
Abstract

It is well known that, in a Noetherean ring, every ideal can be written as an intersection oi prinary ideals. The theorem was extended by M. Ward and R.P.Dilworth to integral modular lattice ordered senigroups with maximum condition. ([2], [3]) The purpose of this paper is to discuss it for modular lattices with maximurn condjtion.

ξ I. Delinitions.

Let L be a modular lattice with maximum condition and © be a set of congruences on L such that every meet of contruences in \oplus is also in (4) For a congruence θ the class containing an element a is denoted by $\theta(a)$ and the greatest element of $\theta(a)$ by a_{θ}.

Definition I. An element q of L is primary (with respect to Θ) if and only if $q=q_{\theta}$ or $q \equiv I(\theta)$ for every θ in Θ.

Definition 2. A congruence θ in Θ is a radical. (with respect to (\oplus); or an eiement a in L ir and only if θ is the smallest one among the congruences by which a is congruent to I.

The radical of a is denoted by $\rho(a)$. Evidentiy, $\theta \geq \rho(a)$ if and only if $a \equiv I(\theta)$. For a primary element q we have $q \equiv I$ (θ) il $\theta \geqslant p(q)$, and $q_{\theta}=q$ if $\theta \not p(q)$.

Derinition 3. By a short representation (with respect to (*)) oi an element a in L, it is meant a representation oi' a as an irredundant meet of a ilinite number of primary elemonts all of which radicals are dif'erent.

Delinition 4. A congruence on L is said to be neutrel if (a) the ciass containing I is a noutral dual ideal ([I]) and (b) a is conesruont to b it and only if $a_{n} x=t_{n} y$ ior some x und y congruent to I.
§2. UNIQUNESS
Lemmu I. $\left(a_{\wedge} f\right)_{\theta}=a_{\theta \wedge}$.
Theoreni I. Let $a=q_{1} \cap q_{z} \wedge \cdot \wedge q_{n}$ where every q_{i} be primary and $\hat{\theta}_{\theta} q_{n}$
 \cdots, r and $q_{x} \equiv I(\theta)$ lor $k=r+1$, \cdots, n then $a_{\theta}=q_{1} \cap q_{2 n} \cap q_{r}$

Prool. By the assumption, $q_{r+1} n$ $\cap q_{n} \equiv I(\theta)$ and hence $a=q_{1} \wedge q_{2} \wedge \cdots$
$\cdots q_{r r}(\theta)$. But $q_{j} \theta=q_{j}$ I'or $j=1,2$, \cdots, r... Thus $a_{\theta}=q_{1 \theta} \cap q_{2 \theta \cap} \wedge q_{r} \theta$ $=q_{1} q_{2 \sim}{ }^{\circ} \wedge q_{r}$

Theorem 2. In two short representations oi an element a in L the radicals of the components coincide.

Prool. Assume, two short representations $a=q_{1} \wedge q_{x} \wedge \cap q_{x}=q_{i}^{\prime}$ $\wedge q_{2}^{\prime} \wedge$.. $\wedge q_{m}^{\prime}$ are given. Let the minimal one among the $p\left(q_{0}\right)$ and $p\left(q_{j}^{\prime}\right)$ be, say, $p\left(q_{1}\right)=\theta$. Now $a_{\theta}=q_{1 \theta \cap} q_{2 \theta} n$ $n q_{n \theta}=q_{1}^{\prime} \theta \wedge q_{2 \theta}^{\prime} q_{1} . q_{m \theta}^{\prime}$. If every $p\left(q_{j}^{\prime}\right)$ were diflerent from θ then $q_{2} n \ldots$ $\cdots \cap q_{n}=q_{1}^{\prime} \cap q_{2}^{\prime} \cap \cdots \cap q_{m}^{\prime}=a$ which contradicts our assumption. Hence among the
$p\left(q_{j}^{\prime}\right)$ some one, say, $p\left(q_{1}^{\prime}\right)$ is equal to θ. Wh nce $q_{2} \wedge \cdots \wedge q_{n}$ $=q_{2 \wedge}^{\prime} \wedge \wedge q_{m}^{\prime}$ which completes the proor by the inite induction.

§3. DECOMPOSABILITY

Theorem 3. A meet of a linite number of primary ejoments which have the same radicals is also primary and has the same radical.

Proof. Assume, q_{1}, q_{2}, q_{n} are prinary and $p\left(q_{1}\right)=q^{\prime}\left(q_{2}\right)=. \quad q_{n}=p\left(q_{n}\right)$ Iet θ be in Θ. If $\theta<p\left(q_{1}\right)$ then $q_{i} \equiv I(\theta)$ ror $i=1,2, \quad, n$ Hence $q_{1} \wedge q_{2} \cap \cdots \cap q_{n} \equiv I(\theta)$. But, il $\theta \neq P\left(a_{1}\right) \quad$ then $q_{i}=q_{i}$ fior $i=1,2$,
\cdots, n. Thus $\left(q_{1} \cap q_{2} \wedge \cdots, q_{n}\right)_{\theta}=q_{1} \cap q_{2} \cap \cdots$ $\cdots \cap q_{n}$. Whence $q_{1} \cap q_{2} \cap q_{1} \cdots \cap q_{n}$ is primary. $N \in x t, q_{1} \cap q_{2} \cap$. $q_{n} q_{n}=I\left(p\left(q_{1}\right)\right.$ since $q_{i} \equiv I\left(\rho\left(q_{1}\right)\right) \quad$ But, $i \hat{i}$ $q_{1} \cap q_{2} n \cdots \wedge q_{x} \equiv I(\varphi)$ lor sorice φ in $\boldsymbol{q}_{(4)}$ therna iortioni $q_{1}=I(\phi)$ thus $p\left(q_{1}\right) \leq \varphi$. Hence $q_{1} \cap q_{2} \cap \cdots \cap q_{n}$

Theorem 4. An irrodundant muet Of a l'inite number of primary elemonts of which not all have the same radicals is not primury.

Prool. Wo may assumes by th. 3 that all the radicals of primary coriponents are different. Let $a=q_{1} \cap q_{2 n}$.
n q_{n} be irrediundant where q_{i} be primary. If the minimal one among
$\rho\left(q_{i}\right)$ is, say, $\rho\left(q_{1}\right)=\theta$ then
$q_{g}=q_{2}$ for $j=q_{1} 3_{1} \cdots, n$, while $q_{1 \theta}=I$;
this shows $\left(q_{1} \cap q_{2} \cap \cdots \wedge q_{n}\right)_{\theta}=q_{2} \cap \cdots \cap q_{n} \neq$ $\neq q_{1} \cap q_{0} \cap \cap q_{x}$ - But, it lollows aiso
from $q_{f} \neq I(\theta)$ that $q_{1} \cap q_{2} \cap \cdots \cap q_{n}$丰I(θ) Thus $q_{1} \cap q_{2} n$. $\cap q_{n}$ is not primary.

Lemma 2. For a congruence θ on $L \quad, \quad a \equiv b(\theta)$ implies $a \geq b \wedge c$ for some $c \equiv I(\theta)$ if and only it θ is neutral.

Proof. Assume that, θ satisfies the above condition. If $x \equiv y \equiv I(\theta)$ then $(x, a) \cup(y \wedge b) \equiv a \cup f(\theta)$ and hence $(x, a) \cup(y \cap b)=(a \cup b) \wedge z$ and $z \equiv I(\theta)$ for some Z which prove that $\theta(I)$ is neutral. The remaining part of the lemma is aiso easily proved.

Theoren 5. Every element of L has a short representation il and only if every congruence in Θ is neutral.

Proof. Assume that, every congruence in (1) is neutral. Let q be not primary. Then $q_{\theta} \neq q$ and $q=I(\theta)$ for some θ in (1) Prom $q \equiv q_{\theta}(\theta)$ we get $q \geq q_{\theta} \cap c$ for some $c \equiv I(\theta)$. Hence $q_{0}=q_{\theta} \cap(q \cup c)$, where $q_{\theta} \neq q$ and $q u c \neq q$ since $q \neq I(\theta)$. Thus
8. is reducible. Whence every irreducible element is primury which proves a half of the theorem by the generalized induction principle and th. 3. Conversely, if a has a short represontation $a=q_{1} \cap q_{2} n \cdots \wedge q_{n}$ then
$a=a_{\theta} \cap t$ for some $t \equiv I(\theta)$ by th. I. Thus, if $a \equiv b(\theta)$ then $a_{\theta}=$ $f_{\theta} \geq b$ and hence $a \geq b n t$ which completes the proof.

§4. EXAMPLES

Let R be a noncommutative ring satisfying the ascending chain condition for two-sided iderls. The totality ol ideals in R lorms an integral modular latitice ordered semigroup L. A lattice congruence of L is said to be (right) regular if it satisfies the condition that $A \equiv B$ irmplies $A C \equiv B C$ and $A: C \equiv B: C$ for every C in L, where : shows the ideal quotient. A subset k or L is called a k-system if and only if it satisfies the conditions that (a) $k \neq R$, (b) k is J closed, (c) k is multiplicatively closed.

Lemma 3 . In every regular congruence θ of $L, \theta(R)$ lorms a k-systom and $A \equiv B(\theta)$ il and only ii A ' B and $B: A$ are in $\theta(R)$. Conversoly, for every k-system k
of L, the relation that $A: B$ and
B:A are in k defines a regular congruence θ in L and $k=\theta(R)$.

Prooi is omitted but it is easy.
The radical oi an ideal A is defined as the intersection ol all prime ideals containing A and hence it is the greatest ideal oi which $n-t h$ power is contained in A for some positive integer n. An ideal Q is (right) primary if and only if $A B \leq Q$ implies $A \leq Q$ or $B \leq$ radical of A. ([4])

Now, let © be the set of all regular congruences of L. The $k-$ system generated by one element A of L, that is, the set of all thoee X such that $A^{n} \leq X$ ror some positive integer n, is denoted by k_{A} and the corresponding congruence in by θ_{A}.

Theoren 6. An element Q of L is primary with respeci to (1) 11 and only if the ideal Q is primary.

Proof. Let an element Q be primary with respect to (4) and $A B \leqslant Q$. Since $A B: A \geq B \in R_{B}$ and $A: A B=R \in R_{B}$ we get $A B \equiv A\left(\theta_{B}\right)$. If $Q=Q_{\theta_{B}}$ then $Q=Q_{\theta_{B}} \geq(A B)_{\theta_{B}}=A \theta_{B} \geq A$ hence $Q \geq A$. But, ${ }_{11} Q_{Q} \equiv I(\theta)$ tion $B^{n} \leq Q$ for some n. phus Q is primary as ideal. Conversely, let Q be primary as ideal and θ be in Θ. Since $Q \equiv Q_{\theta}(\theta)$, we have $Q: Q_{\theta} \in k_{\theta}$. From $Q<Q_{\theta}\left(Q: Q_{\theta}\right)$ it iollows that $Q \geq Q_{\theta}$ or $Q \geq\left(Q: Q_{\xi}\right)^{n}$ ior some
n. If the former is valid then $Q=Q_{\theta}$ and in the latter holds then $Q \in R_{\theta}$. Thus Q is prinary with respect to (6) -

Theorera 7. Let Q in L be primary. Then there exists a prime ideal P such that $\rho(Q)=\theta_{p}$. P is the radical ideal of Q.

Proor. The radical ideal P of Q is prime. ([4]) $k_{p} \geqslant Q$ since $P^{n} \leq Q$. But, if $\theta(R) \geqslant Q$ then a fortiori $\theta(R) \ni P$ and we get $\theta \geq \theta_{p}$. Thus $p(\theta)=\theta_{p}$, If

M. Ward and R.P.Dilworth presented the rollowing condition for the decomposability of ideals into prirary ideal components. ([2], [3])

Condition (D) For every pair of ideals A and B there exists n such that $A B \geq A_{n} B^{n}$.

Theorem 8. Every θ in (A) is
neutral if and only if the condition (D) holds.

Prool. We proved at the start in the proot of th. 6 that $A B \equiv A\left(\theta_{0}\right)$. If θ_{B} is neutral then $A B \geq$ fin X, for some $X \in \mathbb{R}_{B}$, by the Lemma 2 . But, from the deilinition of $R_{B}, X A_{B}^{n}$ for some n. Hence the condition (D) holds. Conversely, assume the condition (D). Let $A \equiv B(\theta)$ ror some θ in ($)$. Then $A \geq B(A: B)$ $\geq B_{\cap}(A: B)^{n}$ whers $(A: B)^{n} \in \mathbb{R}_{\theta}$

As another exampie, we can apply our results to the representation of elements in a distributive lattice as intersection of irreducible elements.inIa diastribn distributive lattice every element is neutral and we can adopt as (3) the set ol all the neutral congruences corresponding to principal dual ideais. Then an element is primary il and only ii it is irreducible. The radical of
an element is the coneruence corresponding to the principal dual ideal generated by this element. But this example has fewer neaning to us.
(*) Received July 28, 3.952.
[1] G.Birkholif, Latilce theory, (1943;.
[2] R.P.Dilworth and M.Ward, Residuated lattices, Trans. Amer. Math. Soc., v.43, (1339), pp. 335-354。
[3] R.P.Dilworth, Noncommatative residuated iattices, Trans. freer. Math. SOC., v.46, (1939), pp.426-444.
(4) D.c.Murdoch, Contrjbutions to noncomutative ideal theory, Canadian J. of Math., v.4, (3.952), pp.4]-57.
(5) E.L.van der Waerden, Moderne Algebra II, (I940).

Osaka Woratn's college.

