PERFECTION OF MEASURE SPACES AND W*-ALGEBRAS

By Ziro TAKEDA

l. Introduction. Recently, I.E.
Segal [8], among many others, intro-
duced the important concept of perfect
spaces into the theory of measures
and proved that a locallzable measure
space has essentially unique perfec-
tion. This is clearly a generaliza-
tion of the concept of Kakutani spaces
due to S.Kakutani [3], and it coln-.
cides with Kakutani's theorem if the”
glven Jocalizable measure space has
finite measure. Even from this point
of view, the importance of Segal's
result can be guessed, saince the
Kakutani spaces play an important
role in the theory of measures, pro-
bability and ergodic theorems,

In this note, we shall give a new
proof of Segal's perfection theorem,
which may be somewhat simpler than
the original one (Theorem 1). A
rew applications (Theorems 2-3) are
given. A few topological properties
of perfect spaces will be contained
in §2. Throughout these sections,
we shall use the terminology of I.E.
Segal,

After the Japanese original of
this note has been published ¥ recent
papers of J.Dixmier [1], J.l.Kelley
[4]1, G.Fell and J.L.Kelley [2],

Segal [9] appeared.?) Their papers
are concern in some points in comron
with our's and jnduced some new pro-
blems relating to the present note,
Concerning the latter, the author
expects to have an oppotunity to dis-
cuss in future.

2, Pertect spaces. The following
definition is due to I.E.Segal (81:

DEFINITION 1. A locally compact
Hausforff space R willl be called a
erfect space provided that R has
a regular measure r by which R satis-
f'ies the following two conditions:

a) If G is a non-void open set.
Then r{(G) > O,

b) If e is a characteristic func-
tion of a measurable set L of finite
measure, then there exists & conti-
nuous function I which 1s equivalent
to e and vanishing at the infinify
of R.
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The perfect spaces are closedly
connected with the hyperstonean spaces
recently introduced by Dixmier [J]
and a space considered by Ogasawara3)
In this section, we shall discuss
a [ew topological properties of
perfect spaces.

PROPOSITION 1, A perfect space
is totally disconnected,

PROOF: 1If e is a characteristic
function of a measurable set E of
finite measure, then by b) there is
a continuous function f equivalent
to e and vanishing at Iinfinity.
Since eZ = e, we have {*= [ nearly
everywhere, and so by the continuity
f* = f everywhere, whence { is a
characteristic function of an open-
closed set F. It is not hard to see
that I is the closure of E, Since
R is regular, each open set U con-
tains an open set U whose closure is
included in V. “lhis shows the total
disconnectedness of R.

PROPO3ITION 2. JIn a perfect space,
every set of the first category is
a null set.

PROQF: If I is compact and non-
dense subset of R, 1t 1is easy to
see r(F)= 0 similarly in the preced-
ing proposition. For non-corpact
non-dense set, it is deducible from
the regularity of r, since

Y(E) = s«p {r(C)| E2C compact}

This proves the proposition.

PROPOSITION 3. A bounded measura-
ble function on a perfect space coin-
cldes with a continuous function
nearly everywhere.

Proof of this proposition is a
direct consequence of T.0gasawara's
result,? which states that a Borel
measurable function coincides with
a continuous function except a set
of the first category 1f the space
is a locally cormpact totally discon-
nected Hausdorff space. Our propo-
sition follows from the preceding.

3. Segal's Theorem, The purpose



of this section is to give an alter-
native proof of the following

THEOREM 1 (SEGAL [8; Thm, 6.11]).
For a Jocalizable measure space,
there exists a mretrically equivalent

perflect space.

The perfect space of the theorem
is uniquely dectermined by the given
measure space within measure-preserv-
ing homeomorphisms, whence we shall
call the former as the perfection
of the Jatter.

Refore to enter the proof, we

shall explain sore notions and results

due to I.E.Segal [8].

DEFINITION 2. A measure space is
localizable if and dbnly if its mea-
sure ring 1s & complete lattice.

Among many lnteresting characteri-
zations of localizable spaces of
Segal [8; §5], here we shall state
a theorem which we shall use in the
below,

THEOREM A (SEGAL) A measure space

is localizable if and only II the
multiplication algebra is maximal
abellan in the algebra oi all opera-
tors on the Hilbert space of all
square integrable functlons.

The multiplication algebra means
the set of all operators Tk defined

by

T X(¥) = k() x(¥)

where k is a bounded measurable func-
tion on R and x is an element of
L (R,r).

Two measure space is called metri-

cally equivalent if there exists a
measure-preserving algebralc isomor-
phisr between their (generalized)
Boolean rings of finlte measgurable
sets.

Finally, we shall recall that a
self-adjoint algebra of operators on
a Hilbert space is a C*-algebra (W*-
algebra) 1f 1t 1is closed with respect
to the uniform (weak) operator topo-

logy.

PROOF OF THEOREV 1: By Theorem

A, the multiplication algehra (i

on a localizable space R is maximal
abelian, whence (1 1is a W+-algebra.
Let C(K) be the functional represen-
tation of ¢1 . K is a.compact total-
ly-disconnected Hausdortf apace. We
shall denote this isomorphism by ¢ .

For a characteristic function e
of' a measurable set E, ¢(e) is a
continuous function on K. Clearly
¢ (e) is a characteristic function
of an open-closed set in K. Conver-
sely, if ¢ (e) is a characteristic-
function of an open-closed set in K,
e is a characteristic function of a
measurable set in R. Therefore, ¢
glves an algebraic lisomorphism between
the measure ring of R and the Boolean
algebra of all open-closed sets in K,

Let S be the join of all open~-
closed sets which are corresponding
by the isomorphism to the sets of
finite measure. Then S is open in
K, and S is locally corpact and to-
tally disconnected with respect to
the relative topology of K.

Let f be a continuous function
on S with the compact carrier F,
then F corresponds by the above iso-
morphism to a measurable set of finite
measure, Whence

L) = [¢'ch)dr

exists. Since ¢ preserves the
positiveness, L(f) 3s additive, homo-
geneous and positive over L(S) of

all cortinuous functions with the
compact carriers, Hence by the well-
known theorem of Bourbaki, then exi-
sts a regular measure 8 on S with

Lf) = jf ds

Now, let e be a characteristic
functions of a Borel set E in S, then

| [esdo| s n ¢Sl #rfde

whence

defines a linear functional on L*(S).
Furthermore, we put & (f,g) = ¢ (fg*)
where g* denotes the complex conju-

gate of g and £, g € I#(S, s). Then
[Bef, g0l & tif gy €« nflly- NGy
where &« is the norm of ¢ . There-

fore, by the Rleaz I.emma, there exi~
sts a llnear operator T such that

2 (f,g)= <f,Tg> . This T commutes
with the multiplicatlion operator T,
because

(T*kals)- (Tk‘f, T9>= me,g)
= fcfgh =3, Te'g) s<f TT*3>
= (Tl‘rr‘ﬁ ?)



Since (Ot is maximal abelian, this
means T ¢l , and so there exists a
continuous function ¢ on K such that

fc-{ ds = fe-f ds

for all f € L(S), l.e., ¢ = e alnost
everywhere., This shows S satisfies
b) of Definition 1. Since by the
construction the measure of open
sets are positive, a) of Definition
1 is clear., This shows that S is

a perfect space,

Since, by Proposition 3, in a
perfect space each measurable set of
finite measure has an open-closed
set which is congruent modulo null
sets, the finite measure ring of §
is isomorphic and measure-preserving
to the finlte measure ring of R, that
is (R,r) is metrically equivalent to
(S,s). This proves the theorem,

4, Applications. ILet OL be a
commutative C*-algebra on a Hilbert
space ¥ , and let G({2) be its
function representation. Then, for
each A € Ol , corresponds a continu-
ous function A(w ) on . Each
pair of x and y of % deflnes a
complex Radon-measure Ox y on
() such that

<Ax, y>= IA‘W) dﬁ,y

for all A ¢e0OL , which is known as
a spectre measure on ()

THEOREM 2. It C(L2) is the func-
tion representation ol a comrutative
W¥-algebra ogr on %, , which has the
Identity then the support oif &7 x
Tn ) 1s 1tsell the perfection of
the measure space (() ,

T, %X )0

PROOF: For each characteristic
function e of a Borel set in ,
there exists an operator E such that

<Ex,y> = [e dowy

For any A € 0t' , the cormutor of
OL , and for any pair of x and y

of % ,

<EAX,y> = [e dv;,,wefeclfm;
= <Ex,My> = < AEX. Y> .

Hence E belongs to (L . Hence there
exists a continucus function on
such that

<Ex,y> = Ie,' doyy

that is, e = e' almost every where
for all spectre measure. Theretore,
e' is a characteristic function of
an open-closed set. This proves the
theorem,

Let 0L be a comrutative Wk-

algebra on a separable Hilbert space
%, and let gr contaln the identity.
Then by a theorem of J. von Neumann
[5], Ot is a generated W*-algebra
by an hermitean operator H and 1 on

. DMoreover, let £ be a C*-
algebra generated by Il and 1.

If ¢(T) and C(f2) be the func-
tion representation of Or and [
respectively. By a theorem of J.
von Neumann [6; Thm.6] shows that
there exists an element a of
such that the mul tiplication algebra
of the spectre measure space ( [’ ,
0a.a ) 1s isometrically isomorphic
to oz . Then a similar argument
of the proof of Theorem 1 shows the
following facts: (T" , 0a,a ) is
the perfection of (Q, O0aa )%
However, we shall remain its detall

4).

THEORENM 3. If G is a locally
compact abelian group and G'is Its
character group. Suppose that the
Haar measures M and R of G"and
G respectively are norralized to
hold the Plancherel Theorem, 1T
W{GJ Is the weakly closed operator
xroup algebra In the sense of T,.t.
gegag 77 5 ien W(G) 1s unitarily
equlvalent to the nultiplication
algebra ol Lhe reasure space (G, /o).

By the Plancherel Theorem, the
multiplication algebra of (G} &)
is unitarily equivalent to a subalge-
bra of W(G). However, as (@, 1) is
a localizable space by a thneorem of
Segal [8; Cor. 5.2], its rultiplica-
tion algebra is maximal abelian,
whence it must be unitary equivalent
to W(G).
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1) Z.Takeda, "Perfect space” to W*-

Kan, Zitukansu Kenkyl Geppd,
vol.8, No.l (April, 1932), In
Japanese.
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2) Also see a recent paper of the

author [10].

3) cf, T.Cgasawara, Sokuron II

("Lattice Theory" in Japanese),
Tokyo 1948, p.20. Also, he
considered a space in which the
concepts of null-sets and first
category sets coincides.
detailed and enlarged discussion
will be given in the next occa-
sion concerning Segal's decom-
position theory [9].
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