ABEL SUMMABILITY OF DERIVED CONJUGATE FOURIER SERIES
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The Abel summability of the derived
conjugate series has been discussed by
Plessner [4], Moursund [3] and Misra
{2]. Moursund's result is very
camplicated and Misra proved a simpler
theorem, but it is not general, The
object of this note is to prove a
simpler and more general theorem. In
§1, we shall prove a summability
theorem of the conjugate series. This
is another result of Misra [1], and our
method of the proof is simpler than
Misra's. In §2, we shall reduce the
summability theorem of the derived
conjugate series to the case of §le
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where 4 is a fixed constant. Con-
tinuing this reduction formula and by
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