fn} be a sequence of linear functionals on A which are
strongly continuous on the unit spherve of A. If for every projection p in A
liMyoe fn(P) exists and is finite, then the set {fu} is equi p—absolutely continuous.
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LemMa 1.1.  For any pair p, q € P, putting p (p,q) =V r( p — qP), p satisfies
the metric conditions and (P, p) is a complete metric space.

Proof. 1t follows from [2] or [8] that p satisfies the metric conditions.
Now let us prove the completeness of (P,p). Taking {f,} C P such that
P (Pms pn) >0 (as m, n— ), by the completeness of L?(A, u), there exists an
x e L*(A, u) such that w(ix — pn?) >0 (as #— o). Since 0 < p, =<1, p,
converges strongly to x on the Hilbert space H and 0 <x <1 on H. Hence
for any £, m€ H

(x&, ) = lim (pu&, m) = Lim (pu&, pu7) = (x&,x7) = (#°E, 7).
Since x* = x in L*(A, n), we get u(x) < oo and x € P.

LemMmA 1.2. For any 8 >0 and p, € P, putting Us(p,) = {p € P; p (po p)
<&/ 8} and Vi(p) ={p € P; u(p) < p(ps) + 38 n(pps) > u(po) — 8}, then
Vs (po) cC Uss (170)-

Pyoof. 1f p € Vs(p,), then

P (Do )" = p( po— D) = p((Bo — P)*) = p(po) + 1(p) — 21(ppo)
Therefore p € Uss (py).

Proof of Theorem 1. Since each f, is a continuous function on (P, p), for
any fixed integer #n; > 0 and any fixed € > 0 putting

E.={p e P; sup |fu(p) — fulp)|= E/4},

MyNZN,

each E,; is closed in (P, p) and U,Z’::IEnq,: P by the assumption of {f.}. By
Lemma 1.1 and Baire’s category theorem, for some #, E,, has a non-empty
interior in (P,p). Therefore there exist p (R0) € P and & > 0 such that
Uss(p) is non-empty and contained in E,,. Let g be any fixed projection in
P with p(g) <8, = min (8, »(p)). Putting » = p V ¢, we have

p(r—p) =p(p) + p(q) —p(p) = pnlq <38
and w(rp) = u(p) > u(p) — 8, i.e. = Vs(p). Furthermore, since w(q)
<u(p), we get 7> ¢q, p(r — q) = r(p) < n(p) + & and

w((r — @) p) = p(p) — rigp) > w(p) — 38,

i.e. r— g Vs(p). Hence we deduce that »,» —ge E,;. Since g=7r— (r
-9,

Su(@) = ful@) | fu(r) — fulr) |+ fulr —q) — fulr —q)
< &/2 for all m, n= n,.

For n=1,2,--,m, we can find a &, > 0 (5, < J,) such that
(2) aulq) | < E/2 for any g€ P with w(q) <8,
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and #=1,2,.-,s,. Consequently we obtain that u(q) < 8, implies

(3) [ fu(@) | =1 fa(@) — fao(@) |+ | fap(g) | <& for all n=m,
(2) and (3) imply the equi w-absolute continuity of {f.}.

ReMark 1. The above proof has done under the Lemmas 1.1 and 1.2 by
a similar proof of classical Vitali-Hahn-Saks’s Theorem?, in which the metric
p is defined (denote it p, as the following) by the L'-norm, i.e. p,(p,q) = u( p
—gql) for p,ge P. If the gage p is finite, then the metrics p and p, are
equivalent, and the neighborhood topologies in P defined by {Us(p)} and
{Vs(p)}(cf. Lemma 1.2) are also equivalent to the metric topology.

4. Weak compactness of subset in L'(A, ). A subset K of a Banach space
E is called to be weakly (or equally o (E, E*)-)conditionally compact, if the
weak (o (E, E*)-)closure of K is weakly (o (E, E*)-)compact subset of E.»
Firstly we shall extend Lebesgue’s compactness theorem to a WH*-algebra A.

THEOREM 2. Let w be a gage of A with p(I) < o, Then, for a subset K
of L'(A, w) to be weakly conditionally compact it is necessary and sufficient that
K is equi p—absolutely continuous and K', K" are bounded in the L'-norm where
K={«;x€ K} and K' ={x"; x = K}.

LeEMMA 2.1. For any equi p—absolutely continuous subset K of L'(A, n), K,
(j=1,--,4) are also equi p—absolutely continuous, where K; = {x9; x € K}.

Proof » Since for every projection p
[pn(xp) P = pmxp) * + | m(x"p) P,
K’ and K" are equi p—absolutely continuous. For fixed x/, there exists g B
such that @ = g’ = x'q and x® = (1 — ¢)x’ = x'(1 — q). For any € > 0 and
K', take 8 > 0 as in (1). Since u(p) <8 (p €P) implies p(gpq) <& and
p(l—=qgp1—gq) <3,
0= p(px®) = p(pgx’) = p(qpgx’) <&

and similarly 0 < p(px®) < €. Hence K, and K, are equi u-absolutely con-
tinuous, and also similarly for K; and K.

Proof of Theorem 2. (Sufficiency). Let K;(j =1, -, 4) be o (L, L=*)~closures
of K; respectively which are o (L=, L=*)-compact in L=*. For any p P
with #(p) < & and for any fixed f € K, there exists x € K such that

Lf(p) — p(x®Dp) [ <&

1) See Saks [7] for finite measure space and also see e.g. Sunouchi [10] for ¢-
finite measure space.

2) Further, a subset K of E is called to be weakly (or equally ¢ (E, E") -) sequentially
conditionally compact, if any countable subset C of K contains always a sequence {x,}
which converges weakly to some x € E.

3) This proof also holds for any gage without finiteness p (1) < co.
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Since 0 < p(x™Wp) < € for every such p,

0= f(p) = f(p) — p(x®p) | + p(x®p) <2¢,

i.e. 0 f(p) <2& for every pe& P with w(p) <8. Therefore by Radon-
Nikodym’s Theorem of Dye [3] there exists z € L'(A) such that f(y) = u(zy)
for every y € A. This means that K, is weakly conditionally compact in
L'(A, ). Similarly we get K;(j = 2,3,4). Consequently K is weakly con-
ditionally compact in L'(A4, ©).

(Necessity). For this purpose we can assume u to be regular without loss
of generality, and hence A is countably decomposable and of finite type,
because w(I) < oo, Since K’ and K" are weakly sequentially conditionally
compact (cf. [9]), they are bounded in the L'-norm. Assuming the contrary
of the equi p-absolute continuity of K, there exist {p,} C P and a weakly
convergent sequence {x,} C K such that

(4) wipn) < and | ulanpa) | > €

for some € >0 and for all # =1,2,-.-. Putting f»(y) = p(x,y) for y € A4,
limy-.fn(y) exists for every y € A which contradicts (4) by Theorem 1.

In a general situation, we can give a sufficient condition for weak com-
pactness: Let A be a W*-algebra and Ay be the Banach space of all linear
functionals on A which are strongly continuous on the unit sphere of A.
Then (Ay)» = A (cf. [2]). Denote the set of all non-negative functionals in
Ay by (Ag)*, then

COROLLARY 2.1. If a subset K of (Ay)* is bounded in the norm of Asx and
satisfies

(5) for any decreasing divected set {p.} of projections in A with p. 10, f(pPa)
converges to O uniformly for every f c K,

then K is o (Ay, A)—conditionally compact.

Proof. Since any completely additive positive linear functional on A belongs
to Ax by Dixmier (cf. Théoréme 1 and footnote 6 of [2]), the proof will be
obtained by the method almost similar with the proof of suficiency of Theorem
2, that is, let K being o (4, A*)~closure of K, then every f € K is non-negative
linear functional on A, and by (5) f is completely additive. Hence by the

theorem of Dixmier f belongs to (Ax)*, and K is o (A, A)-conditionally
compact.

By Corollary 2.1, Kakutani’s compactness Theorem (cf. Theorem 10 of [5])
will be extended to the following:

COROLLARY 2.2. Let A be a W*-algebra with gage w. Let x,,x, € L'(A, p)*
with x, < x,. Then {x; x, < x < x,} is weakly conditionally compact in L' (A, p)*.

Uuder the same notation of the above Corollary 2.2, we prove the following:
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THEOREM 3. For a subset K C L' (A, u)" to be weakly sequentially conditional-
ly compact, it is necessary and sufficient that K is bounded in L'-norm and
satisfies
(5") for any sequence of projections {pn} in A with pnl0, p(xp,) converges

to 0 uniformly for every x € K.

Proof of sufficiency. In this case we can also assume w to be regular with-
out loss of generality. Let {x.} C K. Putting B, = W({x,}) and B = weak
closure of B, N L'(A,u), B is a countably decomposable W*-algebra on a
closed linear subspace of L*(4, w). Further {x,} is contained in L’(B;, #) and
satisfies (5’) on (B, ). Therefore by Corollary 2.1, {x,} is weakly condition-
ally compact in L' (B, 1), and there exists a subsequence {x,,} C {x.} which
converges weakly to an x € L'(B;, ), i.e. w(xy) = limg p(x,,y) for all y € B.
Let y¢ be the conditional expectation of y € A relative to B;,® then u(zy?)
= p(zy) for all z= B, N L'(A4, u) (cf. [2] or [12]). Since L/(B,, p) coincides
with the L'(u)-closure of B; N L'(4, ©), m(zy?) = p(zy) forall ze L'(B,, p).
Moreover x and x,(#=1,2,---) belong to L'(B,, u) and therefore for every y= A

(6) p(xy) = p(xy®) = lim p(wny®) = lIm w(xy),

that is, x,, converges weakly to x in L'(4, ») and K is weakly sequentially
conditionally compact.

Proof of necessity. The boundedness of K in the L'-norm is obvious. As-
suming the contrary of (5), there exist € > 0, {p,} C P and weakly conver-
gent sequence {x,} C K such that

(7) P10 and w(x,py) > & forall =12, ..

Putting f,(y) = p(xxy) (n = 1,2, ) and v (y) = 331 fu(y)/c-2" (¢ = sup {/x ;;
x € K}), f. are absolutely continuous with respect to ». Let C be W¥*-sub-
algebra generated by {p,}which is commutative. Hence by Vitali-Hahn-Saks’s
Theorem on commutative case of Theorem 1 or on usual measure space, for
any € > 0 there exists 8 > 0 such that "f,(p)| < € for every p € N C with
v(p) < 8. Since v(pa) >0 (as n— ), w(xnpn) = fu(ps)—0, (7) yields a con-
tradiction.

ReEMARK 2. This theorem has been proved by Bartle~Dunford-Schwartz
(cf. Theorem 1 of [1]) for subset of space of measures on abstract set and
the proof of necessity is done by a method similar with that, If A is com-
mutative, then we get a similar fact with [1], i.e. taking a gage u of A, for
subset K of L'(A, ¢) without the restriction that K C L'(A4, #)*, Theorem 3
will be obtained by our proof, because any countably additive linear func-
tional on the W#*-algebra B (cf. proof of Theorem 3) is strongly continuous
on its unit sphere. We have also the same fact for subset K in Ay, because Ay
is isometrically isomorphic to L/(A, #) with respect to a regular gage w on A.

4) The notion of the conditional expectation refers to [12].




WEAK COMPACTNESS IN OPERATOR SPACE 151

ReMARK 3. In Theorem 3, applying the Eberlein’s Theorem (cf. [4]), if K
is weakly closed, then the condition is necessary and sufficient for K to be
weakly compact.

Applying Theorem 2 and the proof of Theorem 3, we have

CORrROLLARY 3.1. Let A be a finite W*-algebra and let w be any fixed gage.
Then L'(A, p) is weakly sequentially complete.

Proof. Again we can assume u to be regular. Let {x,} C L'(A4, x) be
a sequence with finite lim p(x,y) for all y € A. For this {x,}, we take the
W#*-algebras B, and B as in the proof of Theorem 3. Then B has a finite
regular gage 7. Putting f,(v) = p(x,y) for y € A, f,, are strongly continuous
on the unit sphere of B and there exists z, € L'(B, 7) such that f,(y) =7 (z.y)
for all ye B and #=1,2,---. Since lim f,(y) (= f(y) say) exists and is finite
for every y € A, {z,/} and {z,"} are bounded in L'(7)-norm and by Theorem 1
{zn) is equi T-absolutely continuous, and by Theorem 2 {z,} is weakly con-
ditionally compact in L'(B, 7). Consequently f(y) is strongly continuons on
the unit sphere of B, and there exists x € L'(B,, #) such that f(y) = u(xy)
for all y € B. Let y° be the conditional expectation of y € A relative to B,
then by the same computation of the proof of Theorem 3, we get the equa-
tion (6) for {x,; in the place of {xy,}.
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