Introduction．

The ordinal power of partially ordered sets，which will be men－ tioned later on，has been detined by G．Birkhoff（I）．But the usual definition contains some essential diificulty，and on account of it， some restrictive condition on in－ dex set fis necessary for this de－ finition．

The object of the present note is to give some other detinition of the ordinal power，which is a slight extension of usual one， yet is adoptable without any re－ striction on the sets concerned．

In \oint ，a new definition is introduced．
$\oint 2$ is devoted to some identi－ ties．

In $\beta 3$ ，a new derinition of the lexicographic product is given， and we shall consider especially the case when the factor sets are homogeneous．

Concerning applications of that definition，see the author＇s next paper（3）．

1．Definitions．

With respect to the partially orderea set（abbr，poset），the chain，the dual，the descending chain condition，and other terms concerning partially ordered sets， we use the usual definitions（cf． （2） ，unless different defini－ tions are mentioned．

The iollowing detinitions are usually given．

Definition 1。 The ordinal sum $X \oplus \frac{(Y \text { of two } p o s e t s}{X}$ and $Y i s$ the set of all $X \in X$ and $\mathcal{F} \in Y$ ， where $x \leqslant x^{\prime}$ in x and $y \leqslant y^{\prime}$ in Y preserve their original meaning， and $x<y$ for all $x \in X$ and $y \in Y$ ．

The ordinal product X－Y is the set of aII pairs $(x, y), x \in X$ ， $y \in Y$ ，where $(x, \forall) \leqslant\left(x^{\prime}, y^{\prime}\right)$ is defined to mean that either $x<x^{\prime}$ ， or $x=x^{\prime}$ and $y \leqslant V^{\prime}$ 。

Definition l^{\prime} ．The ordinal power ${ }^{x} Y$ consists of all functions $y=f(x)$ from X to Y ，where $f \leqslant g$ means that for every x such that $f(x) \forall g(x)$ ，there exists an $x<x$ such that $f^{\prime}\left(x^{\prime}\right)<g\left(x^{\prime}\right)$ ．

The delinitions of ordinal sum
and ordinal product are always adequate，and the following iden－ tities are known：

assocjati．ve law：

$(X \oplus Y) \oplus Z=X \oplus(Y \oplus Z)$, $(X \circ Y) \circ Z=X \circ(Y \circ Z)$ ；
right distributive law：
$(X \oplus Y) \circ Z=(X \circ Z) \oplus(Y \circ Z)$.
But this detinition for the ordinal power is often inadequate． Incied，let 2 be the and ordinal．num－ ber，and let J be the chain oi all integers with natural order，then J_{2} is not a poset， that is，the order defined by de－ finition l＇，satisiles neither the antisymmetric law nor the transi－ tive law．G．Birkhof＇t showed that the definition has meaning if and only if X satisfies the descencing chain condition，unless Y is to－ tally disordered．（I），〔Z〉，〈4〕．

To avoid this ditilculty，and the restrictions on the index set，a new detinition of the ordi－ nal power will now be introduced．

Definition 2 。 Let X and Y be posets，and yo be a fixed element （arbitrary chosen）of Y ．The ordinal power ${ }^{x} Y<y_{0}>$ consists ol all functions $f(x)=y$ irom X
to Y＇such that the set $\{x \mid I(x)$ $\left.\neq y_{\circ}\right\}$ satisfies the descending chain condition＇（ $\{x \mid p\}$ means the set of all elements which satisi＇y the condition P ），where the order is as ustaal，that is， $f \leqslant g$ means that for every x such that $f(x) \$ g(x)$ ，there exists an element $x^{\prime}<x$ such that $I\left(x^{\prime}\right)$
$<g\left(x^{\prime}\right)$ ．
This restriction on the func－ tions of ${ }^{x} Y\left\langle y_{0}\right\rangle$ excludes the restrictions on the original sets． In fact，this definition is always propery as we shall see later．

The set $\left\{x \mid f(\dot{x}) \neq y_{0}\right\}$ be denoted by M_{f} ，and the set $\{x\}$ $f(x) \neq g(x)\}$ by $M_{f, g}$（throughout this paper we use those notations）， then $M_{f, g} \subset M_{f} \smile M_{g}$ ，so $M_{i, g}$ sa－ tisfies the descending chain con－ dition as well as M_{f} and $M g$ ， because the family of all subsets which satisfy the descending chain condition，is an ideal in the Ecolean algebra ot all subsets of X ，as easily seon．

The set of all minimal elements
of a set M is denoted by $\min (M)$ ． Then $f \leqslant g$ is equivalent to the fact that $f(x)<g(x)$ for every $x \in \min \left(M_{f, g}\right)$ ．

In t＇act，if $f(x)<g(x)$ for every $x \in \min \left(M_{i, g}\right)$ ，and $f\left(x^{\prime}\right)$ $\forall g\left(x^{\prime}\right)$ for some $x^{\prime} \in X$ ，then there is an $x^{\prime \prime} \in \min \left(M_{ \pm}, g\right)$ such that $x^{\prime \prime}<x^{\prime}$ ，on account of the descending chain condition of $M f, g$ ，and for tris $x^{\prime \prime}, f\left(x^{\prime \prime}\right)<$ $g\left(x^{\prime \prime}\right)$ ．Conversely，if $\mathrm{I}^{\prime}\left(\mathrm{X}^{\prime \prime}\right) \nless$ $g\left(x^{\prime \prime}\right)$ for some $x^{\prime \prime} \in \min \left(M_{f}, g\right)$ ， then $f^{\prime}\left(x^{\prime \prime}\right) \nLeftarrow g\left(x^{n}\right)$ and lor every $x^{\prime}<x^{\prime \prime}, f^{\prime}\left(x^{\prime}\right)=g\left(x^{\prime}\right)$ ，that is， $\mathrm{I}^{\prime}\left(\mathrm{X}^{\prime}\right) \nless \mathrm{g}\left(\mathrm{x}^{\prime}\right)$ ，so $\mathrm{f} \$ \mathrm{~g}$ 。

Now we shall see that the order in ${ }^{x} \underline{v}\left\langle\mathrm{~V}_{0}>\right.$ satisfies the axioms of order．

The reilexive law：－There is no element $x \in X$ such that $I^{\prime}(x) \$$ $f^{\prime}(x), s \circ f \leqslant f$.

The antjsymmetric law：－If $f \leqslant g$ and $E \leqslant f$ ，then $f=g$ ．In fact，unless $f=g$ then the set $M_{f, g}$ is non－void．$f \leqslant g$ implies that for every $x \in \min \left(M_{ \pm}, \mathcal{K}\right)$ ， $f(x)<g(x)$ ，but $g \leqslant \Gamma$ implies the opposite order．This is a contradiction．

The transitive law：－Let $f \leqslant g$, and $g \leqslant h$ ．Because $f(x)=g(x)$ and $g(x)=h(x)$ implies $f(x)=$ $h(x), M_{f, h} \subset M_{ \pm, \mathcal{E}^{\prime}} N_{G} h \quad$ ．So，if $f^{\prime}\left(x^{\prime}\right) \nLeftarrow h\left(x^{\prime}\right)$, then there exists an $x^{\prime \prime}<x^{\prime}$ such that $x^{\prime \prime} \in \min \left(M \pm, g^{\vee}\right.$ $\left.M_{\xi . h}\right)=\min \left(\min \left(M_{ \pm, \boldsymbol{g}}\right) \cup \min \left(M_{g, h}\right)\right.$ ）．Ooviously $f\left(x^{\prime \prime}\right)<h\left(x^{\prime \prime}\right)$ for this $x^{\prime \prime}<x^{\prime}$ ．

This deiinition of the ordinal power seems somewhat artilicial． Eut it is not so unnatural as it appears，because the following consideration is possible．

Let M be a subset of a poset X ，and satis：＇y the descendine chain condition．Let JMm_{M} be the subset of $\left.x y<y_{0}\right\rangle$ which consists of all functions such that $f^{\prime}(x)=y$ for every x ．M 。 Then M_{M} is isomorphic to $M Y$ ， which has meaning in the old definition．The famjly 1 of all subsets M with the descending chain condition，is a distributive lattice with the order of set－ inclusion．The family $\Delta=\left\{\boldsymbol{m}_{\mathrm{m}}\right\}$ whose element is a set of functions in $x Y<y_{0}>$ such that they takes the constant，value yo outside some $M \in \Lambda$ ，is also a aistributive lattice with the order of set－ inclusion and is isomorphic to 1 ． Those lattice may not be complete， but if we complete them by cut， the greatest elements will corre－ spond to each other，－me one is X, and the other is nothing but $x^{v}\left\langle y_{0}\right\rangle$ ，and is not the set of all functions from X to Y ．

2．Some identities．
We shall see that the following identities hold：

I）$\left.{ }^{X \oplus Y_{Z}} Z_{Z} z_{0}\right\rangle={ }^{X} Z\left\langle Z_{0}\right\rangle{ }^{\prime} Y_{Z}\left\langle Z_{0}\right\rangle$,
II）${ }^{x}\left(Y^{Z} Z\left\langle Z_{0}\right\rangle\right)\left\langle I_{0}\right\rangle={ }^{X \cdot Y} Z\left\langle Z_{0}\right\rangle$ ，
where $f \circ \in Y_{Z}\left\langle z_{0}\right\rangle$ is such a function that ror every $\mathrm{y} \in \mathrm{Y}$ ， $\mathrm{f}_{\circ}(\mathrm{y})=\mathrm{z}_{0}$ 。
froof of $I):$

Let $\mathrm{f} \mathrm{E}^{X \oplus Y} \mathrm{Z}\left\langle z_{0}\right\rangle$－We denote
by fx^{\prime} ，when we regard f （ as a
function from X to Z ，and for \underline{y}
similarly by iy o The set M \％
$=\left\{u \in X \oplus Y \mid f(u) \neq z_{0}\right\}$ and so the
sets $M_{f_{x}}=\left\{x \in X \mid f_{x}(x) \neq z_{0}\right\}$ and
$M_{ \pm Y}=\left\{Y^{\prime} \in Y \mid f_{Y}(y) \neq 20\right\}$ satisfy
the descending chain condition，
that is，$f_{x} \in{ }^{x} Z\left\langle z_{0}\right\rangle$ and $f_{Y} \in$
$Y_{Z}\left\langle Z_{0}\right\rangle$ ，and f is a couple of
ose functions，so fex $\mathrm{f}\left\langle\mathrm{z}_{\circ}\right)^{\circ}$
Y $2<20\rangle$
d $f_{Y} \in Y Z\left\langle Z_{0}\right\rangle$ ，then the func－
ton f from $X \oplus Y$ to Z such that
$I^{\prime}(x)=I^{\prime}(x)$ for $x \in X$ ，and $f(y)=$
$\mathrm{i}_{\mathrm{Y}(\mathrm{y})} \mathrm{for} \mathrm{y} \in \mathrm{Y} \text { is contained in }$
Now let $f=\left(f_{x}, l^{\prime} y\right.$ ）and g
$\left.g_{X}, g_{Y}\right)$ be contained in ${ }^{\prime} \mathrm{Z}\left\langle z_{0}>\right.$
$Y_{Z}\left\langle z_{0}\right\rangle$ ，and let $\mathrm{f}^{\prime} \leqslant \mathrm{g}$ in this
ordinal product．This is equi－
valent to the fact that $\mathrm{I}_{\mathrm{x}}<\mathrm{g}_{\mathrm{x}}$
or $f_{x}=g_{x}, f_{Y} \leqslant g_{Y}$ ，that is， either $f^{\prime}(x)<g(x)$ for all $x \in$
$\min \left(\mathrm{N}_{\mathrm{fx}}, g_{x}\right)$ ，or $\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\mathrm{g}_{\mathrm{x}}(\mathrm{x})$ for all $x \in X$ and $I_{Y}(y)<g_{Y}(y)$
for all $\mathrm{y} \in \mathrm{min}\left(\mathrm{M}_{ \pm} \mathrm{Y}, \mathrm{g}_{\mathrm{Y}}\right.$ ）．If
we consider the function f from
$X \oplus Y$ to Z ，sucn that $\mathrm{i}^{\prime}(\mathrm{x})$
$=f^{\prime}(x)$ for ajl $x \in X$ ，and $f(y)$
$=f_{Y}(y)$ for all $y \in V$ ，the above
statement is equivalent to the
fact that efther $\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})$ for
all $x \in \min \left(M_{ \pm, g} \cap \mathrm{X}\right)$ ，or $\mathrm{f}(\mathrm{x})$
$=g(x)$ for ajl $x \in X$ ，and $f(y)<g(y)$
for all $y \in \min \left(M_{ \pm, 8} \cap \underline{y}\right)$ ，that
is， $\mathrm{t}^{\prime}(u)<\mathrm{g}(\mathrm{u})$ fior alj $u \in \mathrm{~min}$
（ $\mathrm{N} \pm . \mathrm{g}$ ）．This is nothing but
the detinition of $f \leqslant g$ in x ¢ f （2）

Proof of II）：

descending chain condition in $X \circ Y$, that is, $\Phi \in X^{\circ} Y Z\left\langle Z_{0}\right\rangle$.

Conversely, if $\Psi \in{ }^{x \bullet y} z\left\langle z_{0}\right\rangle$, then the set $\mathrm{M}_{1} \Psi=\{(\mathrm{x}, \mathrm{y}) \mid \Psi(\mathrm{x}$, $y) \neq z \cdot\}$ satisties the descending chain condition. So the set $M_{z}=\{x \in X \mid(x, y) \neq 2$. for some $Y \in Y\}$, being the homomorphic inage of M' , doas also.
The function $\Psi(x, y)$ with a I'ixed x, is considered as a function from Y to Z, which we denote by
Ψx. The above statement implies that the set $M_{X}=\left\{x \mid \Psi_{x} \neq f_{0}\right\}$ satislies the descending chain conaition.

Still more, the set $M_{i_{x}}=\{y \mid$ Ix $(\mathrm{y}) \neq \mathrm{z}_{0}$ for a fixed $\mathrm{x} \in$ (v) , being a subset of M'玉, must satisfy the descending chain condition. So $\bar{\Psi}_{x} \in Y^{\prime} Z\left\langle z_{0}\right\rangle$ and $\Psi \in{ }^{x}\left(Y_{z}\left\langle Z_{0}\right\rangle\right)\left\langle f_{0}\right\rangle$.

Now let $\Phi \leqslant \Psi$ in $x_{(}\left(Y_{i:}\left\langle z_{0}\right\rangle\right)\left\langle f_{0}\right\rangle$ then 1 or any $x \operatorname{in} \min (M, \Phi, \Psi)$
($\mathrm{M}_{\boldsymbol{\Phi}, \Psi}=\left\{\mathrm{x} \mid \Phi_{\mathrm{x}} \neq \Psi_{x}\right\} \quad$ satisfi's the descending chain condition) $\Phi_{x}<\Psi_{x}$, that is, for an: $y \operatorname{in} \min \left(M_{x}, \Psi_{x}\right)$ (M) $\left.\Phi_{x}, \bar{\Psi} x=\{y)\left(y \times \Phi_{x}(y) \neq \Psi x(x)\right\}\right)$
$\Phi_{x}(y)<\Psi_{x}(y)$. But the element. (x, y) in which $x \in \min (M, F)$ and $y \in \min (M x$, $\bar{x} x)$ is a minimal ejement of $\mathrm{M}^{1}, \vec{x}=\{(x, y) \mid$
$\left.\Phi_{x}(y) \neq \Psi x(y)\right\}$, and moreover it ranges over all min($\mathrm{M}^{\prime} \Phi, \Psi 1$.

$$
\text { After all, } \Phi \leqslant \Psi \quad \text { in } x\left({ }_{z}\right.
$$ $\left.\left\langle z_{0}\right\rangle\right)\left\langle f_{0}\right\rangle$ implies $\Phi_{x}(y)\left\langle\Psi_{x}(y)\right.$

 which means $\bar{\Phi} \leqslant \bar{\Psi}$ in $x \cdot y ~ Z\left\langle z_{0}\right\rangle$.

$$
\begin{aligned}
& \begin{array}{c}
\text { Oonversely, let } \Phi \leqslant \Psi \\
y_{z}\left\langle z_{0}\right\rangle \text { in } \\
\text { ine denote } \\
\Phi \\
(x, y)
\end{array} \\
& \text { by } \Phi_{x}(y), \text { where } \Phi_{x} \text { is a } \\
& \text { runction from } Y \text { to } Z \text {. } \Phi \leqslant \Psi \text { in } \\
& x \circ Y_{Z}\left\langle z_{0}\right\rangle \text { implies } \Phi_{x}\left(\frac{y}{y}\right)<\Psi_{x}(y) \\
& \text { fior any }(x, y) \in \min (N: \Phi, \Psi) \\
& \text { (M'I, } \underset{\text { If }}{=}\left\{(x, y) \mid \Phi_{\text {I' }} x(y) \neq \Psi_{x}(y)\right\} \text {. } \\
& \text { that }(x, y) \in \min (M, \quad, \quad \text { for } \\
& \text { some } y \text {, then the above condition } \\
& \text { means that } \Phi_{x}(y)<\Psi_{x}(y) \text { for } \\
& \text { any } y \in \min \left(M_{x}, \Psi_{x}\right)^{x} \text { This } \\
& \text { impljes } \bar{\Phi}_{x} \leqslant \Psi_{x} \text { in }_{n} y_{z}\left\langle z_{0}\right\rangle \text {. }
\end{aligned}
$$

so the above relation impiles $\Phi \leqslant \Psi$
in $X\left(Y_{Z}\left\langle Z_{0}\right\rangle\right)\left\langle i_{0}\right\rangle$. ihis
completes the proof.

3. The homogeneous case.

The new definition oi ordinal power is very convenient, because any restriction on the original sets is unnecessary, but on the other hand, it has an inconvenient point that the type of resultant system of an ordinal power depends on the choice of a fixed element in the hase poset. In lact, let
S^{+}be the chain of real numbers, which are equal to or jreater than zero, and let J be the chain of integers, then ${ }^{\top} S^{+}\langle 0\rangle$ has a least element f such that $f(n)=0$ for all $n \in J$, but $J S^{+}\langle 1\rangle$ has no least element.

However, this difiliculty is avoidable in special cases. Indeed, when X in $x y\left\langle y_{0}\right\rangle$ itself satisfies the descending chain condition, any function from X to Y is admissible regardless of the choice of a fixed element in Y, and in this case, the new definition of the ordinal power is equivalent to the old one.

On the other hand, if the base poset Y is homogeneous, then the type of resultant system of
${ }^{\prime} Y\left\langle y_{0}\right\rangle$ does not depend on the choice of $y_{0} \in Y$, regardless of the type of X.

As to this fact, we will take a more generai standpoint.

Definition 3. Let X be a poset, and for each $x \in X$, there be a corresponding poset Y_{x}. Let $y o x$ be a lixed eltment in Y_{x}. The lexicographic product
$\Pi_{x} Y_{x}\left\langle\right.$ Yox $\left._{0}\right\rangle$ is defined as the set of all functions which select for each $x \in X$, a $y=$ $r^{\prime}(x) \in Y_{X}$, and rake the sets $\left\{x \mid f(x) \neq y_{0 x}\right\}=N_{i}$ satistiy the descending chain condition', where $f \leqslant g$ means that ior every $x \in X$ sucn that $I^{\prime}(x) \notin \mathbb{E}(x)$, there exists an $x^{\prime}<x$ such that $i^{\prime}\left(x^{\prime}\right)$
$<g\left(x^{\prime}\right)$.
It is all the same as in the case of ordinal power, that, based on this deiinition, the axioms of the order are satistied, and that $f \leqslant g$ is equivalent to the fact that $f(x)<g(x)$ for ali $x \in \min \left(M_{f}, g\right), M_{f, g}$ being tne set $\{x \mid f(x) \neq g(x)\}$ 。

Sspecially, let $\mathrm{y}_{\mathrm{x}}=\mathrm{Y}$ and $y_{0 x}=y_{0}$ for all $x e^{-x}$, then $\Pi_{x} Y x$
$\left\langle y_{0} x\right\rangle$ is reduced to $x y\left\langle y_{0}\right\rangle$. - So, we will study especially the case or lexjcographj. product in the following ines.

[^0]Proof. For each x, there exists an qutomorphism φ_{x} of Y_{x} such that $\varphi_{x}\left(y_{0 x}\right)=y_{x}$. Let $i \in \Pi_{x} Y_{x}\left\langle Y_{0 x}\right\rangle$, and consider the function g of X such that $g(x)$ $=\varphi_{x} f^{\prime}(x)$. If $f^{\prime}(x)=y_{o x}$, then $g(x)=y, x$ and vice versa. So, ine set $\mathrm{M}^{\prime} \mathrm{g}=\{\mathrm{x} \mid \mathrm{g}(\mathrm{x}) \neq \mathrm{y}, \mathrm{x}\}$ $=M_{f}=\left\{x \mid \quad f(x) \neq y_{0}\right\} \quad$ satisties the descending chain condition, and soge $E \mathbb{V}_{x}\left\langle\mathrm{~V}_{\mathrm{x}}\right\rangle$

If we map $\mathrm{i}^{\prime} \in \Pi_{\mathrm{x}} \mathrm{Y}_{\mathrm{x}}\langle\mathrm{yox}\rangle$ to $g \in \Pi_{x} Y_{x}\langle y \mid x\rangle$ so that $g(x)$ $=\varphi_{x} f(x)$, then it is obvious that this mapping is one-to-one and order-preservin A_{B}, because every
9_{x} is an automorphism of Vx . So $\Pi_{x} V_{x}\left\langle y_{0 x}\right\rangle$ is isomorphic to $\pi_{\mathrm{x}} \mathrm{Y} \mathrm{X}\langle\mathrm{y}, \mathrm{x}\rangle$.
 coincides with $\Pi_{x} Y_{x}\left\langle V_{x}\right\rangle$ if the set $N=\{x \mid y o x \neq y, x\}$ satisfies the descending chain condition.

Proof. Let $\mathrm{f} \in \Pi_{\mathrm{x}} \mathrm{Y}_{\mathrm{x}}\langle\mathrm{Y} 0 \mathrm{x}\rangle$, then the set $M_{f}=\left\{x \mid f(x) \neq y_{o x}\right\}$ satisfies the descending chain condition. On the other hand, the set $N=\{x \mid y o x \neq y / x\}$ satisfies the desconding chain condition, so does the set M's
$=\left\{x \mid I^{\prime}(x) \neq y \cdot x\right\} \subset M_{ \pm} \smile N$ also. This implies $f^{\prime} \in \Pi_{x} Y_{x}\left\langle y_{\mid x}\right\rangle$.

We can see $\Pi_{x} \underline{v}_{x}\left\langle\mathcal{Y}_{0}\right\rangle>$ $\Pi_{x} Y_{x}\langle y \mid x\rangle$ all. the same, and this completes the pronf.

The above two lemmas can be stater together as f'ollows.

> Theorem I. $\Pi_{x} Y_{x}\langle y o x\rangle$ is isomorphic to $\Pi_{x} Y_{x}\langle y, x\rangle$ the set of $x \in X$, such that y ox is not transitive to y ix in Y_{x}, satisfies the descending chain condition.

Corollary I. If the set of all $x \in X$, such that v_{x} are not homogeneous, satisfies the descending chain condition, then the type of $\Pi_{x} Y_{x}\left\langle Y_{0 x}\right\rangle$ does not depend on the choice of the fixed elements Yox -

Corollary II. If y is homogeneous, then the type oi $x y\left\langle y_{0}\right\rangle$ does not depend on the ehoice of a fixed element yo.

Theorem II. If all \mathbf{v}_{x} are homogeneous, then $\Pi_{x} \underline{v}_{x}<\mathrm{y}_{\mathrm{x}} \gg$ is homogeneous.

Proof. Let $f, E \in \Pi_{x} Y \times\left\langle Y_{0}\right\rangle$. Then the set $M_{f, g}=\{x \mid$ $f(x) \neq g(x)\}$ satisfies the descending chain condition. Now, f'or every V_{x} is homogeneous, we can tako automorphisms φ_{x} of Y_{x} such that $\varphi_{x}\left(f^{\prime}(x)\right)=g(x)$. The
set $M g$ of all x such that φ_{x} is not an identical mapping, satisfies the descending chain condition. Consider the following mapping of $\Pi_{x} Y_{x}\left\langle Y_{0 x}\right\rangle$:
$\Phi(h)=k$ for $h \in \Pi_{x} Y_{x}\left\langle y_{0 x}\right\rangle$, where $k(x)=\varphi_{x}(h(x))$ 。

Then $k \in \Pi_{x} Y_{x}\left\langle y_{0 \times}\right\rangle$, because the $M_{h}=\left\{x \mid h(x) \neq y_{0 x}\right\}$ and the set Mg satisfy the descending chain condition, so does the set $\mathrm{M}_{\mathrm{K}}=\left\{\mathrm{x} \mid \mathrm{k}(\mathrm{x}) \neq \mathrm{Y}_{\mathrm{ox}}\right\}<\mathrm{M}_{\mathrm{h}} \mathrm{V}_{\mathrm{C}}$ also.

It is obvious that Φ is one-to-one, and order-preserving, because each Φ_{x} is an automorphism oi Y_{x} 。

Still more, $\Phi(f)=6$ by the definition of Φ. So any two elements $\mathrm{f}^{\prime}, \mathrm{E} \in \Pi_{\mathrm{x}} \mathrm{Y}_{\mathrm{x}}\left\langle\mathrm{Y}_{\mathrm{ox}}\right\rangle$ are mutually transitive, that is, the resultant system is homogeneous.

Finally, we note the following obvious fact.

Theorem III. If X and all Y_{X} are chains, then $\Pi_{x} \underline{Y}_{x}\left\langle\mathrm{y}_{0 \mathrm{x}}\right\rangle$ is a chain.

In the case of corollary I, II, if only the type of the resultant system comes into question, we can omit writing the ilixed elements of the ractor posets. on account of it, the new definitions of ordinal power and lexicographic product seem userul especially in this homogeneous case.

With the application of the definitions and theorems of the present paper, the author continued his study on the type-problem of some homogeneous chain, which will be given in a subsequent paper.
(*) Received, Nov. 13, 2951.
[1] G. $5 i r k h o f f, ~ A n ~ e x t e n d e d ~ a r i-~$ thmetic. Duke Journ. 3 (1937), 311-16.
(2) G.Birkhoif', Lattice Theory. Colloquium Publication 25. of Amer. Math. Soc. (2y49).
(3) T.Ohkuma, On Discrete Homogeneous chains. These Rep. (1952).
(4) M.M.Day, Arithmetic of ordered system. Trans. Amer. Math. Soc. 58 (1945), 1-43.

Tokyo Institute of Technology.

[^0]: Definition 4. Let v be a poset, and $\mathrm{y}_{0}, \mathrm{y}_{,} \mathrm{t}$. y_{0} is called transitive to y_{1}, if and only if there exjets an automorphism φ of Y which maps y_{0} to V_{1}. It' any two elements of Y are mutuajly transitive, then we call the set Y homogeneous.

 Lemma $I_{0} \Pi_{x} Y_{x}\left\langle V_{0 x}\right\rangle$ and
 $\Pi_{x} Y_{x}<\frac{\bar{Y}_{1 x}>}{}$ are isomorphic to each other, if every yox is transitive to y / x.

