MEAN CONVERGENCE OF A FOURIER SERIES AND A FOURIER TRANSFORM

By Tatsuo KAWATA

l. Let fCZ) be a function of
L,(-. ) , and suppose that f(x)
belongs to [, on a subinterval (a.4)
of (-m.) , 1r>(. We consider about
the convergence in mean (L,.) over
(a.£) of the Fourier series of fl:x) .
It is well known that if (a,£) coin-
cides with (-m, ) , then the Fourier
series of f(x) converges to fc:c) in
mean |, over (-n.7L) .

Thus if we define A (x)as unity in
(a,£) and o outside of (a4, 4), then
the Fourier series of #f(x)x(x) which
is of Lys(-m.7) converges in mean (/,,)
to ftwA(x) over (-zx.7), and conse-
guently converges in mean (l.,) to ]'-lx)
on (a,.£) . Since feyn(x) and f(x)
is identical in (a, £) , the Fourier
series of fex)A(x> and of f(x) are
uniformly equiconvergent in’ (a-+£, £-2),
€ being a positive number arbitrarily
small but fixed. Hence the Fourier
series of f(z) converges in mean ([,)
to ftx) in (a+s.4-£)., & >o0.

But the Fourier series of flx) does
not necessarily converge in mean (Liy)
on (a.4) , wnich is implied in the
fact that will be stated later. ( 3.

(3.5)) And thus we shall consider
additional conditions on the behaviors
of F(X) at vicinities of X =a and

X =4 for the mean convergence ([ ,)

in (a, ‘).

Also we consider the similar problem
in the theory of Fourier transforms.
For the sake of convenience we first
treat the Fourier transform case.
Though we can treat the Fourier series
case by similar arguments, we shall
deduce it from theorems for Fourier
transforms.

2, Theorem 1. Let Igrgz and

£71,8nd foe Lpl-orer), fre

LyCa£)e If there exist constants s,
and S, such that

t
(2.1) /, [{(8+2)-5.[dx=0 (1%,
>0,

1
(2.2) / Ifta-5,] dx= O(£%),
r>o,

for small £, where 4 >/’—-/- > then
it holds that r

2
(2.3) M/ /KNcaolralz:o.

N> oo
Hers we denote

(2.4) Ry =
N , v .
=/ p(t) € <" gtf—-/ ‘/'(z‘)e"“’talt,
‘N

-

@(t) and %(1’ ) Leing Fourier trans-
forms of ,fcz) and A(0fe) re=
spectivel o
; .
P 873 £‘th(z) dz
(2.5) w
/ ixl d
T ,\.—a/-c LOAN(2D dx
piI~ = | €7F

and A=/ in a<x<{; o cutside of
(a.L£).

From Theorem 2 the following theorem
is obtained immediately.

Theorer 2. Let /2p< pr&Z. If
Foo € Lp(-00,00) and fex€lipla.b)
énd further (2.1) and (2.2) holds for
A >/_7_’.’ then
4 v t »

b [t e it me
Noo g ﬁ;a--h'
as [-oo, where P(t) is the Fourier
transform of ﬁz ) .

Since )\(177(—61) C—LY (—ov,w)(r £2)
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{}g"/ poby ¢z converges in mean
(Lr) to M Lx)fcz) and particularly

Fs / . ‘f’(f)ﬁ"x% converges in mean
ft® in (a, £) , p(t) being the
Fourier transforn of Al ftx), and
Theorem ] shows Theorem 2.

Proof of Theorem 1. We may assume

without loss of generality that az-#,

A= # (L30). Then the Fourier trans-
form of (x> is

{ ” ey 2 acn BT
r——ﬁj‘:\lz)e d+t = o T

and the Fourier transform Y (@) of
INE?) f—{qz) (e L (—oa,oo)) is

,_j‘fc> “‘f)m

Thus we have
(2:6) Ry
/ ?(f) 41’24?-

N -
_/ e'4tZ_L ?’( )______._.““M@
o 4

-x
-
Since
-
m e A oo bl izl
/\(4)-w-77-£—[¢m —"*T“‘-Q c‘l't)
T-sca .l
which is { in (-4, 4 ) we have for
~h X<,
7 E/x/ (=) y
= é, /Wﬁi' 4:::1‘60:/?0_‘)641;&{
T—eo )

N
/ M&Agfﬂl (fru)ﬁﬁz“cﬁu
dw‘ﬂf 411'
G [ / = ¢ olf ?tm Sl

/W-I“
/M“ xl ?cu»e"‘“a(MJ

—ﬂ/ﬂ!' /vr,t
= Lo [(aid / oy
Trea) M

+ /&;M ,w‘ﬂt ALy / ?’(a)e’"“
TR0 )

7 =-1,+ 1,

sey. it /4 “w G 1= I,Vfto‘:ﬂ/-rt

= 0 otherwise.
Then the Fourier transform of /,(u_) is

/ ‘e'{xlﬁ/(/__ _e.itx)
Vzr -4

Thus we can write

wW+L
//v P (w) € olu

M -
= / Peus p (> e

—N:r' A )
/f&t:f) (e £ Ly

and hence

A bl it = ‘”’(c‘t’/)
L ZJT-oM/ o] f("’") <y ‘{;

(2.8)
- J“lw/ﬁx*;)e Ag/(elg") skt Xt

t 0

We shall now prove that the interchange
of the order of limit and integration
is legitimate., Fix the value of x for
a moment such that A>x>-A.

I8 A>lxrhl, (2-h| and A>1

then the integral

T . . .
J[ {elfj——/) A,«MAZL e(,xfd/t_
Lr t
converges boundedly (with respect to
?) Thus if (x/+ 4 , then

s L‘/\/lj
(209) lWL /;H;u-g) —i—’}— a(y .

/5 00
nT 1Y17A

(et a_en/rf Xt =0

T/>itl»T
We take a positive number ” such
that

/L-I>Z, x+/u7?
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and
(2.9) /2 f f(x+;)/a£; <E,
~1
where & is any assigned positive
number., Then
i..
[/f{x+ )& i _,,-_,.~ “u
% 2‘ JZG/M; >]“ /
< Line
Lot 1] | Lgpl el
(2.10) =J/' +‘]'
say. InT 1/<7 « And

T tf:j m},z" (xt
( 4 ot Z )("— /)2 e
- _L.// /) (o {x+7)—wuf)méf

T
. (/ / (w(zfj)ﬁwl?")-fwﬁf

= L
(2'11) - i\IB * 7]

.7; being zero, since the inte-

83Ye
We have

gr and is an odd function.

L/ / / )w(xq*/l)r‘;mmm »

-1/

(2.12) (/ /) il sy~ 4 A)mm(z A)z;%‘

The former integral of (2.12) is

further
_(ng,rA)T x,j,,/\)r
/ A Ak

= /
=( +/\)
(223) T aegehT

(2¢A)7‘
Aot

-—()UI\)T

,[/

-x+hyT’ (x+l|)7

remembering x+[z_> o, x+7+ll)o

say,
which is

_73-

~(1cr/£)7' "(K*A)T ““7"“//" (X.»y%}r/
; - - +
—UXryp }7" R
J (%éjrw(rl/fj‘%)r (xv-A]T (76*417‘/
= “J*w
0// T )t O//
(lf[\)fl ()lfA)T
= O /C? y
{ (1+ ka))
= O/y}
for smally . The same estimation

will be obtained for the last integral

of (2,12). Hence

for small y for fixed x ,
Putting (2.13) into 7, , we get

[ 7]

_fm:“ /;C(xr;)e— d;/ c{/ WAZL@“?&/
TT—joo_7 i
£ /7/,%7) L 0(3)dy

7
=0 (_4 /ffx,«;;)/d;;),

Hence by (2.9), there exists a
constant C (which may depend on X )
such that

(2u) [Tz ce

Next we estimate 2 . We devide
the integral containing jj’ as follows:

Aixms«f /\Z}?C/lfa')ZL'Ny,?_j

T, T o Ay

sy | | ]

;z+h7/>7f/;>/(7/>7 /”/.7;7/47/;/77

2 Limsef | T+ T,

T, 7> bo

say, where 7/ is chosen so that



/ //7(+;)/d,q<5

L+A+ <77
14 bem;; any given positive number,
The similar arguments as in the esti-

mation of J, show that

(2.15) LM%/J/ C&

TT->

( being a constant. ‘L) In Je,

every integral in (2.13) is clearly
convergent boundedly to zero as

7. T 500 , since I%4yrhi>y’ and 2+ hyo,

Notiecing ’]/>7 s we get

(2,16) ,éww "7-5'

T, T

(2.15) and (2.16) show that
(21 [T sce.

Thus putting (2.16), (2.17)

and combining with (2.9), we get,
since & is arbitrary,

(2.18) 7. /7&[17)%”1’54; .

TT>% Yoo
'/[cb'fy_/) AMtAl‘e(;{f‘ =0

TR T
for Ix/# A . This means that the
change of order of limit and inte-

gration in (2.8) can be permissiblee

Thus we get

) =
/,uu./zf‘ lfy) u(,i'
rew

Now since

/wht t(x+;)t /

T9°0

..Lu% /Z,&.AZLQLIZ;% :;

ﬁ‘r—aw +

7

=T
we have, for ~A<1</L

L= Ltx

0, Ixi>4,,

1, 1 2i<Ah,

T )

N(y-2) LN/y *x)

A
“f(/ﬂJ); =’ 7‘(7”_—2

—L/V)c 7[, C'Vj 7&(7) ch )
fe (e )

A
[‘7'7‘ v (J +J?)

(2.19) ':L z

say.
Let & be any positive number such

that £< zA, and put

say. The integrand of j is absolute-
ly integravle and

/ Pﬂ_@ dz%mr/#ﬂ.

Thus for -/<x <A » by Riemann-Lebesque

theorem

n
holds boundedly and consequently for
every ¢>41

(2. 21)%/ Tol d 2= 0.

N>ool

Now we consider the integral
J‘ ‘Ny

h-
» / X'd?hf—f
e

= (”'A-x B

and so that
Jicar= ey Tur 2
Kar-_-/blojmfh—_;)dz
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htd

h
/17(/»«“)(,1,«-0/’{7(&7& ( =f/f[7)—52/d7 ;__[go(x

oo/zé , A

- ;( .
52k f 7 ' = / /74(;0—5/517(/ ('(x)z*’x /
where { and 7' be chosen so that Cone iymre )
’{77|+v)<v/f (o</u</)yl7(ﬂ v)V)‘ //47;5 [ G L /
£ e (7%5?_ / <) dz p A Py
0 <§< 41, d? (1-h)
Then 00 e oo s CX Taking {7({{/) N
g "1_5\ o < ) (x) = / 2
5/747[1fv)v “177/-“ Gix)=( 47)
V
i/ a = we have
{/ 47(“7/) o ‘CGC 4 hel

f/f >’(u—?/‘/d”d/g- dur e h r XL
s 7 f/dx [/_,___'7“7)”&/47)}7
~h /u,

S/24 8/2h =
5 8
4 -
noticing y>1 . Hence we get Lo (I
(2.22) //;K/Td? <cd from which it rec*ults
- (2.24) / < ( / /f«w :z/
Hence we have
71( N by
/ dx- /dx/ e 'Zl;,«/ < £ “/ﬂw sl 0

( A 1=1/r
1): r 4 7 4)
o{ () fz (,/V
JC// yd? +f]——‘¢} Ir W; put é/;) / /f(7)~52/ dj
< C/Jx / _f‘iﬂ___‘i‘. L/\/yd?/? -‘-/ lffﬁm)-fz/da then by (2.1)
" Bly= O(cy-h)) eri-F

+C / /K/de And thus the right side of (2.24)
becomes, by integration by parts,

htd htS,
2,23) < £04)=521 LT 8Y) 105
(2,23) C/ (/ _vi_.__‘/,y) b [{7 sy ,WJ * r/L [71/.2)1—7//(21
o~ hed A= +d7

Ear) T e 57~A) g
by (2.22), We shall estimate the

first term. Now let Gx)20 be any At
function, By Holder's inequality, we < ¢cé
have
A '{-{-J‘
/ Gx)dx / fﬁﬂﬁ/ Herce putiing this result into (2.23),
=/ 3 q-x 47 we have
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/ /I [Tax <c§.

Comb:ring with (2.21) and putting into
(2.20) we *et

W/o/ 17, "ax £ C .

N> o0
since £ is arbitrary, we finally get
A
Com / [T, ] 2z =0
N> 24 207 B

Under the assumption (2.2), we also
have, by similar reasoning,

W/ff

Or we have

L»m,//f/dz 0.

NDoo %

Similarly we have

L%

N;ao/[rz Ax =

These results prove Theorem 2.

3. In this section we consider the
Fourler series case., As we have stated
in §1, we deduce corresponding theorems
for Theorem 1 and 2.

Theorem 3., Let +cx) ebfﬁmrc), 1£pcoo

and periodic with period 27c , and
Frx)e L), in_a subinterval (a.4) of

(-m, ) » v being not less than p .

If x>/~ + and there exist constants
Y and 52 such that

(3. 1) f(éu) Safdns 0% t>0

(302) / ( ]Z/a-ﬂ(.) —5//0(:( = O(fd/)/ ‘é) 0

for small ¢ , and we put

Rpylx)= 8, (x) — S (x),

where S, (x) is the partial sums of
the Fourier series of Ax) #cw)

Axy= 2, in ta, by =0, otherwise),
then

w76-

6 s
(3.3) 4. //KN[x)[o{xco_

N300
a

Theorem 4. Let f{z)elﬁ[—lc ), f;}(»

and periodic with period 27 and
fel, ina subinterval (a,b) of

-y, p=r o I£ x>7-24 and (3. 3.1)
and (3.2) hold, then

(3014) Z’(éw»‘//fn(%)—f'(x)/?;(x=0_

Since by similar arguments, we can
deduce these theorems from Theorem 1
and 2, we shall prove Theorem 4 only.

Proof of Theorem 4. We may suppose
without loss of generality that o< <

and &=-h, b=hA . Let
Z[Lc):[{—mf/ L tfazt 2 -

0 , otherwise,

Then the Fourier transform of [/f)1s
T et X/¢
/%—;T/—Z' « Thus we have
L ey L[m«i‘)x
Var/,, x'/4 \/—. Linst)

and we put
x/fl
o an (,hX
20+ f [ F e S an

oo n=-N

where ¢, is the Fourier coefficients
of L),

oo .
i)~ D CneE,
- 00
Then we have

ﬁ/ [f) =C,L/%_[[n+'é)/fu1, h-i-g{-g—nf-f

(n=0 t1, -- 5 2N)
=0, for ;é/)N*é
R 2X/¥
Now 7C{x) —__—_~7CL/$L Lz (-00, 00) for

every ¢ such that /< ?é/A . For
F(x) e LJz in every finite interval
and



2(ntj)re

oo v g /¢
ﬁwjfa)i““—‘—z}‘;{—‘-‘/zdz=2 [ s

znit Un#)r
J?Z f [ L
nn

< C /[f(x)/%(tr C}_,

T r
o0
z Cfmlffx)l 4z+c/7£f(x)/ MZ#

s

< &g,

Hence we may assume, without loss of
generality that 1 = f <2 o Hence

amix/d
fx) ~3%;7° has the Fourier transform
%O t) and we can easily see that

?m/{):/'é‘;;‘;/ Bolt) = (n/-%—[(hff)

for ﬂ';féllé ;L+£, fg1 n=0t 1t -,
For if the Fouwrier transform of

e 22 /¢ ,
fO/fv) e be F()

‘nx AR

[5,0e">fouf 2575 has the ronrler
transform @,/¢f) -F/¢) , and by Hausdorff-
Youne theorem shows that

A hat / L,
[fﬁc//%/frm)//’#} ’

, then

(/,f—‘/ ane ~74fx)//p
X /"
[ M‘/¢/¢ }/odx}

where 1/p +1/p’= and if p=/ , then

/,/: o and the left -side mcansz‘ ma .
~ oI T <0
AP —Fit)| | Letting Vo0 , the

right hand side becomes ( C belmf a
constant independent of A/ )

L, / ! z:c ™ foo

WLZ¢} oy

) N
< mej C 15 e fr0) fax
= -N

—a [2kedT

+ ) / 12 e™

(ne

N8”\a

- ‘7‘7.“

Adx

1 T

= N
€ L G b [ 1 2,0

Hence <,(f)

converges in mean L
to Ff)

2 DU Lin @ br =g )

and hence () 1s identical almost
sverywhere with ¢, £) .

Now it is easily verified that if

ftz) satisfies the conditions (3.1)
and (3.2), then f(x)ﬁrxi%h also
satlsfibes (3.1) andL(B 2) with
bl ¢ QP24

T > 8 in place of
Sy S, respectively. Thus putting
Feu) o *x/¢ ingtead of #/x) in

1Y

Theorem 2, (a=-A , b=A }, ve have

- A
(5.2) / I Ry (33| = o .

But, since if J(f) be the Fourier

msform of fr2) Acx) ""‘M/Z/“ then

Y(t) 6 d//‘

in mean Lr to fx)Ax)
(3.3) shows that

rv

since -L =/, converges

M'»Lx/sé
2/ L 1

/‘L oQ
. . ‘LXZ_
(3.4) m! /@l)?sz)& Gt
At ¢
— e )-—-—1~[ dx =0,
XY ¢
But since we have
N ~(xt
,L_./ ?oo({)e L)Cd/f_
mlw 1/ 4
/: %’Cﬂ e’
it results

PR,
/ | che‘“m‘— foo ax
H /e
C/ /Zr”"‘ & ’“/{ x4 }‘“’
N -t
[72‘;/ ?wme, aL

el x/d
— fomy TR f ax
f T2t

LN
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which tends to zero by (3.4) and this
proves our theorem.

Ye shall mention here that JTheorems

5 and 5 are cease tc he true if

This is shown by considering the
followiry;, example: let

fen)= o, for ~mXE0

(3.5)

/s
=X | for

0 XK,

Then we have

’
ay,
T |
Ja

Qunfnt F) (-2

Aen (22

T
J,-) (x)= —tLr
and we can prove that

o
/ [Sn 002 Tdx
~ 7C

does nov tend to zero. e do not

concern details here,
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(1) C may be different on each
occurrenca,

(2) If the riint hand side is finite,
then so does tie left. Strietly,
we should take the integral con-
cerning x over (-A, h~¢ ) and let
£ tend to+0
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