
STATIONARY PROCESS AND HΛRί/ΌNIC ANALYSIS

By Tatsuo KAWATA

§1. Introduction*

Let Kit) ,. -oo<t<oo
 b e

 a con-

tinuous stationary process in wide

sense; that is, £(7X(t)|
2
) < QO

 >

the correlation function pi u.) a

E{Xffc« u)Xefc)} is independent of t

and pcu.̂  is continuous at u.=» 0 «

We assume throughout without loss

of generality that E. { Xίt)} » o

Then <r* s E{IX<*M
X
J iβ inde-

pendent of fc and f<"-) is conti-

nuous everywhere and is represented

as

π.υ
where Ff<*) is bounded non-
decreasing function such that

F"(oc)

of
is the spectral function

A large number of papers on a ,,*
stationary process has been pub]ished.
The object of the present paper is
to develop a Fourier theory of a
stationary process*

52 deals with the filter theory due
to Blanc-I apierre. A slightly gene-
ral and simpler treatment is given.
§3 concerns with the law of large
numbers and known results are proved
by Fouriwr analytical method,
N.Wiener dβvelopped a prediction
theory concerning a sample function
of a stationary process* In §4 we
shall consider the problem with a
stationary process itself instead
of a sample function. The similar
formulation was considered by K.
Karhunen (

z
) , and solved in terms of

operators in Hubert spacec We follow
after N Wiener and consider the
prediction of λ(t) in future, by
a specified filtered process* The
results and methods are essentially
identical as N*Wiener.

In Wiener theory of prediction,
for a sample function -j-(t) ,
an average (correlation function)

is considered, while we take the

convariance f ex) = Eli X(f +-x? χ7F> }

instead of (1.3). If χ(t) 5s

strictly stationary, then fix)

is idential with fCsc) , But in

general this is not true and to

clarify this situation, we consider

the harmonic analysis of X(t+*)

Xίfc) These are done in J§5 and 6.

§2. Filter Theory*

2
#
1. Let X it) be a stationary

process in wide sense and let its
correlation function and spectra]
function be fία) and ' F W
respectively. We consider a function

KCθ) which is of bounded varia-
tion in every finite interval.

If the function

L2.i) / z
lxθ
 JLK(β)

converges in L α with respect to
fix) to 6r(x) when A-^-oo ,
β ^ OQ , then we say that K Cθ)

T h a t i s > i f

6

then

If

and

f I jβ
ί3C
iκ(e>-&&)|AFfr)-<l

is defined in Co,

(2.3) j'

instead of (2.1). converges to
in L%(o, ool with respect to Fix)
then KUΘ) is said to belong to
K(0,oo) .

(2.2) is also represented as

This is called the Fourier-Stieltjes
transform of Kί0)

f And if X/\^) is a process de-

pending on a parameter A and



then we write simply

ί.ι.nt,XArt) *

let CA, β ) is any interval
and consider a division :

= B.
If putting

it holds

then
ds : ί.^ S

Δ
 = S ί

 Λ
*

x
<^Λl*

t>
),

δ is denoted as J
B
 Xf0.)d. Kίθ)

It is easily seen that the inte-
gral J® X(©)<*. KCθ> f K(0)
is of bounded variation in CA, B3 )
exists if and only if

f8f Kίβ)

exists

Prom this fact i t is evident that
for any Kίθ)e K (-00,00),

always- exists for any A and 13

Theorem 3 «

Theorem 2, Let K, ίa) an^
Kxίθ) be. functions of K and

their Fo ur i e r - S15. e l_t J eg transforms
be ^cx) and erxίx> rjgsjgective-
llo M l e t y^d) and ^ (t)
be filtered procesaaof Xίt) bv

K,ίθ) and Ka ίί?J re_s_pectivelve

Then we haye_
(2.(>) E { Xdt^Yjf)} -

Froof.

r/ uu+d'~&)x

β-*oo β'-> co

exists if and only i£
(2.5) is denoted as

 r
 g

and is called the filtered process
by K(β)

The proof of Theorem 1 is immedi
ate from the following identity*

-VΛ Ά

By ( 2 o 6 ) t i t i s seen that
ε{Yιrt**>Yαc£;} is independent of t #

Especially Yet) e 'JCXft)^,
the filtered process is a stationary
process, which is stated in the fol-
lowing theorem.,

Theorem 3,
by. K ί ί j έ K

process and i ts correlation
y

tternary

-00

and in particular

The filtered ρroces_s
Ύ(i) is a

l

2.2 If, in the. definition of K
and 6 tn (2.1) are replaced by
Λ * A that is if



T
X u-'

JOJ *U99S9JB

pua
Jo S^UTOCI A

-uoo 9t{^ sBq ' *Ί puB Ί
I χBAjθq.uip 9q^ pUB 'x

uoiamoo ou 9ΛBL[ "^J puB 'Ί

JT (OC)

o+v-
f-L|(ίi

v
Xf|3 CΪI ZJ

OffθΛβq 9M

puβ

(3I
β
3) aioa

>»-v >

uoτsτΛjp B JΘp jpsuoo
S AUB uo

Z TJp UBO ΘM

'BUIUIΘX

en)

UO

(.SJ'Z
ωopuBJ iqq. ©u^jθp Xtenϋ^uή ΊUBO

ΘM "ΰgg^ l£Aoq_B (TTT) PUB (TJ) 'ς^)

B JO

g UO
B θq (SJTL*I ^u

βnp s
^ [BQCICIB ΘM

iCq p9f jταaΛ Xχ-j:sBθ ΘJB uofq
SUXMOXXOJ "sBq fl Z

f IOpUBJ B θUTJΘp
J° sq.uτod Λ^fnuj^uoo

ΘJB S^UJod PU9 ΘSOqM I XBΛαθ^UJ Δ*UB
»ioj snqj, { <\ ' t> ) χBΛ«iθ^uf UB UO

S?Ufpu9dθp 9χqBTJBΛ κιopuB.1 B sf qoτqM

J9PJSUOO pUB

(π ε
[

' Q < rt 'ΐ>>

ΘM

jo uot^τuτjop
sx

jτ ptXBΛ osχB
>yt oq. 3

sτ

ΘXi-



By Theorem 2 and (II)

which yields (2.15). (2.16) is
obvious. (2.17) is also proved
easily. (2*15), (2.16) and (2.17)
show that

= J
Hence using (2.16), we have

A
which tends to O as
Thus we have proved the

Theorem 4.

Ti
stationary processy

XίTji can be represented as

=
 f

where Zίλ) r 21
(2,18) means

r-o*/ x ,) and

which tends to zero as v»-> oo

That is, it- holds:

being Riven by (2 13).

Here it seems worthwhile to give
some remarks on the integral.

Let be a function of

Furthermore

and

e ά
-β

exists (in Lebesgue sense). Then
we can define

("2.20) J

by approximating ^ί
Λ
? in t-

by simple functions <*-7 Then besides
ordinary fundamental properties of
integral, (2,20) has following pro-
perties, among others,

(l) E \\

(ii) if S, and

and -f-cx) and

*
 fchθn

J
5

(iii) if -h*(x)
L

2
(F) to

^ are Borel sets,
cχ.> are of

converges in mean
, then



(iv) if -f(*-) is bounded conti-
nuous, then J ̂-f <*.?<* Z(x> exists.

It is immediate that the integral
in (2.18) can also be considered as
the one defined in (2.20),
being e

£ t x

We add a following theorem.

Theorem 5c The filtered process
1 of the stationary
by a function

i s
 represented as

9*.
process

l

where (3-ίΌ is the Fourier-
Stieltjes transform of <(&}

We have

which is by (iv)

f«>.

- J
by (ill).

§3. The Law of Large Numbers.

3.1. We shall prove the following
known theorem*

Theorem 6. Let xct) be_ a
stationary process with random spec-

tral function Z.(Ό
 #

 Then

We note that
for example

ε\ izίxto-z,

Z, (x exists,

and converge to o as £
f
 ε"^ o.

Before proving the theorem it is
convenient to state a lemma.

Lemma 2. Let be continuous
on α i, t £ b , x

 A
 ct)

^ft) be stochartic processea
continuous in mean. TΓ

then

r r

the Integral being
sense.

taken iji Riemann

The proof is immediate by the de-
finition of integral. The similar
facts holds in I.ebesgue sense which
will be stated as Lemma 5 in §6 in
the sequel.

We shall prove the theorem. Let

We have

(Lemma 2 is used)

-ί



Here the inversion of the order of
integral is legitimate as easily
verified. The above is

( 3 . 2 ) :=

v τ(*-\)

by (i) in §2, R * ) being the
spectral function of X it") .
Since the integrand of (3.2) conver-
ges to zero boundedly, (3«2) tends
to zero which is to be proved.

Next we shall discuss the conver-
gence of

sJ

Theorem 7
O
 If for some t >o

(3

then

-f <oo

Γ -ΛOO **
(3Λ)

exists. Especially if for some

then (3.4) exists»

Proof. We shall prove in the case
ξ =. o ^

β
 have

f Λίίl

r it-*

1

(3.0 . J( + t j ^

say. Since J -~r—- «*t

ges boundedly as T -> o°
also converges in ^ ^ ^
hence by ( i i i ) in §2, Li.m.
exists, τ-> °°

conver-

, it
, and

Next we have

X T

~

and

— ©o

Hence by (2.2.1)

say, t being any positive number.

Since, for* 1*1 > t , f -ί^t <it

converges boundedly to zero, we have

<3 7) U^ j ( z = o <

We have

XT

which is, by integration by parts

J -t ( x ** /•

The first term converges to zero
as T -* °° , and the second term
is zero, since F'*) is conti-
nuous at x ̂ o

 9
 which is a con-

sequence of the condition (3.3),
for



Γ ££*

KJ
1

- 0

Further if we consider

]
xγ

say, then

and noticing that J [uxfί-iV't - dX *

uniformly in 0 < | < X , the f i r s t
term of KΛ i s

as T-* oo by (3.3)

and the second terrc is

* 0 ( f

also by (3.3), and furthermore the
last term of K, is also

°(JTiFM-Fί-χ)\

Hence we have

Next

as

ί

Since ΛT> f , which is a r b i t r a r i l y
smalD by taking t sira31 Corrbining
this with (3.9) we have

(3jcO

by l e t t i n g

K - 0(1 )

and then ζ -? o

The similar integrals arising in
the last term of (3

β
8) are also treat-

ed quite similarly and we can prove
that (3

β
8) converges to zero as

T, T' -* oo which results with
(3.7),

- VτθΓJ-»°.

3.2. We shall now prove the

i£ a. sta-

-T

(

-A

being the random spectral
function oΓ xTF) arid It is assumed
that at the discontinuities of the"
spectral function
is defined as ""



which is by Lemma 1

-T

of a stationary process
X(t) f is bounded, Is that

for some A > 6

If (3.14) holds, then using (3.11)

Since

lλ|<Λ

and

u

.T+X
T

we have, by (iii) of 2 ^

Prom Theorem 8, following Theorems
9 and 10 are easily obtained.

Theorem 9.

The or er;; 10, Putting

we have

Further we sha31 state

Theorem 11 The necessary and
sufficient condition for that the
spectrum of the spectral function

Since E ί l X
we have

so that the spectrum of F(* )
is contained in Ĉ /î  A)

If the spectrum of Fί*->
bounded, then there exists A
that Fί+ools. pί/4) , Fί-<»)=
And since

is
such

we have

-- f

We shall, lastly, add a remark
that P^X/t) = χ(t) is equi
valent to

being the correlation func-
tion of X ^ )

H o Wiener* s prediction theory
and the Fourier Stieltjes transform*

4.1. Let K ί&> be a function
of Kίo,«>> defined in 2

O
1. Sup-

pose throughout that x t*jP is a
stationary process and Z, C%) , fix)
are the random spectral function and
the spectral function of X ct)
as before* We consider the problem
to predict Xίi + oO , c « > o )
by the values before t: of the
filtered process by K(β) . The
following arguments are essentially
due to N.Wiener ί

r
},but the formula-

tion la different in some points.
The class of K'β) is slightly
general than Wiener's. He considered

V< ίe) of bounded variation in



C0,oo) c This generalization
is raore natural for his theory, and
our procedure is more simple in some
points*

We begin with the following fact.

Theorem 12. Le% c*>O and the
Fourier-Stiel t,jes transform of
be, Qrcx) (in the sense in 2,1)
Then we have

which is, by Theorem 3, and

Proof. K(β;
c o n

.

verges in mean L
x
 ί P) to

This we denote as

Lerana 3» Suppose that there exi-
sts a function Hex) 0? L

2
f F)

which is the I^ourier-StΓeΊtjes trans-
form of a function όΎ t\ ίo,oo) such
that for a positive "number o<. ,
it holds'

We have

for all 'x y o

Then, for the Fourier-Stielt.ies trans-

fprrn Gr(x) of any function of

Hf , we have

pίλ)

and consequently

co

- J
 K

=
 J

UU"
t

is
Now the left hand side of (4.1)

Proof. Let

Hίx)c{,u
4
 j e ^



Lί*), K (*,<*> λ

The l e f t hand s i d e o f ( 4 , 5 ) i s

J *
+0* A-?00 J

o

Je
4

which i s , by ( 4 . 4 )

= f e*1 ί

This is (4o5). ( 4.6 ) are .-immediate
since the left hand side of ( 4.6 )
is real«

Now we put

- Gr

And we shall prove the following
theorem.

Theorem 13. If βr(x) is the
transform of aFourier-Stleltjes

"oΓ Kfΰ,cfunction of KfΌ,oo} and HCx)
i s the function in (4»'%7T then

(U)

The equality holds if and only if
3 = Hfx) almost everywhereQ x 3 ) ryw

with respect to measure function
Fix)
Proof. By (4.5), we have

JCCr) = j " Fix) -

and

J(«)- f

which is, by Lemma 2,

J dF(x)-

Hence we have

Using (4 . 5), we get

/ΊHίχ)|

f G

from which the conclusions of our
theorem are obvious »

The above discussions are settled
into the following theorem.

Theorem 14, If there exists H(X)
which satisfies (4.4) In

then the error when we

4.2. Throughout this section,
we set a further assumption after
N.Wiener (

6
) that the spectral func-

tion fix) of Xίt) is absolutely
continuous and such'that

( < M 0 )

If we put F'CΛ> =• &(*) /then
by the well-known theorem of Paley
and Wiener (*),there exists a function

such that

(<Mθ

- 5 0 -



and the Fourier transform in

is such that

Moreover we assume that, there
exists a function LJΘ) e HΓ{θ,oo)
such that

 R

Γ

= O

The left hand side of (4,12) ac-
tually existso For if we put

then, since H O O € L
and hence H**) "3&^>
the Fourier transform

. .m )

exists, and this Is

Lemma 3,
tion H(X)
TΠΓ)T4ΠΓ4-) hold, then H7X)
the condition (4 4)

If there exists a func-
such that (4>l^5) anά

satisfies

Proof By (4.15) and (4.13)

A -* -oo J

t>o,

Therefore, for any positive number

which equals, by Parseval relation,
to

which is, again by Parseval relation

-r
Theorem 15<> ^£(4.10) holds and

there exists a function t-ίθ)£ K(o,oo)
which satisfies (4,3 377 then jCCr)
attains its mίnimiar; value when and
only when CrCx) is the Fourier^"
Stieltjes transform H C») of L
(except possibly in a set of f(%) -
measure zero). Moreover In this case

We have only to prove the latter
part. By (4.7),

Jί H) = f\ e
ίrtX

- H MI '"
CO

The Fourier transforms of
and Kfx;iίx)aw frt^^) end
d>o)^ soίt<θ; respectively. Hence
by Parseval relation, we have

- ί °
-00



which is to be proved*

Lastly we add a remark that, under

tho assumptions of Theorem 15, H (*-)

can be written as

ck.π) ri(χ) =-i-0,;.»

This is obvious from the proof

of Lemma 3*

theorem is essentially due to Blanc-
Lapierre (*).

Theorem 16. Let X ά) e S
Then in order that " χιb) is a
stationary process of the 4-th order,
i t is necessary and sufficient that
11' the hyper-rectangle with sides

Euclidean space R.̂  has no common
point with an~of hyper-planes

§5. A class of "stationary
processes

5.1. Let ?ί(k) be a conti-

nuous stationary process and let its

spectral and random spectral functions

be Fix) and Zίx) respectively,

so that

(5.0

( x , y , 2ι , -K/- are current coor-

dinates), then

5 5
 0 .

Before proving the theorem, we
shall show that

Consider divisions of (-

and put

Z fe

Suppose that E. { I Xit)\*\ < C, C

being independent of -t , and that

there exists a constant jvf such

that for any divisions p^ f t=ι,2, > £

lir.2)

holds with probability 1. The right

side is defined as

which exists by the condition (5*2)
by the sir liar arguments as in the
proof of existence of Riβir.ann-
Stieltjβs integral. The equality of
(5 6) can be shown as follows.

We denote the class of such X ft)
as S Similar class has been
introduced by Blanc-Laplerre ( ) *

Let E { | X ί t ) | * ί < oo a n d (the summand is the one in (5.7))

is independent of t* for every k, ,

hi* -̂3 and K<^ . j
n
 this case

Xίf) is said the stationary pro-

cess of the fourth order. Following

.52 -



k ί

( 5 . 7 ) ,

being the sura in

in which, for example 21,
means k t

other surrίmationa are easi ly analogi-
zed* For example, the second term
of the right side of (5*8) i s not
greater than, by Sehwarz inequality,

The former factor is

which is bounded by (5 .2 ) . The
second factor tends to zero as the
division i s made indefinitely minute.
Other terms of the right side of
(5.8) are similarly shown to vanish
in the l imit . Hence we obtained that

JL 2L. ^~ ^

X

tends in L*̂  -mean to
») xTITζ) Xίϊίΐ^J .

But since Q.l.r*. J|1*^L^ 2Γ̂  ( i n

L^-mean E\\ * I *} ) exist^ this i s
e q u a l t o Xc^ + Ui) yiCi + U%)Xit^Ί^l Xit+^Uβ
with probabi l i ty 1, which proves
( 5 . 6 ) .

Now we sha l l prove Theorem 16
Let ( 5 . 5 ) hold for hyper, rectang les
with no common points with every
hyper-plane (5 4 ) .

in which £ { )• is zero if the
hyper rectangles with sides ώd

t f

^p^ , Δ i^ , AίjL has no
cordon point with (5o4)

o
 And the

difference between (5 1]) and

cf l χ)

is easi ly seen to be zeroβ Hence
(5.10) i s (5.12) which i s independent
of "t .

Conversely l e t (5.10) be indepen-
dent of t for all real numbers

î , Ki 9 \n$ and h^. . Then
(5.11) and (5 1S) are equal for al3

f . For suff iciently large ft ,
B , C , and X> , the sum (5.11)

over |c/ ι> A ̂  \pj ! > β y / ίfe I > C
and /£iI > D a r e arbitrarily
small, which i s the consequence of
(5.2) , Using this fact and appro-
ximating the trapesoidal functions

we can prove

that

• E ί Δ zrof

where ΣJ denotes to take the sum
over <*'»><; or i < o c ^ , β<°< βi<ι M

and

-53 -



S°* , $(*-y are arbitrary real
numbers. (5,13) can be represented
as

v » V V V"
_

from which it easily results that if

the hyper-rectangle with sides (
 Λ
<»> , J

%)
)

and ( <f
(l)
 , £

α
) ) has no common

point with a-* A — γ-£ =. <? , then

which is to be proved.

5.2. We shall now consider the
harmonic analysis of Xίf *u) X (t)
( <A being fixed). let us suppose
throughout that a continuous sta-
tionary process Xίt) e S is
further a stationary process of the
4th orderp

We first remark:

Lemma 3. X rf) is continuous
in mean of the 4th order, that is

E ί l X ί ^ W

We have

( Cι, C2 being constants )
which tends to zero as k

Now if we consider Xtf+u)X(tJ f

then this is a continuous stationary
process of the 2nd order, t* being
a parameter, and so we have

(5.IΦ) Xft

where WMcW^α)

spectral function*

Theorem 17.

t n θ randora

and if u •= 0

(Mi)

then.

, f
and furthermore

being the spectral func-

Proof. Using the spectral repre-
sentation of X" it) , we have

v-Z1*

which is seen by the fact

and (5.2),

i j5̂  j are arbitrary divisions
of c-oo, oo) , and further is veri
fied to be

Hence we have

which is (5 15) If u •* o , then

ίίΓ.lS) Wίv)

where

:
)

; Δ
Z(8.

means to sum up

with respect to %,,]



sυch that the hyper-rectang]e with
siαes(o(,,<t,) , (Pj>fVn">
is contained in the half-space

(*-» < v> Then (5.17) is

(in which the meanings of !Σ? '

V
+ O ί i

^
 are e a s

^-yand 4j 2

understood)

/A f

which is seen to be

-to > -e>o

0

Next by an analogous expression

as (5.18)

Thus we have proved the theorem
β

Now applying the law of large
number, Theorem 6, to the stationary
process X(t)X.'rt+*) - f*

4
*) ( u"

being taken as a constant), we have

Theorem 18.

(5". 20)

where
ϊhβoreir. 17.

-W(-o),

is the one in

The existence of the right hand
side of (5.20) is obvious since

Wίv) is a random spectral func-
tion.

Theorem 19. We have

(SΓ.21) ί.ί.m.J-

ίΓ.22) s ί .

(5.21) is a special case of Theo-
rem 18. The proof of (5.22) shall
be postponed to the latter section
6.2.

Theorem 20.

ίS.23) U~. ± f
-Γ-* DO

 T
 J

-ift

By IL in 2.1,, assuming v> O and
taking <*i = A; ,

0 0

If V < 0 , then in

(5.19),
and nence

/

21 in

can not be o< ι

=o.

18.

This is easily seen as in Theorem

We shall further add a remark that

These are also special cases of

Theorem 18 and 20. For

E{

-55 -



= E {ίi.m +r fTXii) Xίίtu) at }

s
ίJ^ ήp ί E

Siir.il arJy we have

**

From assumptions, we have

K being a constant independent
of t , and

α.5") i ^

Now

§6. Concentration of a random
spectral function*,

Since

we have

Γ
n

with probability Hence XCt)

has, for fixed h,>o , a Fourier
transform in L2(-oo, o©? with pro-
bability 1*. We sha3 3 prove the
Fourier transform to be (re/2; l / z \ Z- ί«+

-Z.Coί-k;} , ZfoO being
the random spectral function-of Xi+)
Before i t , i t is convenient to state
a lemma

Lemrca 5, Suppose that <γlt) e L^ί-oo.

and

(6.2) li.rr*.

bounded] y in mean — <?o < t* < 00
Then

A ̂

By (6,4) and (6
β
5), the second inte-

gral of the last term converges to
zero

β

a sta-
Then wiTh

trans-

Theorem 20, Let
tionary proces 3 of 5 . The
probability 3 7 ~ ^

e
 Fourier

form ( in L^ c- <*> 00) of

And with probability 1, we have

:ί>
especially

with probability 1.

The right hand side of (6 7) can
be considered as the mean concentra-
tion of the random spectral function

and we denote as C(^)

-56 -



Proof* Let Fix-") be the spect-
ral function of £

holds bounded] y, since

->

Therefore by Lemma 5,

- T

-r

A

which is denoted as

Put
X+ &,

X '

Then ^ ) τ - ~ T ~ e

converges boundedly to
as

Now

Furthermore

J I

= Jtt.

oo oO

χ ) (*"<**.

- ί dFW J
ι*»>T

as

Hence with probability 1,

r
- ί

tends to zero as n — ^
sequence X

κ
 —> °°

» for some
On the other

hand is known to have

a Courier transform (in I— ?„ ) with
probability 3 and hence the Fourier
transform is

Thus the former part is proved*
(6.6) 5s a result of Parseval rela-
tion.

6»2, The object of this section
is to prove the following theorem
concerning the concentration

X being a stationary process of

<-*;
Theorem 21.

If X±.L is continuity points of
F(cC)

 9
 then the above integral

tends to zero.
(6.9) is nothing but (5.21) in

Theorem 19 which is not yet proved.
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The proof of (6,8) is not diffi-
cult •

V?e have now

where

otherwise

while

(fc.l )

7C

Since

ί ίE{ Xί*)-X' >

C t

by Lemma 5, this tends to zero as
t--»o Hence E ίlXίt i

2
"- |χίo)l*}

is continuous at ± •» o Thus
by the well known property of
FejeΊ^s integral, (6*10) converges
to zero, which proves (6.8)

Next we shall prove (6,9) by
Theorem 19 (5«20)

The right hand side is

(4.(2)

whore

= o,

We have

~ o, otherwise,

I £

Therefore (6 11) and (6 12) shows
that

(4.l«0 ί.ί.m. C W -

V(V Λ ^ ) and IXV.
depend only on V and o( - (i
we put »

jof.A^
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(6.14) i s
.00 .°*

ί . ί .m. ί(*;*-
Letting v - ? t o , (6.3 7) tends to
H i * o ) - H ( + 0 > « o • The second
integral in (6.16) does not exceed

which tends to zero and the theorem
is proved.

Here W, φ i a the one putting
u^so in V/ί^; in Theorem

17, and i s the random spectral func-
t ion of |χ (*)|*- β If Gr(κ) i s
the spectral function of jxft) J v

then

v->+o -<*>

where

^ 0 1

Hence (6 15) becomes

But

A-

Lastly I express my hearty thanks to
Mr. K Takano who kindly read the manu-
script and gave many valuable remarks.

This paper is sponsored by Jaj^anese
union of scientists and engineers.
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