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It is well known that, in a Noe-
therean ring, every ideal can be
written as an intersection oΓ primary
ideals. The theorem was extended
by M.Ward and H.P.Dilworth to integral
modular lattice ordered semigroups
with maximum condition,(L21

9
 C3J)

The purpose of this paper i3 to dis-
cuss it for modular lattices with
maximum condition.

£ I. Definitions

Let L be a modular lattice with
maximum condition and & be a set
of congruences on L» such that every
meet of congruences 5n ® is also
in ® For a congruence Q the
class containing an element a is de-
noted by θ(α) and the greatest ele-
ment of Θ(Λ) by Q-Q .

Definition I. An element ^ of
L is primary (with respect to © )
if and only if % « \

9
 or <j

 s
 I (θ)

for every Q in ©

Definition 2. A congruence 9
in © is a radical (with respect
to @ ) of an element a in L if
and only if 0 is the smallest one
among the congruences by which a is
congruent to I.

The radical of a is denoted by
fC<t) . Evidently, θ> PC*-) if

and only if CLS- I Cθ) « For a primary
element <£ we have α s I (9) If

<£
θ
 « i if $

Definition 3. By a short repre-
sentation (with respect to Θ ) of an
element a in L » it is meant α
representation of a as an irredundant
meet of a finite number of primary
elements all of which radicals are
different.

Definition 4 A congruence on L
is said to be neutral if (a) the
class containing X la a neutral dual
ideal ( CI 3 ) and (b) a is congruent
to b if and only If <X*x* fr^ y for
some x and M congruent to X.
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Theorem 2. In two short repre-
sentations oϊ an element a in L» the
radicals of the components coincide.

Proof* Assume, two short repre-
s e n t a t i o n s a. =Ϊ %Λ /\ %* Λ - /\ ̂ -K — %\r\
Λti Λ Λ V*1 a r o g i v e n . L e t t h e m i n i -
mal one among the ?(%*) and
be, say, p($<) = 0 Now 3ρ =
Λ^β= %ΊΘΛ %/2.OΛ %^0 ^ ^ every

were different from Θ then <J*Λ "
•Λ t = $ ί ^ Λ^βO, which contradicts

our assumption. Hence among the
pC$j) some one, say, ?(%'%! i s

equal to θ Wh nee βa.̂ - ^ ^^
~ ?ZΛ Λ ̂  which completes the proof
by the f inite induction.

§ o. DECOMPOSABILITY

Theorem 3. A meet of a f i n i t e
number of primary elements which
have the same radica l s i s also primary
and has the same r a d i c a l .

Proof. Assume, %\, %%, %<*,
a r e p r i m a r y a n d pc<g ( )= p(<g v)^. β f(%tJ
L e t Q b e i n @ . I f &>?(%xl
t h e n (j s l ( θ ) f o r <= ». z, , -U. .
Hence ^ t Λ <U Λ - /» ̂ « s i (^) But, i f

0 ^ P(a-ι) t h e n ^ = : ^ θ f o r t=\, 2,

• ^ ϊ t i Whence ^ Λ ^ Λ ί , ^?
i s pr imary . Next, %X\%%

%

Λ.
Λ. Λ ^ B

s i n c e ? . a i f P ί ς Λ ) But, i f

in s? then a fortiori %
thus p(%

i
)*ψ . Hence

has the radical

Lenuαu

Theorem I , L e t ^-%\Λ%^^- ΛQ
where e v e r y <J.£ be p r i m a r y and e

Theorem 4
β
 An irrodundant meet

of a fiϊilte number of primary elements
of which not all have Che same radi-
cals is not primary.

Proof. We may assume by th. 3
that all the radicals of primary con*
ponents aro different. Let <i=* %

{A
 ̂ n>

Λ %<*. be irredundant where $
ώ

be primary. If the minimal on© among
is, say, f>(%,) » θ then
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W h i l θ

this shows

from
• But, it Γollows also

φi(d) that {
i Λ
^

t Λ >
..

 A
 <*

φ Thus IΛ<UΛ' * %~
is not primary.

Lemma 2. For a congruence 0 on
L~ , as £ ( e) implies a £ -Cr

Λ
 c

for some £ s I (9) if and only If
0 is neutral.

Proof. Assume that, & satisfies
the above condition. If κajjsl(e)
then (x Λ OS) v (y * ir) s αvf (^ and hence
ftOvα ̂ ίSfΛ*)

 β
 fa-u£)^2 and 2« I (θ)

for some % which prove that 6(T)
is neutral. The renuining part of
the lemma is also easily proved.

Theorem 5. Every element of L,
has a short representation if and
only if every congruence in Q is
neutral.

Proof. Assume that, every congru-
ence in φ is neutral• Let <$. be
not primary. Then %

$
4* %~ and

i*or some Q in φ Prom %%$(&)
we get <̂-£ ̂ Q rsC for some c s x (0) .
Hence % = %

Θ
 „ ('%y c ) , where %

θ
 *+ %

and %"c i= Ŝ  since ej φ ~ί (9) Thus
^ is reducible. Whence every ir-
reducible element is primary which
proves a half of the theorem by the
generalized induction principle and
th. 3. Conversely, if a has a short
representation Λ = V

Λ <
1 * Λ Λ^then

<χ= Λp
Λ
t for some -t s x (β) by

th. I. Thus, if αa-fr (&") then ft
β
»

£e "z fy and hence α i ^ t which
completes the proof.

§4. EXAMPLES

Let R be a noncommutative ring
satisfying the ascending chain con-
dition for two-aided ideals. The
totality of ideals in R forms an
integral modular lattice ordered
semigroup L . A lattice congruence
of Li ia said to be (right) regular
if it satisfies the condition that
A H 8 implies AC s 3C and A'Cs B'-C
for every C in L , where : shows
the ideal quotient. A subset % of
L is called a 1e -system if and

only if it satisfies the conditions
that (a) *3 R , (b) M is J -
closed, (c) ήξ is multiplicatively
closed.

Lemma 3. In every regular con-
gruence θ of L , $<£) forms
a fe -system and A ==6 (θ) if and
only if A ' 6 and 3: A are in Q(Z) .
Conversely, for every fc. -system <ζ

of L» > the relation that /\ί 8 and

g: /\ are in -fe defines a regular

congruence θ in L» and -ft = o C%)

Proof is omitted but it is easy.

The radical oi an ideal A is
defined as the intersection of all
prime ideals containing A and hence
it is the greatest ideal of which
n-th power is contained in A for
some positive integer Ή. An ideal
Q, is (right) primary if and only
if Ab^Q implies /U <2 or B ̂
radical of A . ( C4] )

Now, let Θ be the set of all
regular congruences of L, . The * -
system generated by one element A
of L , that is, the set of all
thoβe X such that /\

Λ
 ̂  X for

some positive integer
 /
>t , is deno-

ted by it A
 a
nd the corresponding con-

gruence in @ by θ&

Theorem 6. An element Q of L is
primary with respect to Θ if and
only if the ideal Q. is primary.

Proof Lot an element Q be
primary with respect to <8> and
Since A B : A * β e *

β
 and A M B -

we get A6=AC0
β
). If G ~ ©*

β

then Gi^Qe-ZCA&ϊe.^Aθ** A hence Q2A
But, if αSβi c4 tϊien B~ ̂ GL
for some ΎI . Thus Q, is primary
as ideal. Conversely, let Q. be
primary as ideal and θ be in ®
Since Q

s
 Qt (Q] , we have Qz Q* $ t

9
 .

From Q. x Oe C& 'Qf) ̂
 t
 follows triat

Q^ββ or Q ^ ( O : Q A )
Λ 1 > O Γ

 some

oτ . If the former Is valid then
Q sx Qφ and If the latter holds then
Q e *fcd Thus Q, is primary with
respect to ® .

Theorem 7. Let Q in L be pri-
mary. Then there exists a prime ideal
P such that K β )

β
 Op . p is th'o

radical ideal of &

Proof. The radical ideal P of Q.
is prime. ( £4} ) "k

P
 3 Q since

p ~ £ Q . But, if β(R)5>G then
a fortiori 6Cfc? 9 P and we get
θ * ΘP . Thus f>(ft) - 0p . If
$ρ— $p' where p and ψ' are prime

then evidently p « P'

M.Ward and R.P.Dilworth presented
the following condition for the de-
composability of ideals into primary
ideal components. ( C

f
<0, Co 3 )

Condition (D). For every pair of
ideals A and B there exists Ή.
such that A S * A^B

Λ
.

Theorem 6. Every 0 in ® is
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neutral if and^ only it* the condition
(D; holds.

Prooi' We proved at the start
in the proof of th. 6 that A 0 S (
If θ& is neutral then /1B> A

Λ

for some X € -fee , by the Lemma 2,
But, from the definition of ^B.Xiβ"
for some n . Hence the condition
(D) holds. Conversely, assume the
condition (D). Let A s β f θ ) for
some $ in ®> . Then A £ B(A'.B)

As another example, we can apply
our results to the representation
of elements in a distributive lattice
as intersection of irreducible ele-
ments .inla ίlfeβtribn distributive
lattice every element is neutral and
we can adopt as (9 the sot of all
the neutral congruences corresponding
to principal dual ideals Then an
element is primary if and only if
it is irreducible. The radical of

an element is une congruence corres-
ponding to the principal dual ideal
generated by this element. But this
example has fev/er meaning to us.

(*) Received July 28, 1952
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