ON THE CONYERGENCE OF A MULTIPLE POWER SERIES

By S8in HITOTUMATU

§1. The notion of convergence
of a multiple series is somewhat
complicated; we can consider several
kinds of convergences. Here we treat
mainly double sequences or double
series for sinmplicity's sake, but
the same holds for general nultiple
ones.

Usually the convergence of a
double sequence Spy 1s defined
as follows: a double sequence

[ =]
{Sm“, converges to S , 1f
m,n =0
for any given & > 0 , we ean find
a number £, = ¢, (&) such that for
every m ,mn = Lo , We have
|Smn— S[ < € .+ The convergence
of a double series

e

(1) Z Aom

mn=0

whose sum is S , 1s defined by the
convergence of its partial sums

m n
(8  Sw=3 3 a,
,4

=0 v=0

to s in the above sense. We call
this the rgence (P means the
"partial sua") in this paper.

On the other hand, we say a double
series (1) 1s A-convergent (A means
the "arrangement®), if at least one
of the simple series in which the
original series has been. arranged 1s
convergent, In this case, the sun
has no mean generally, because it
depends on the arrangement,unless
(1) is absolutely convergent,

It is evident that these two no-
tions coincide with each other for
the series with positive terums, and
that the absolutely convergent serles
is A- and P~ convergent. But a se--
ries which is A~ and P-convergent
is not ulways absolutely convergent
as easily shown by:

Exanple 1.
1+ 3+ 5+3+ ...
T DD H-PAED r L
+ o+ 0+ 0 +0 + ...
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+0 4+0 +0 +0 + . ..

Also these two convergences uare not
the same 1In general cases. In lact:
Example 2.
0+1+3 +% +...
+(-3) +0 + 0 + 0 4. ..
+(-3) *0 + 0 +0 +. ..

+(-% +t0 +0 +0 +. ..
+'.".""

is A-convergent but not P-convergent.
Conversely,

Example S,
1+ 1+ 2 43 +4 4. ..
+1 +(-1)H(-2) H-3)+(-2)+ . . .
+24+(-2)+ 0 +0 + 04 . ..
+3+(-3)t0 +0 + 0+ ...

+e - - . - - - . . .

1s P-convergeni but not A-convergent.

We remark that the terms of un 4-
convergent series are bounded, but
this 1s not true for P-convergent
series as has already been shown in
Example 3., However, we have fron
the definition,

Lermma 1. If the double series
]
6y 2 G
m, =0

is P-convergent, there exists a nun-
ber £ such that its partial sunms

m n
() Smn = 2 Rpy
M=o v=o
are uniformly bounded for wm , m ,

provided that both suffixes m and
n are =24 .

Coroilsry. Since we have
(3) a‘mn = Sm-n — S‘m"\—t - Sm—: nt

+ Simg n-1 (m,nz l)/



QApy are also unifornly bounded
tor m ,n =z L +1 .

Detinition 1. 'The minimal integer
satislying the conclusion of
Lemma 1 is called the limit of boun-

dedness of the series (1).

§2, Mor a double power series

@0 3 . x y 2

mn=0

the tollowing resuit is very welle-
known 2

Lemma .2, I the terms ot a double
power series

(4) S ot X"

mnNn=0

are uniformly bounded at X= X,
Yy=7% , or especially ir (4) 1s
- gent at x=%, , #¥=%, ,
then (4 converges uniroruly and
absolutely in every compact subset
contained in x|l < |xof , 41< (¥l .

The assumption ol Lerma 2 cannot
be replaced by the P-convergence at
x=%x,, §=% , fpr P-conver-
gence does not imply the boundedness
oi' the terms of (4). It seems to ne

that the Theorem 1 on y.l? in the
book of Pror. M.Tsuji® saying as
follows is Inexact: "IIr a power
series

(*) o'gw A z™M ... 2™

o PR 1 "

ls convergent Ewhich rmeans the P-
convergence in our terminology]
at Z,=22 (#0) (%=1,---, n) , then
(*, converges un;lormly and absolutely
In Iz X< 128|, (k=t1,---,m),
where Y%  4re arbitrary positive
numbers less than Izg) .’

Indeed, the tollowing example shows
that the P-convergence is not conve-
nient l'or the convergence of power
series,

Example 4, The powser series with

4 man= 0,
1 m=90,n=1 and m=1,n=0
— J® M=0,n22 and m22,n=0,
Apn =
-2 m=m =1,
-1 mMmM=1MZ2 and m2 2, n=1,
0 m, n=2,

1.e.,
-?—od»mi + m-y)i x™ 4
+ (2—7&)}: 1&

is P-convergent (bLut not A-convergent)
at x=2, §=2 yet its absolute
convergence region is not [x| <2 ,
|4l<2 , but is |x|<t , lyl<t -

To avoid such cases, the absolute
convergence is assumed lor Lemma 2
in the books of Bochner-Martin® and
severi®) , but it seems to me that
A-convergence 18 enough ror Lemma 2.
However, what will happen i1 we dare
take the P-convergence to the last?
¥e shall show in the next section,
that such singular phenomenon as in
Example 4 occurs only on some singu-
lar sets, or more exactly, the point-
set on which (4) is P-convergent but
not absolutely convergent has no in-
ner point.

§3. Theorem, Let the power series

[
(4) D g XY
mn=0
be P-convargent ut every point of a

neighborhood U of & polnk (Xo, %,) -

Then (4; converges absolutely and

uniformly in [x| £ |Xo| » |#| = 1%l «
Proof. Using Lermma 2, we may as-

sume that =x, ¥ o , Yo+O0 and
the neighvorhood

(58) U: |x—Xol<Y, \Y=%o| < T

has no common point with the planes
x=0 &and Y=0 . Put

6) Onit,p=3 ) o w xl g7
'AaoV:o
We shall first glive a detinition
and a lemma 1or the later use.

Derinition 2. We say that a systenm
01 real-valued functions { (X, -, Xn),
2 (4 ,-- -, xa)} delined 1n a
set VV ol the real Cartesian wn-

space 1ls lower semi-continuous, ir

for any given real values ) ---, Yp,
the point set

(7) A(Yl ) Yﬁ) 5{(11’---' xm)|
fi(xi,"'l X,‘) éy‘: 5 (1= ],--—,-&)}

is always closed in W .

This definition does not seem to
imply the lower semi-continuity or
each component fifix cee, Xm)

Lemma 5., Let a system of if'unc-
tions ff(a, -, Xm)," =" 5 Fa(ts, -7, %n)
detined in an open set W , be lower
semi-continuous., Suppose Lhat each
component is non-negative and finite
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at every point of W . Then there
exists an open subset of W 1in
whicn £, (xy,--- , Xn) (i=1,---, %)
are bounded.$) .

Prool’'s Pulting
A=A, V) ={w] fia=y,

(i=1)""/ﬁ)} R

(Y=1,2,3,"‘)'
these sets are all closed and we have

wW=uU A,
y=1

by our hypotheses. Ii non oi the
(y=1,2,--- ) has inner pointa,Ay

1s nowhere dense and then W 1is

a point-set o1 first-category, con-

tradicting that W 1s a non-empty

open sel. Hence there nust exist a

Y such that Ay has inner points,
which proves our Lerma,,

We now return the prool of our
Theorem and proceed on. For every
point (X, %) € U , we denote
by L(x, ) the 1limit of bounded-
ness of S Aoy X™ '3” , and put

(3) Moupy=sup { | 6ua (x,9))] ;
for m,nz LY}

By our assumptions., f£(%,%)

and M (x, Y) are non-negative
and finite at every point (x,%) in
(5). NexlL we shall show that the
system of functions {L(x,4) ,

Mx, ¥ is lower semi-continuous
in the sense of Deiinition 2, 1In
fact, take two positive numbers /3
and ¥ and put

(7) A(F;Y)E{(X.“:}) ’ ﬂ(i’ﬁ)éfg,
and Moy)sy}.

e remark that J =B  is equiva-
lent to P =[B1] where [ J
means the Gauss' notation, for £
takes only the integral values.
Taking a sequence {(x, %)} ney €A(BY)
converging to a point ('g,'bl

in U , these assumptions ?7), (8)
tell us that :

[Omn (X, %0 £ Y,

for every m,mz2[p],
A=1,2,---

But since all 0., (%, %) are
polynonials off = , , and since
Y does not depend upon m,n
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and A , we have, by tending A to
oo

Loe 4 VERY
for every m,n z[fB]

This means that £(%,7)= [Bl=f
and M(3,m) = Y , which proves
that (7} 1s closed in U .,

Therefore our system ol lunctions

{L(x,%), M(x.¥)}  satisiies the
conditions of Lemma 3 in a open set

©) w=s{@xp | 1x—xl<x, IxI>xl;
1#=%| <t, 14 >4}

and, by Lemma 3, we have an open
neighborhood

(0) V: Ix~x)<p, 1$-4:)<f

contained in W , in which £(x,%)

and M (x,¥%) are bounded. Thus,

we have obtained a positive integer
, and a positive number

such that

A1) [Cmn < M

for m,mzf ) and

eV,

and then we have from (3,, (6;, (9)
and (10;,

(12) |otmn 1< 4M /1214,

for m,mz f+1

where |x,| < |Xq]| and |Y,]< |‘31l .

Next we consider the mixed terms
mel , n>L or m>L ,
m =4 + Putting

£
Pat) =2, mpn x™ )

m=9

13) P
%,.(‘}):_—:nzz; OC.,,‘,\ ,?n )

we have I'ron (6),

Pa (00 y"= Tgn %) — 054 (7, y)/.
T XT= Gy (0 Y) = Gy g OO

for m,n=1 , and so by (11),



<anb")| <2M/l“31

for M2+, 4n Ix-2,]<P;
(14

b ()] <2M/1xy™
for mzf+1, in 14—%|<P.

Now, by the Cauchy's coelricient-
estimation, we easily have:

Lemma 4., If a polynomial
£
pa = Z a; x*
[PoOj< 1 in a circle [X-%|<p,

we have |ac| <C , where C is a
constant depending only on ¢ , f
and |x;] .

Eroof. Putting

poo =Z¢ €; x-x, ) ,

i=o

we have
1
. =
\63’ = L
and then

2-1
lag|= [ Z A (‘I‘) - x)*

max (1%, 1)

< AR
-4 min Cp? 1)

4

Applying Lerma 4 to (13) with
(14) we have

ldme<C-2M/MJW

(15) for meld n>4 ;
[dmn | < C-2M/ 125

for m>£,n§1.

The terms with m,n = § in (4)
are only finite numbers, and so,
summing up (12) and (15), we rinally
obtain the estimation

@8) N mal <K/ 1x,™ 1%, |™

for all m,n =0,1,2, , where
1% | < Xy and ‘14,1 < |4l . There-
tore the original power series (4)
conver CL:] absolutely and unitornly
!fé 1% 1, 11s1%l by Lerma
2, wh ch proves our Theorem comple-
tely.

This paper was done under the
"Kagaku-kenkyli Zyoseihozyokin", (Grand
in Ald tor the Miscellianeous Scien-
tific Research).
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