STATIONARY PROCESS AND HaRNONIC ANALYSIS

By Tatsuo KAWATA

§1. Introduction.

Let X(t) , ~ococt<oo pe a con-
tinuous stationary process in wide
sense; that is, E({X(t)') < co,
the correlation function P(w) =
E{xden)X} 1s independent of t
and fw) is continuous at u= 0 .
We assume throughout without loss
of generality that E { X(t)} =0 .,
Then 02 =2 E{IX(E)\*} is inde-~
pendent of t and pPlw) is conti-~
nuous everywhere and is represented
as

0,
(1. 1) j’(“hj " AF()
~oo

where F(o) is bounded non-
decreasing function such that

F(+00)~F(~c0) =02

(1. 2)
F(a) is the spectral function
of x(t) .
A large number of papers on a )

stationary process has been published.
The object of the present paper is

to develop a Fourier theory of a
stationary process.

§2 deals with the filter theory due
to Blanc-lapierre. A slightly gene-
ral and simpler treatment is given.
§3 concerns with the law of large
numbers and known results are proved
by Fourler analytical method,
N.Wiener developped a prediction
theory concerning a sample function
of a stationary process. In §4 we
shall consider the problem with a
stationary process itself instead
of a sample function. The similar
tormulation was consldered by K.
Karhunen (), and solved in terms of
operators in Hilbert space. We follow
after N, Wiener and consider the
prediction of X(t) in future, by
a speciified filtered process. The
results and methods are essentially
identical as N.Wlener.

In Wiener theory of prediction,
for a sample function 4t) R
an average {(correlation function)

T —

- 41 -

1s considered, while we take the

convariance ¢(x)= E{Xdt+x) (O}
instead of (1.3). If X (£) is
strictly stationary, then f(x)

is 1dential with @) . But in
general this 1Is not true and to
clarify this situation, we consider
the harmonic analysis of Xtt+w)-
Xx(€y . These are done in§§5 and 6.

§2., Filter Theory,

2.1, let X be a stationary
process in wide sense and let its
correlation function and spectral
function be fluw) and F(&)
respectively. We consider a function

K(9) , which i8 of bounded varia-
tion in every finite interval,

If the function

3 _. )
[e = akio)
A

converges in L_2 with respect to
F{x) to Gwx) when A.->-oo N
3> 00 , then we say that K(g)
€ B (000)e That is, if

(2.1

(7-2>lm§]je"‘ime>~6(1) aF(x)=o,

-0

then K(o) e K (o0, ),

if K{e)
and

is defined in Lo, oo0)

»LJC@

(2.3) & K(8),

instead of (2.3), converges to G(x)
in Lq (0, 00) with respect to F(x)

then K(g) Iis sald to belong to
K(Oloo) °
(2.2) i3 also represented as
Ly(F) 8
24 fim. [ € Fd k@)= G,
Ao~
gro0 A

This is called the fourier-Stieltjes
transform of K I(8) .

And 1f  Xuit) is a process de-
pending on a parameter A and

t4



fom E{IX,b—xth(*}=0,
Aro

then we write simply

Liim. Xt = X¢t).

A o0

Iet (A, B) is any interwval
and consider a division :

a A=6,< B,<-
If putting

n-t
h@ X(8,) (K(0,,)-K(82)= S,

it holds [?,, m. 5,28 ( max (g~ 9)"")
then § is deroted as jBx(o)d.Kle) .

<8,=05.

It is easily seen that the inte-
gral P x(o) & K(8) { Kts)
1s of bdunded variation in £A,B1 )
exists if and only if

88 —
J j Plo-6"2d K(B) A K(O')
A A

exists o
From this fact it 1s evident that
for any K(g)e K (~w,c0),

‘SABX{Q:—G)«A K (6)

always exists for any A anda B .

Theorern: J.

(2.8) Pc ™, j)((t_e)dK{B)
B—)W

exists if and only if K(8)e K (~m o),
(2.5) 18 denoted as =~ T [X(t)]

and is called the flltered process
by K{(@) .

The proof of Theorem 1 is immedi-
ate fron the following identity.

lj Xtb- e)alK(e)] }

=E{JAJ

A “A

x(é 8) X (k-0 K(eMKw')§

J"'] plo-6)d KO)A K0)

A
P Al A-l(o 605x

¢ K (6)d K(8)
h e

!

~1X6

s A
=j )ie de
— R

dF(x),

Theorem 2, Let K,(8) and

Ka(6) be functions of ¥ and
their Fourier-Stieltjes transforms
be G(x) and  Gn(x) respective-
ly. And let Y H and Y, (t)
be filltered processsof  x(t) by
K,to) and K, (¢) respectively.

Then we have
(26) EiY,drw Y, (1)} =
= ja’G;(z)Grz(x) et d F(x),
o2

Proof.

El Ve ath }
= E;//L m, fx((—fu -g)aK,(8)

853 % 4{::; f)( 0 aK (89
B" had
_,L»m. f . E { X (d+u- 0))((1‘—9)}4&(‘9)9”( (9)
A,-aoﬁ—r-wA ¢
/5-)00 5—)00

- —_—
= Lo L J’ f’(ufe'—e)dK./d)iK;."”
~oe ;

- ‘X
= je“‘ AF@) -

- e -

pr-00 47
B> 0 BX

= Lom  Binn fjf-‘m- ,

A
A2 =02 A -2 200 fBj‘ CCarB= )X
A /'

d K ) LK za’)

300 B/rca
o0

- B B’

i Lim, L.0om, jj'e‘“’" VO i\ (0)A Kal a16)
AD-~00 A"9 —00 Ny Al

B2 B-300

M7Y

ar (0) Gy (x) AFX).

By (2.8), it is seen that
E{Y,t’cru)-:ﬂ_} is independent of € .
Especially vY) = FLX)],

the filtered process 1is a stationary
process, which is stated in the fol-
lowing theorem.

The filtered process

Theorem 3,

by T Kigr€ K, Yit) is a sta-

tionary process and its correlation

function Ry («) is given by
(2.7)

oo .
potw= [ 16 mo) e “FAFX)
r - 00
and in particular

(2.8) E o= [Taool a Fox),
oo

2.2 If,in the definition of K
Aand 8 1In (2.1) are replaced hy
-A , A ; that is if



La(F) A

Lo [ *Cak )

Adeo0 24
exists, then K!#)  is sald to
beiong to #y . Thesorems 1-3 are

also valid if the definition of fil-~
tering is replaced by

Y‘MJ‘XH 61AKI) = F (XD} .

Now we put

s bo +iad
. - Py
1(9,&5)—2—;0(@ ™)
12.9)
b 28
:'L—Je dx.
2T
[
Then

A ~{ub
Lo jﬂte;a,b)e o
A

A2oe
1, a(u.(b,
= i‘ u=a, b,
0o, u(a,u)h
Putting

]
(2.40) L(8;a.b)=L08) =Jlla;«,b)d9,
1]
we define

A
(2.11) Sﬁbix‘f’i=f-_§-:’;~JAX“"°ML‘6)

and consider

Z(ab) = F X0

(2.12)

which is a random variable depending
on an interval ( « ,b ). Thus for
any interval I whose end points are
continuity points of Fi(x) , we
define a random variable Z(I) .

2Z(L) has_following properties
whicn are easily verified by Theorem
2,

(1°) if I,ur, =L , then
ZUT)y= Z(T)e ZIT,),
where 1, and I, have no common

interval, and the interval I
with I, and L,, has the con-
tinuity points of F(x)™ as
its end points.

(2°) E {{z.(r)f} =de4:(=:),

(3% E{Z()ZT,)}= j A FO0,
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Now we appeal to the following
lemma which is due to H.Cramér,.(3)

Lemma 1. Let Z(8) be a _random
varlable de fined on every continuity
intervals of a sgectral funetion Fix)

of a stationary process X (t) °
It =) satisfies the conditlons

(89, (11) and (111) above, then we
can unlquely define the random - vari-

able Z(S) defined on every
Borel set S on the real axis,
such that

(1) Z(S,uS,)=Z(5,)+ Z(S,).
when S, S, =0,

(m Ef Z(S,)-%Z)}:jamx), (5nS.¥0)

K

=0, ($:nS,=0),

(@ E{1Zs))']= §aFm.
S

By this lerma, starting trom (2,12)
we can define Z(§) depending
on any Borel set § ., Iet AD o
and consider a division

_Az‘%(‘),(.... <\)"_‘ <‘)n= A

and denote Z(S) , S  being an
interval, a<x<b as Z(a,b) ., Put
n=l wt
(213) S )= Z(v., W)g_ &)
R=o
2.‘ =
(2.14) X () 3}~A,A){X(f)}‘
Then we have A+0

(2.45) E{IS. N} = de(I)

j P Fix)
~A+0

(2.16) EHXA((:)I
(211 E S, X0}
'11-
’Z jh —itx S Fix)- P k’
h‘-o

These are easily seen, l'or example

EYS,®S,d
" YV
E{ ST Z k) 20,50
R} d -
Viv-u)t

R

= DT EFZO N Z vl e
~ '}



By Theorem 2 and (II)
E L Z0uhad ZOy 4 7o, cho)
Vyeit 0
=J 4.F(x), Che )
\po J

which ylelds (2.15). (2.16) is
obviocus. {(2.17) is also proved
easily. (2.15), (2.16}) and (2.17)
show that

EfIS s~ XA(h[l}

=E{IS.bl*rELIX, D1}
2 RE{S,® X0}

\)+o

25 otF(x.) "J'R'Z:S L(vk x)tdF()

~A+0
Viito
which tends to zero as

max (Vo=V} - o,
That is, it- holds:

n—> oo >

(241 fim. Sad) = X, ¢8)

Furthermore

E {1 X, b - X7}
= ESIX01 T+ E ] IX O}

ARE X Xeh },

and

EfX,h 72(7)}
=E{flim .SBx -0)dluo-p,A) XD }
Bgr>00 B

=fim E i Xﬁxte-e)otue;m,n)')m)}
B3 w

"

YM»S EX(t-0) X Y & L (6;-AA)
B->00 =g

SBP( o)al (6;-AA)

a—m
= Lo 3 fe“e" Flx)aL(05-AA)
B>°°28 o0

= fi Fe) Lo gBe"

B> 0"_6

GIA L (0}’A1A)

Aeo
= y d Foeq,
—~A+0
Hence using (2.16}, we have

E{;xAd)—xml‘} "
j’ AF(x) j alF(x)

whiech tends to o as A oo
Thus we have proved the

The stationary process
be represented as

&'61 oll;(K)

Theorem 4.
X‘t) 'can

(2.18) Xt Je

where Z (X) =
(2.18) means

Z (o0, ) gn_d

{2.19) X[(‘)—'(tmgamsfl‘)

00 NI do
S, bei ng given by (2.13).

Here it seems worthwhile to give
some remarks on the integral,

(x) be a function of
; that Iis

Let
L, <F)

Slgaot*d Foo
<00

exists (in Lebesgue sense), Then
we can define
o
(2.20) _f gox> 4 Z(x)
by approximating 4(x) in La(F)

by simple functions.(*) Then besides
ordinary fundamental properties of
1ntegral, {2,20) has following pro-
perties, among others,

(1) (2.21) E Hf}cm&Zu}j’}

= f lj(x)lzoLF(x),
= o2

(12) 1r S, and S,
and 4x) and ()
L., (F) » then J

Ef [$e0ra mnfﬁ)dmﬁ
S

are Borel sets,
are of

= oy q ) dF(Xy
Sr\S{ 3

(i41) 1r $ ()
L (F}y to 4

converges 1n mean
, then



f.im. G wrdZx) = j{-(p)dz.(x)

o> co—co

(iv) 1f +x)
nuous, then

is bounded conti-
.}_M-}(x) A Z(x) oexists.

It is lmmediate that the integral
in (2.18) can also be considered as
the one defined in (2.20), g )
being e¢t*

We add a following theorem.

Theorer 5. The filtered process
F LR T of the staticnary
process  X«(t) by a function
Keo) e i€ is represented as

%, ixctr}=f e

where G-(x) is the Fourier-
Stieltjes transform of K (g}

(2.22) e.-(x)dz-(x)

We have
Fixtry= Xck-0)dK(O)
R —0Q
8
= Liom. {7 xc-014K(6)
A2~ A
R kad
= ﬁ‘,&j’,,‘,‘ PJou<«9) Q. iom Lt S6-0)
Ry A
’-leLMLMSZA Z(V*,V“”) \Vu(f od.Klo)
e

As-o0
B00

which is by (iv)

Liw. § ™t (j < %% g 0)) 4 Ztx)
A,D -—oe

j (Xt (1) & Z(x)

— 00
by (311).
§3. The Law of Large Numbers,

3,1. We shall prove the following
knoWwn Gtheorem,

Theorem 6. Let  xt) be a
stationary proeess with random spec-—

tral function Zx) . Then
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oicteB .
=Lim, fom ILMZ Z( "M)"-%J'z‘“’k"a k(o)
.3

3t
G im. 'L‘S )((“)“- M

T2

= Zlseo) = Z(3-0),

We note that Z(x%0)

for example

EflZ(ee)-2xee)] |
Xegto
=E { IJ azool f

Xt g/+0
X+E&vo
= ‘j- & F(x)
x +/to
and converge to o as

exists,

E'}E!# o,

Before proving the theorem it 1s
convenient to state a lemma.

Lemma 2. Let @(t) be continuous
on " agtsb , and X\ ® an

X (&) be stochartlic processes
contlnuous in mean, IT

Lim. Xpt) = X)

A-00

E{1X,b- le)lz} sK < oo, astsh,

agtebh

then
b b
Liom. j Pit) x,,(mur:f Q) Xy 4L,
Ad0 ~

the integral being taken in Riemann
sense. -

The proof is irredliate by the de-
finition of integral. The similar
facts holds in Iebesgue sense which
will be stated as lemma 5 in §6 in
the sequel.

We shall prove the theorem, ILet

wix,¥)z=0 (X + § nwix,z)=1 (x=
We have ) 3) 5).
3t (% t
E”—J XiHe' J wee, Dazm| }
oo

{ —%J’ “foaje A Z(2)

©o 2
~f win §)* Z (0]}
Zoo

(Lemma 2 1is used)

{ ( j k(x-%) )AZ(:L)

oo F N
—J ulx,i)otz'l‘)l }

- o



Here the inversion of the order of
integral ls legitimate as easily
verified, The above is

]J et T8 _ e TH_4 __u(:t,'s)}“"z"‘)“

T(’C $)
oo | @t TI*%) *
(3.2) :j' — T —u(x% )| AFM)
T Tx-3) s
—00
by (1) in §2, F(x) being the

spectral funetion of X ()

Since the integrand of (3.2) conver-
ges to zero boundedly, (3.2) tends
to zero wnich is to be proved.

Next we shall discuss the conver-
gence of

o N
j X t) c‘std,t
t—
Theorem 7. If for some £ >o ,

dx <oo,
x

(3.3) _V Fl§+x) - F(§-2) bg—';—

then
Txt) -ist
(3.4) Q.L.m.j e &
“T-300 v,

exists, Especially if for some “>‘3
E

(35) F($+x)~F(3-x) =O(x*), asx>to,

then (3.4) exists.

Proof. We shall prove in the case
f=o0 . We have

jTXIé)d,t J at I Cdxd‘ yACY)

j e_ au:) 4Zix)

P £x
Ssure
,542(,) E';Efdx+ : 42.0:)} 4t
Lo -
(3.6) = J +iJ,,
nix
say. Since _ST-é-w—;’—‘dt conver-
]
ges boundedly as T o0 , 1t
also converges in La(F) | and
hence by (1ii) in §2, l.ivm. I,
exlsts., T-3 00

Next we have

J=J(m= _f: z(x)rr——

and %T

co cost
L(T)-I(T')=J dZ(‘)j Tdr
i xT’
Hence by (2.2,])
E{1Tm-Tm0)

ISR

~o0 ,(-]-r
f e =33,
Ixlgg 1xl>g

say, & being any positlve number,
T

ot at
<« t
converges boundedly to zero, we have

Since, for: ixi>g ,

(3.7 l.i,.-m. J
T.T-> 00
We have

J, J-oLF['x-)” ’ —-——Ml

12 =0,

which is, by integration by parts

§ Fle)- F(—s)}” ”“’"‘)
—,Lmif:m F(-x)?f C‘f-“

o
x-» T

€
(3.8) —zj {F(x)-F(-x)}ax -

STt .,Lt(w"T_chT_’
j t x x
xT’

The first term converges to zero

ag T —» oo , and the second term
is zero, since F(x) is conti-
nuous at xX=90 s which is a con-
sequence of the condition (3.3),
for



xT
ot dt

T ) Tat
=o(f &
x1'!
= 0 (Lg 17),

Further if we consider

s o0
K =j fF(x)—F(—x)kj “—;itax'w”

!

z
xT
i €
= j T + j’
L
T
=K * K,
say, then .
L l
-1 T
K,=jT{ F(x)—F(—Z)}j w,c dt- ——dz
4] xT
7
"—:3.7214,;

1
(7 -
+j { Feo) - FEx)Y L’a"T ”

4

T ot xT’
“J {F(ﬁ-F(-X)}J 3%_—“ ‘-‘1’;-* dz
1

1
and noticing that JS (coot~1)/t - dt = Q1)

uniformly in 0< &< 1 , the first
term of K, is

jr SF@) -F-0}- O(x)dz = o(1),

as T> o0 by (3.3)

and the second term is
) {[{F(vd— HHJ‘L;*“‘
F(x)—-Fl—x)
+0 (b; [ )

=0 (f}:F(x) -F(-x)} #/71—'41)

also by (3.3), and furthermore the
last term of K, 1is also
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L
o [T pou- Fra)) L dx)

=o(1).

Hence we have

3.7 K,=o00) , as T-»eo,
Next

£ % ot

K= | {rw-F(-x)',J ot at.
+ x
T ;T
. R IT 44
x

€
01 [srmmrit 3.,

Since XTy»1 s which is arbitrarily
smal) by taking & srall, Corbining
this with (3.9) we have

(3,102 K = o@)

by letting T—>e and then &-»o0 .
The similar integrals arising in
the last term of (3.8) are also treat-
ed quite similarly and we can prove

that (3.8) converges to zero as
T, T' - oo which results with
(3.7),

E{ITm - Ta)]") -

3.2. We shall now prove the

Theorem 8. If X¢)

Iheorem 8. is a sta-
tionary process, then

r
(3.11) Q',;.,,,,’J‘.K;fﬁf_‘u&x,f)di—
T T

A .
- J e azm

—A

Z(A) being the random spectral
function of  X(H) and 1t I3 assumed
at the dlscontinulities ol the
spectral function F(A) , Z(A)

is defined as

Z0) = 3 § Z(Aro) + Z(2-0)f

= "jf-i.m.{ Z{Are) fZ(X"f}} )

_rt-n;Aé )
- Sin AtE-X at
I - tjr t-x x[‘t)



which is by Lemma 1

(-]

T .. _ )
- _!,EK‘ Smt{(: Uo&l‘ e‘t)"dZ()\)
~00

-7

~ T, :
- L[ sim A=), ith
- J 420N nj AC—D o rar.

Zo0 T

Since

T . o, IAM>A
2 [ simAu ‘Xf;u—;
© w L, A=A
‘T 4
1, |M<A)
and
Tex 2 W PS
. Som Au [47Y T X
Ej " e du
T
<

T+X
_‘_J du
" “w

T

P4
=J1'Ei°3(’+?);

we have, by (iii) of 2.2,

A
Lim.I={e*azm,
T30 A
From Theoren. 8, following Theorems
9 and 10 are easily obtained.

Theorem 9.

(3.42) ZIA)~2Z10)
T  -itA
- | A xiat,
= 21c T30 J ¢t

Theorer: 10, Putting

T.

& =0 L[ simAd-0 iyt

D, X (6 g.;.::.“j__ﬁ-—x ydt,
-T

we have

(3.‘3) DA DBX({-):QXIQ) Camin.(A,BJ.

Further we shall state

Theorem 1l. The necessary and
suff'lcient conditlon ror that the
gpectrum of the spectral Iunction
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ISNE'S] of a atationary process
x(t) , 18 bounded, Is that
(316 Dy xt)= X0

for some A >0 .
If (3.14) holds, then using (3.11)

E{Ix®[*] =E {IDxebl'}

A
_JA & F(x),

CE{ | fetrazml’y -
~A

Since E{IX0)]|*}= Flroo)= Fl-e0),
wo have

F(+00) — F(-00)= F(A)—F(-A)

so that the spectrum of F(x)

is contained in (-A, A) .

If the spectrum of F(%x) is
bounded, then there exists A such
that F(+t®)= F(A) , F(-o0)= F(-A).
And since

o8 .*1 3 oo
Ef ) [ azm [T = farm <o,
~wph A

-A. ] A
Efl j ethaz | }- | aFMr=o,
we have:w

A
0 HA
X(t):j etrazi) - Le t 470,

We shall, lastly, add a remark

that DaxXi(t)y = xtt) is equi-
valent to
Dypeh= pit),
Pit)  belng the correlation func~-

tion of Xt(t) .

§4. Wiener's prediction theory
and the Fourier Stieltjes transform.

4,1. Let K (6> be a function
of W (o,00) defined in 2.1, Sup-
pose throughout that X¢j  is a
stationary process and Z (x), F(x)
are the random spectral functlon and
the spectral function of X (t)
as before. We consider the problem

to predict X(t+=) , (& >0)
by the values before ¢t of the
filtered process by K () . The

following arguments are essentially

due to N.Wiener (5), but the formula-

tion is different in some points,

The class of K (8) is slightly

general than Wiener's. He consldered
K (8) of bounded variation in



Lo,00) o This generalization
is more natural for his theory, and
our procedure is more simple in some
points.

We beglin with the following fact,

Theorem 12, Let «>0 and the
Fourier-Stieltjes transforr of Ki(é)
gg_ G(x) (in the sense in 2.1).

(1) Ei | Xtd+a) — Jt(f*e)d Kle)ll}
[

00 . 2
= j e~ G| a Fo),

-

Proof. SAe"coxd Ke) con-
o

verges in mean L, (F) to G

This we denote as
Li(F)

A _lex
L. [ €77 aK0),
ADoe -]
We have

EfX u:uj X th-6)a K ()

—_— A
= E f Xtret) g_‘;::); x(e—o)dK(a)ﬁ

= Lt E{ Xrtm)J Xit-6) & Klﬂl}

A>00

A
= L jeixmd)xﬁ—e);auue)
Ao )

A _{ored W L s
!LmS S e AF(w 4K (6)
A2 %

co A—-Le*&

‘ ~lou « K(Q)
= fomn S e A Ft )S
A2 Lon A
La(F)
— joo-;clll. F(“-)ﬂ :'m J Y178 Kle)
- AdR -,
-0
4.1)

_muér w4 F (u.).

Now the left hand side of (4.1)
is
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E{Ixdea]
—2RE { Xtbw) Jxﬁ—e)de)}

el [aoarol}

[

which is, by Theorem 3, and (&2)

j A Ftx) —sz X G A Fex)

(43 °~ -
4 5 16 ola Fix)

- o0

=J' (™% G| a Flx),

- 09

Lemma 3. Suppose that there exi-
sts a function Ho) of L,(F)
whic 3 e Fourier-StIel tJes trans-
form of a function of M (o,0e) 8such
that for a positive number o R
it holds

(b4
r‘“H o0d Fro)= j
-00

—o9

(TX LuchF(I)

for all ~yo0 .

Then, for the Fourier-Stieltjes trans-

form G(x) of any function of
#€ , we have

te5) I”Hw G () 4F(x)
-00
g 3
= j etalé—u’)"d Elx)
-0

and consequently

o0
. b3
(4.6 _jwl He) A k()
j”g“"""m;) AF((x)
o0
Co

- ot x
= _[we

. .3 .
= j e T AF(x),

Hx) & F(x)

Let

A
Dim, | €% L0),

Ado0 ~,

Proof.

H(O) =



L) A
GR)alim | &%

Aree Yy

4K (0)
Lio), K(8) e K(ow),

The left hand side of (4.5) 1is
Lzﬁ)

_f Hu)aF(x)Q. m. e‘”‘d K (8)

o0 ‘Ol
Jthe)JHme AF (0
A9¢’

which is, by (4.4)

AT A X
b | u«o)f e e arm)
Ayoo / J. ,
Lo, LF) Y A
= 5 e X F(x) Livne je' 4 K(0)
A-300 o

-0

= ﬁ"“’tg,(x)a.f:(x).
—00
This is (4.5). (4.6) are:immediate
since the left hand side of (4,6 )
is real,

Now we put

1) J(a)= JI X G eof AFx),

And we shall prove the following
theorem,

Theorem 13, If G(x) is the
Fourier-3tieltjes tLransiorm oI &
function of K (o,00) and H(x)
Ts the Tinction in (4. 4}, then

(L.8) J(G)2 JC(H).

The equality holds if and only if
Grix) = H{x) almost everywhere
with respect to measure function

F(x) .

Proof,

J(&) = IaLF(z)—ZXI €4 %G ) AF(x)

By (4.3), we have

+f l&(z)i‘atF(x),
and
o0 Pl X
JCH) = fdpm—lxse HLER)
-0 ey - -1
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o0

+ ] LH G| 4 F(x)

o
which is, by Lerma 2,
oo 00 N
j oLF(x)—S {Hm| aF(x),
=0 200

Hence we have

o0
JCG)-TC(H) =5 [ Heold Flx)
e =ea

o0
-2 R,I °Mx(,',.(1.)d F&) +S lG(x)llo(F{x,)'

Using (4+5), we get
J@-TH) = [ 1Ho AF(x)

‘JKI GG) Hx)AF(x) +I lG(x)llo(F(x)
Zoe Zoo

o0

=_{ (Bex) = Gool AF@

-

from which the conclusions of our
theorem are obvious.

The above discussions are settled
into the following theorem.

Theorem 14, JIf there exists H(X)
which satlsTles (4.4) In lerra 2

Li(F) A .
Hx)= !Z.a.m.J' e““aL(e)}

Asoo’ I

L‘ lO) € K (o’m)l

then the error Jcen) when we
predict  Xf+a), («»03 by

ijce-e) A KLB) , is minimum
when K(0)=L.06) .

4.2, Throughout this section,
we Set a further assumption after
N.Wiener (%) that the spectral func-
tion F(x) of X{#) 1is absolutely
continuous and such’that

oo ’
> | L log FOOl 0 (oo,
J o 1+x?

If we put Flao = P(x) ,  then

by the well-known theorem of Paley

and Wiener (7), there exists a function
F.(x) such that

g1y (0 ~1pm|?



and the Fourier transform in Lz
of F(x)

L O
(k.r2) \{(({‘)z g.—i;mb;fajﬂilx)c dx
Broe A

is such that

\\I(L‘):O ) (640)_

Moreover we assume that, there
exists a functlion L(8) € K (0,00)
such that

(4.13) A?

g»>e0 © A

i

$itra), (t>0)

= o, (t <o)

The left hand side of (4.12) ac-
tually exists. For if we put

Li(F) Q_‘.xek
) Heos Lin. f S 0 L)
cC> 0 >

then, since H(X) € Lo (F)
and hence H(x) B(X) € L, ("°°,°°),
the Fourler transform

Lo (B cxt
{.im j Hx)E (e 4x
AD~80 A
g-» o

exists and this is
c

L 8 ot L.2(F) " ixe
Q,E.zwn.g Tx)e dx Lim. fe‘ 4. L(8)
A2-0 A CcDeo Ty

8-> 00

Ly ¢ (B e
= l.q'.m- Liom ALlO)JQ’\)Q azx
A D~ (Doo > Y
B> o0

(4.15)

ix(é-G%lt

={im. '
A9~>° P A
B-» 08

B
e ju L.co)j Tix)e

Lemma 3. If there exists a func-
tion H(x) such that (4.19) and
{4.14) hold, then RHx) satlsfies
the condition (2.4).

L oo B .
ﬂ.i.}v:o.s j_—ﬁ(ficx)c"“é*ﬁz aL(s)

Proof. By {4.15) and (4.13)

L B 3
2. g H(x) Etx)e"‘"atx_
A2-00

B> A

= Jar yidex) | tdo, x>0,

Therefore, for any positive number T,
o
7™ Ho) A F(x)
- 00

={ e T Tx) 4
pg- -4

wnich equals, by Parseval relation,
to

[ gderea) fh at

bl

which is, agaln by Parseval relation
co - e
j e\[ff%)x i(ﬂ')i(l) dx
Soes
‘(“ LTta) X
e

-

LF ).
- O

Theorem 15, If{(4.10) holds and
there exists a function L(8)e K(o00)
which satislles (4.13), then J(&)
attalnd 1ts minimur valuée when and
only when G (x) 1s the Fourler-
Stieltjes transform H(X) of L (3)
{except possibly In a set of ~  F&)-
measure zeroj). Moreover in this case

Chie)  T(H) = [ lvdrat,

We have only to prove the latter
part. By (4.7),

J"(H)=f [ X H | "B dx

o0 . 2
[ [E8me™ HoBm| 4.
oo

L &
The Fourler transforms of ¥ (x)¢
and Hex)Eix)are yi+a) end 3I(E) = tr)
t6>0), =0o(t<®) respectively. Hence
by Parseval relation, we have

JH)= foc; W ita) — 5t ] ax

- oo

f OT ke o] s =J11<‘“’9'L‘““

-~ 00

it

[ w1 ar



which is to be proved.

Lastly we add a remark that, under

the assumptions of Theorem 15, H(x)
can be written as
;b A -dkx
(h17) Hix) =:—0i g\l’d"f‘*)@ o(i‘
k) as00

o

This is obvious from the proof
ol Lemma 3.

§5. A class of 'stationary
procasses.

5,1. Let XA(t) be a conti-
nuous stationary process and let its
spectral and random spectral functions

be F(x) and Zlx) respectively,
so that
* ao't“
(5.1) Xit) = je‘ a Zlec)

- 00

Consider divisions I)i of (~e000) :

il mevgag caac et oy <K S00

and put

Z ot )= Z ot )= L o ey ) = A Z A y)

Z [~e)=0, Z(e0)= F(oo)—F(—oo)

e{lxm|ft<c, C
being independent of t , and that
there exists a constant M such
that for any divisions D; (1=1,2,-,8)

Suppose that

(52

% {E1AZ6)AZ (40 AZe,YO2):

P d, k, Q 'A-Z("(A{’).A Zlde)Az(o"Ih)A Z("%Q)l

= M <oo,

We denote the class of such X (t)
as 8§ . Similar class has been
introduced by Blanc-Lapierre‘ ).

et EHXW)]#} < 0O and
E§ Xttoh) Xibsha) XAk XiEvhe) §

(8.3) = (Flt\nkz; k,,lf\,,,)

is independent of T ror every k, s
has hy and hg . In this case
X)) is sald the stationary pro~

cegss of the fourth order. Following

-52 -

theorem 1% essentially due to Blane~
Lapierre (%)

Theorem 16. let X t) e S .
Then in order that Xt) is a
stationary process of the 4-th order,
It 18 necessary and sullicient that
11 the hvper-rectangle with sldes

ax , ap , Ay and 43§ in
Euclidean space Ry has no common
point with any of hyper=-p)anes

(5.4 X+Y = Z-w =0

( <, 4, 2 , w are current coor-
dinates), then

(65) E{(Z(araa)-ZO) Z(F+A(3)—Z£f_)2
 ( Zea D) - 2T Z 5+ 8) - Z (8}

—
=
.

Before proving the theorem, we
shall show that

(563 Xbrh)X(Eeha)X(dehg) X(te he)

j"" “g‘” S‘”eit‘(ou[s— X—_s)ei(“nﬂul\z(;‘kar“h‘s.)

~00 ~pa Zo0 OO

L AZE@AZPAZI) 4 ZE).

holds with probability 1.
gside 1is defined as

L{.m.~2‘_‘_, . e{f‘dé‘ﬁ»“'(n‘é‘()
ei(k,«; + ‘\zPo - kJL- haS1)

The right

L -y

(5.7

CAZ) SZEDAZ) AE(TYQ)/

which exists by the condition (5.2)
by the sirilar arguments as in the
proof of exlstence of Rienann-
Stieltjes integral. The equality of
(5.6) can be shown as follows,

(5.8) E§| Xt eh)X (frhe) XlErhy) Xtbehy)
- > 7S}
v kR £
(the summand is the oune In (5.7))
< E{ IX(hL,)?{-%*??{- z\3
tE {ixtheb) Xthrha) 2 2
~ Xetehy =2 2 G
d R £



X”‘"’l\g) Xlévt\;) x”‘fl\g) '%‘

~ Xtdeh Y X (heha) %. Z.“{

+ £

¢

+ B ] IXEh) Xtbeha) Xtbthy) X(t:5o

— X (kehy) xetrha) XY T [}
2

in which, for example
means

.z
R 2
555 ¥ d) o hy¥ - heSe)
c A Z({h) A.Z(Sg)

other summatlons are easlly analogi-
zed., For example, the second term
of the right side of (5.8) is not
greater than, by Schwarz 1nequa11ty,

S [ Ef Ixibh, )Z.Z.l }]"
‘[Ef Ixeteb~ Zl }]

The former factor is

4

e 1%
geizxm,)l}.;al{:;l }

which is bounded by (5.2). The

second factor tends to zero as the
division is made indefinitely minute.
Other - terms of the right side of
{5.8) are similarly shown to vanish
in the limit, Hence we obtained that

Z—LZZ‘ tends in L,

X (m,)xm hs) X (te g m
Btt since {:? c‘-zm ZF.Z.Z-Zy  (in
~-mean FEil- ) exiqt this_is
equal to X(£+k.)x(‘t+k-.) (F+h3) X (t+ he)
with probability 1, which proves
(5.6)

Now we shall prove Theorem 16,
Let (5.5) hold for hyper, rectangles
with no common points with every
hyper-plane (5.4).

-mean to

(5.10) —_—
£ { X h+h) X @eha) Xk h3) X (k1 hy) |

i 1,

fim. 2
Lj,hﬂ

“53

&%}g.L being the sum in
(5.7),
LwEL 3
i,)',h,l
(5.14)
= Lm 5 eié(uﬁ(;a~2fk-gg)
i,é,h,l

.

1'.(‘\‘0({'4“'\1(;6 "L3(-_‘ k"gl)

“Efszapaz ) A“z?rh)Zz_(EQ)}

in which E4 -} is zero if the
hyper rectangles with sides sd, ,
aBy , A¥, , A& Fg has no
cormon pelnt with (5.4). And the
difference between {5.11) and

(512) eirk.a;+kt&-~t\,7!&- hy 8¢)
i'élkll

E Mzanaz%mzwn)ﬁ?ﬁ)}

is easlly seen to be zero. Hence
(5.10}) is (5.12) which is independent
or t ’

Conversely let (5,10) be indepen-
dent of t for all real nurbers

hy ha , hy and hg . Then
(S 11) and (5.12) are equal for all

t . For sufficiently large A
B , ¢ , and D | the sum {5. 11)
over ja:t> A, (3 I>R , 18gi>C

and [ 821 > D are arbitrarily

small, which is the consegquence of
(5.2). Using this fact and appro-
ximating the trapesoidal functions

3(«): 1, (xW%¢xea®),
=p (X>a™+g, 7(<o¢—-£)
-1 (v)
by 2 CVQ‘L‘ o , We can prove
~
that
R IC TN T
18 o, Z7 (LTI )y
C,d',h,l
‘EfazZa@)s zc) azd,)a 2(§)f
=0,
whers 2;, denotes to take the sum

(0< (1)

over oMo ¢t F s
and g <8¢< 54,

Y < p< y >



AW o, x , L0 ‘/0 :
r ’

s, g are arbitrary real
numbers. (5.13) can be represented
as

a) pu) ) 5(")

e

“") (3(‘) B(l) 5")
‘E{dZeAzEAZ() 4 Z(5)}
= 0

from which it easily results that if

the hyper-rectangle with sides (o\") y &

P“) Pll) 1 5(.) , J‘ﬂ)
and { X“) , 5‘“) ) has no comron
point with o+ ~7-4 = 0 , then

E{az&fuyaz@0p) 42 (5% 1)
c B Z(508T) f =0,

which is to be proved.

5.2, We shall now consider the
harmonic analysis of X({t+w) X (+)
{ X being fixed). TIet us suppose
throughout that a continuous sta-
tionary process X(t) € 8 is
turther a statlionary process of the
4th order.

We first remark:

Lemma 3. X t) 1is continuous
in mean of the 4th order, that is

fion E IXtheh) - X0} =0
ko0
We have

= {xiteh)-X (bff.

= E{IX(t+ W) ~Xl\‘))~)le1LJ—X(€))3}

< [Efixdsh-X®['}] 2 -
L E XY =X }]

C, [Efixcteby=xeb|* }’~

A

(LEfIX ke g [ES X DI 4%

A

CJE {ixd+hy~x)|® }}z

(B x0T P IF L [EYX D] j]‘

¢ ¢ {Efixds-xch[}]*

( Ci, C; being constants )
which tends to zero as h—> 0 .

Now if we consider X (ftu) X{t)
then this is a continuocus stationary
process of the 2nd order, T being
& parameter, and so we have

— o0
(5.18) X thrxct) = e TVAWD),
-0

where W (viz W(y, %} is the random
spectral function,

Theorem 17.

(5.18) W= jg 'e"f“JZ'.(—;)_JZ(F)’
§~0(__<_V

and if u=o , then

(616) W)s | Z(wa)dZ00),

and furthsrmore

517 E{wm}= S ““qF(m), v>o
v<£o,
F(x) being the ﬁpectral func-

tion of x(t) .

Proof. Using the spectral repre-
sentation of Xt} , We have

XE) Xthtu

= r 4z<¢)fe " Paze

~o0

clim 3 3 RO
“ 4
A ZW,) AZCF})
which is seen by the fact
Ef15e™ 22(%)]?(?1 and (5.2), foc}
{[3 3 are arbitrary divisions

( 00, 00) , and further 1ls veri-
fied to be

jem’ (SKQLPKAZ*H&Z(F)).
~adv
Hence we have
W= [§ ePhaZwazpd,

P-—o‘<v
which is (5.15), If u=o0 , then

5.18) wiv)
= £im Z AZ[«;)AZ(,!I
o,a
where %—I means to sum up

AZ@‘.’),AZ(‘lj)) with respect to i,é—



such that the hyper-rectangle with

31('1(;§(“~y ] ) PJI @ fl)
is contained in the ha] f-space
B—a < V « Then (5.17) is

e 2 XZ AZ(a()AZ(wa)
v

(in which the meanings of 207

g, <v
ond 4 Z /§ to;) are easily
underﬁtooa)
=0im. 5/A. (2 LZ @Y,
£ < 4
! Lz o))

wnich is seen to be

_jw";cg ( f:z (ra)d 20 )

o0 —
j Z(v-oot)dlZ(oL),
~o00

Next by an analogous expression
as (5.18)

E{win}
=EU.i.m.Z.,;PJKAZ(«.')AZ(W}
L,a
519 o
= &w\, Z etP \L‘
'E.fAZ.l“;)'AZ(ﬁ)}'
By I in2.1., assuming v> O and

™ »

takiong <« = (3

E {w}
= L 2 @ (Fleg) ~ Flad)
e (o
= J’ ec “d-F(ag).
o ,
1f v{0o , then in Z‘ in
D
(5.19), ﬁa' can not be of¢ s
and hence
[ {W(VH =0,

-5 -

Thus we have proved the theorem.

Now applying the law of large
number, Theorem 6, to the stationary
process X(t)x& +u) ~ (W) { w
being taken as a constant), we have

Theorem 18,

0.0.m.

Troo

T—-—-—
(5.20) Lg K0 X (hvw) Ak

(-4
= W(+2) ‘W("O);

where W (v) is the one in
Theorer 17.

The existence of the right hand
side of (5.20) is obvious since
Wi(v) is a random spectral func-
tion,

Theoren 12, We have

(5210 0.im.

-
:rLJ X1t
T

=4. c.m.ﬁz(«w)-zu-v)}di'(;)

va+40 o,

( | Z taskr = Z (k) A

-0

222) = .8 A1
(S'ZJ_Q..M.Z‘L

h>o
&

(5.21) 1s a special case of Theo-
rem 18. The proof of (5.22) shall
be postponed to the latter section
6020

Theorem 20.
T ~ift
# s XE)Xdeu)e AL

[4

(5.23) {.im,
T o0

= W(Eto) ~W(§-0)

This is easlily seen as in Theorem
18,

We shall further add a remark that

(5£24) E{wi+o)-W(-0)} = P(w)

528) E {W(;w)—W(f—o)? =0,
{f%0)

These are alsc special cases of
Theorer: 18 and 20, For

E { Wito)-W(-0){



m (5D X(éfu)«zt}
o0

L
, T
Lo % [ & [XTB ik }at

= r(u)‘
Similér]y we have

Efw(i+o)~W(f-0)}

T <5t
=F {.2.cm. :"TI XE)Xt+u)e 4t }'
T30 A

A it
= U = E{xlf)x(‘f“)fC‘ at

To00 0
T3t
< pw L L e at=o, (§+0)
Taao A

§6. Concentration of a random
spectral function.

6.1, let Xtt) € S «. Since
X ®)* j Es‘lxd)”
E{ J 1+ t2 Ta e
=00
oo
- 2 AL
=0 t+1T* < oo/
=00
we have
o0 >
(6.1) j J—‘—)E:-t—l,_—ow < oo
o0 sm‘\f

with probability 1. M Hence X(t)
has, for fixed M >0 , a Fourier
transforr in La(~%,00> with pro-
babi]itv 1. We shall prove the

Fourier transform to be (re/2)"*{Z @k
— Z (d~h)§ Z () being

the random qpectral function- ol xf) .
Before 1it, it is convenlent to state

a lemma.

Lemrma 5, Suppose that @) e Ly(-s0,00]

and

6.2) Lim. Xah) = Xt)

A>0o

boundedly in mean —oo<t < oo

Then

>
(63) Lim. [ )X b At

Adco =oo

= jwcy &) X)L,

From assumptions, we have

(b.a) EfIX,cb—xb['} s K,

K being a coustant independent
of t , and

(6.5 L E{1Xy - xctr|*} = 0.
> 00

Now

2
j gty {x, - Xhrpat]

tqnt)l o\:t'} fi Pt
Ny xAm-xH;fax}]

éE[

= (Tglat-Jigdl E{b-xBILE,
e 2

By (6.4) and {6,.5), the second inte-
gral of the last term converges to
Zero,

Theorem 20. Let X(f) 4 gta-
tionary process of S Then with

robability 1 , the FourleF trans-
?orm In by (- 00 00) ) oi‘

Smk

(2)" xety

1s Zla+h)- Zx—=h), h>o
And with probability 1, we have

wrhw san kbt
“.o ;L]xm Xebru) S FET
~00

o, 2
- _217\[ eoiﬂl Z("‘”‘l‘) . Z.(d“"‘)) d.°(,

- 00

especially

oo N 2‘_\{.
a4 A A
- "L,‘ X" =

(6.

+h) —~ ("L)d“
sz’Z[“l‘) Z («-h|

with probability 1.

The right hand side of (6.7) can
be considered as the mean concentra-
tion of the random spectral function

Z.(x) and we denote as Cch) .



Proof. Let F(x) be the spect- Pupthcpmore
ral function of x(t) .
¢ A,..J;t' -,,xt
S ><f>

ﬂnmje**“xzc«) Xt
- 5 Dla, A Ze| } dx

holds boundedly, since

e 0
T .
A F(x) = onht ot
”e otzax)l} f ot -% “‘F‘“’Jifcjsfk e‘ﬂlit
Efixi®}=0? AL A
- D(«,x)( Ax
Therefore by Lemma 5, I.\t
2
\[__l: S smkt —17({'4‘{. = dF(o&)J‘ Aaaa AL 60
2.1c
e - ‘Da |‘tl7T
=f.im ! Smkteﬂ: at as Toeo
= . L. — T .
A 2> \/z.n:-T . )‘ﬂ it A Z ) Hence with probability 1,
-A o9 T bt ixt
A Tsin kit it &-%) J lfé—;[ X)) =—e"" at
= Lim, e dz(,‘)J Eaabuily at oo T
SRR 1E “Tn

o0 2_‘
- &
which is denoted as _LaD(o(,ﬂ)olZ Cu)] x

\ S .SML\t' "“"“’Qf tends to zero as Nn-—> o¢ f'or some
T Sdz‘“) . sequence T, —» °° . On the other
T s hC
Put hand X (H) F is known to have
1 I"““‘(l" ﬁI -
D(a,x) = ‘ 8 Fourler transform {in L2 ) with
L probability 1 and hence the Fourier
—‘-1’ R ®=x~h, Kth, transform is
oo
o, otherwise . j D(a,x)d.Zla):Z(nL%le—k) )
~ 00
L (T swht it@er) Thus the former part is proved.
Then b= S_ t € (6.6) is a result of Parseval rela-
T tion.
converges boundedly to D{(x.%)
as T 2> o0 . 6.2, 'The object of this section

is to prove the following theorenm

Now Too bt iteaex) concerning the concentration
|f— atzm){i-ffr"_,.c At N ! N
L0F Cehy = St | Zlas )= Z(a~h)| da
=00
- D(o(,)t)} ll} X being a stationary process of
S -

Theorer 21.
©%  fim cch)= [Xlo)l

oo ¢« T
aht  (t@a-x)
T L Skl o

2L oo ~T
_Dm,ﬂf{xr(o‘), ho 00
@) Loem.cthy = Lim L{ ixctrl"ax,
(6‘" ha+0 THoe j

Ir xt.i\. is continuity points of
F () , then the ahove integral

tends Lo Zoro. (6.9) is nothing but (5.21) in

Theorem 19 which is not yet proved.

- 57 -



The proof of (6.8) is not diffi-
cult,

We have now

2 so2ht
Ef]2 S Ixef = h At —IX(0)] l}

Zkt
= E{ \ f ) |x<4;l~1xeo)l
i Y 2 som ‘\t
sﬁ{ﬁfuxm(qxzo)l} MLM}
-0
(b.1e)
o 2
= J,;g E{(1X®[=xw@) Y } ‘T‘;‘;‘Lf
-00
Since

E{(IX(hl”—IX(o)‘z)z}

=F_{(1xé>(-lx(o>l)‘(xx«£mxmp‘;
< B {(Ix® X0 (XDl six o) |

L

< [E{IX =X} “yr
¢ (e |x(t)[+(Xlo)l‘;"]2

<[E {ixit)- x4
{ 8 -Efixbl Y1x )] ;}

. LEQX®BI =X %],

by Lemra 3, this tends to z6ro ag

ta0 . Hence E {|x)i~ [x(0)]* }
is continuous at t=o0 . Thus
by the well known property of
Fejért's integral, (6.10) converges
to zero, which proves (6.8).

Next we shall prove (6,9) by
Theorem 19 (5 20)

ET._’m —-S (X at

= 0 g {Z(a+9)-Z ()} AZ )
v'5eo

The right hand side is
oleV

Limm S 4 sz 4Z(p)

otV

rg (v, 2,8)4 2 d Zp),

-w-

(e. u)

where

P(ﬁ«,?): 1

= o, otherwise 5

x-v$ (‘3 saty,

while
o0 +
Cv)= tj | Z(T) =2 (f-v)| AT

i oo Y+v 2
af| J 4 z(/n[
Yo 1

) + Vv

Y Z((s) 5 AZ)

&
oo t x-v

o0

J s F)aZ(«:)dZ(f)AJ
—M

ey
wl')cx':xw”°I° -

1/(\;;«,(:,!):;;: F-vgaslsy,
=0, otherwise,

We have

¥iv; «,(’)=£%(v;a,l9’,<r)i ¥
- 2~-8L , p
= § - -—;f—— lvl—-{il £ 2y

=0, otherwise,

(b.13)

Therefore (6.11) and {6.,12) shows
that

(b.1) ﬂ.i,m. C)- T
v 340 2
Qi L) Ixth] At
S TS
= Lim. SS oigpr-pein (n‘;dzza)otzqs)
vtel
Ylvia p) ana D(Vi& B)
depend only on v and o - P ané
we put
L(v;«-p)

= )’(v;d,(;)—- ‘)(";“: (3),
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rn.j 3 L0, - F)AZ{A)AZ(F)

:Li.m. J' ﬂ(v,'a)dW,(’).

vV -)+0

Here W, ¢}) s the one putting
w=o in  wiyg) In Theorem
17, and is the random spectral func~
tion of IX&|r o If  @tx) is

the spectral function of jx¢t)}™ ’
then
oo 2
Efltim | dw;yawip]’}
vo+0 =00

L Ef \j}(w p aw '}

.15
’ oo t
= L | LA (v 4G4,

v P

where

{
Ly 1)-7_'171 14l sy,
1l
R 2 A LA
=0 , otherwise.
Hence (6.15) becomes
v ll

banot | Lo
+ S (,__L)Ae.(‘,;}
Lvm}lzv

- 1h) ~Lm\sz ‘1\; AL Griq)~ Gr(~3))

w a
+ J (1- L) (-G,
v

But

=~

L "yta (G -Ge)

(b-17) Y N
=L w] - %‘S JHRA,
v [+ o

H= G- GG,

Letting v-2+0 , (6.17) tends to
H (40}~ H(+0) = O « The second
integral in (6.16) does not exceed

f 4(&(1)*&'{-‘1)) =Hw)~ Hito)sD
v

which tends to zero and the theorem
is proved,

Lastly I eXxpress my hearty thanks to
Mr. K. Takano who kindly read the manu-
script and gave many valuable remarks,

This paper 1ls sponsored by Japanese
union of scientists and engineers,
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