A NOTE ON THE ORDINAL POWER AND THE LEXICOGRAPHIC PRODUCT
OF PARTIALLY ORDERED SETS

By

Introduction.

The ordinal power of partially
ordered sets, which will be men-
tioned later on, has been detined
by G.Birkhoff (1) , But the usual
definition contains some essential
diificulty, and on account ot 1it,
some restrictive condition on ih-
dex set 1s necessary tor this de-
finition.

The object of the present note
is to give some other det'inition
of the ordinal power, which is a
slight extension ot usual one,
yet is adoptable without any re-
striction on the sets concerned.

In §1, a new definition is
introduced.

$2 is devoted to some identi-
ties,

In §3, a new definition of
the lexicographic product is given,
and we shall consider especially
the case when the factor sets are
homogeneous.

Concerning applications of
that definition, see the author's
next paper (3) .

1, Definitions.

With respect to the partially
orderea set (abbr. poset), the
chain, the dual, the descending
chain condition, and other ternms
concerning partially ordered sets,
we use the usual definitions (cf.

(2) ), unless different defini-
tions are mentioned.

The tollowing det'initions are
usually given.

Definition 1. The ordinal sum
X ® Y of two posets X and ¥ Is
the set of all x ¢ X and y ¢ Y,
where x ¢ x' in X and y ¢ y' in
Y preserve their original meaning,
and x ¢ y for all x¢ X and y ¢ Y.

The ordinal product X o Y is
the set of all pairs (X, y), X ¢ X,
y € Y, where (x, ¥) £ (x!', y') is
defined to mean that either x¢ x',
or x = x' and y { ¥'.

Detinition 1's The ordinal
power *Y consists of all functions
y = f(x) from X to Y, where £ ¢ g
means that for every x such that
f(x) € g{x), there exists an x'<{ x
such that f(x') < g(x').

The detinitions of ordinal sun
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and ordinal product are always
adequate, and the following iden-
tities are known:

associative law:
(xeYv)® z=Xe®&(vez),
(X o¥)oZ=X0o(Yo2Z);
right distributive law:
(X®Y) o2 =(Xo°2Z)d(Yol).

But this detinition for the
ordinal power is often inadequats,
Indeced, let 2 be the 2nd ordinal nun-
ber, and let J be the chein
or all integers with natural
order, then 72 is not a poset,
that is, the order defined by de-
finition 1', satisties neither the
antisymmetric law nor the transi-
tive law. G.Birkhoft showed that
the definltion has meaning if and
only if X satisfies the descending
chain condition, unless Y is to-
tally disordered. (1) , (2) , (43].

To avold this diificulty, and
the restrictions on the index
set, a new definition of the ordi-
nal power will now be introduced.

Pefinition 2. Let X and Y be
posets, and y. be a fixed element
(arbitrary chosen) of Y. The
ordinal power *Y ¢ y.> consists
ol all tunctlons f(x) = y trom X
to> Y 'such that the set {x | t(x)

# y.} satisfies the descending
chain’condition' ( {x | P} nmeans
the set of all elements which
satist'y the condition P ), where
the order 1is as ustial, that is,

f £ g means that for every x such
that f(x) § g(x), there exists an
element x!' < x such that f(x')

<g(x').

This restriction on the func-
tions of XY <(y.> excludes the
restrictions on the original sets,
In fact, this definition 1s always
propery; as we shall see later,

The set { x| f(x)# y.} be
denoted by Mg , and the set {x|
f(x) # g(x)} by Myg (throughout
this paper we use %hose notations),
then My g< Ms ™~ Mg , so My, g sa-
tisfies the descending chain con-
dition as well as M¢ and Mg,
because the ramily of all subsets
which satisfy the descending chain
condition, is an ideal in the
Ecolean algebra ot all subsets of
X, as easily seen.

The set of all minimal elements



of a set M is denoted by min(M).
Then £ € g 1s equivalen® to the
fact that £(x) < g(x) for every
x € min(M¢,g ).

Tn ract, if f{x) < g(x) tor
every x ¢ min(Ms, g ), and f(x')
€ g(x!') tor some x' ¢ X, then
there is an x" ¢ min(Mg,g ) such
that x" ¢ x', on account of the

descending chain condition of
M¢ g , and for this x", f£(x")<
g(x"). Cconversely, if r(x") <
g(x") for some x" ¢ min(M¢ g ),
then t(x") ¢ g(x") and tor every
x' < x", r(x') = g(x'), that is,
t(x') £« g(x'), so £ 4§ g.

Now we shall see that the
order in *Y < y.> satisfies the
axioms of order.

The reiflexive law:— There is
no element x € X such that r'(x)¢
t(x), so £ £ £,

The antisymmetric law:— Il
f< gand g<{f, then f = g. In
fact, unless f = g then the set
M¢, g is non-void. f < g implies
that tor every x € min(M: g ),
f(x) < g(x), but g & £ implies
the opposite order. This is a
contradiction.

The transitive law:— Let [ ¢ g,
and g € h. Because f(x) = g(x)
and g(x) = h(x) implies f(x) =
h(x), Mgp<c Mt g~VMgh . So, Ir
f{x') § h(x'), then there exists
an x"< x! such that x" ¢ min(M¢, gV
Mgh ) = min(min(Ms g )~ min(Mgn )
). Opviously £(x") ( h(x") tor
tt.is x" < x'.

This definition of the ordinal
power seems somewhat artiiicial.
But it is not so unnatural as it
appears, because the tollowing
consideration 1is possible,

Let M be a subset of a poset
X, and satisi'y the descending
chain condition, Let 7~m be
the subset of *Y < y.)  which
consists of all tunctions such
that t(x) = y for every x & M,
Then 77m~m 18 1lsomorphic to My,
which has meaning in the old
definition. The family A of
all subsets M with the descending
chain condition, is a distributive
lattice with the order of set-
inclusion. The family & = { MM}
whose element 1s a se¢t of functions
in *Y < yo> such that they takes
the constant, value ye. outslde some
M €/ , is also a aistributive
lattice with the order of set-
inclusion and is isomorphic to /A .
Those lattice may not be complete,
but i1’ we complete them by cut,
the grecatest elements will corre-
spond to each other, =--— the one
is X, and the other is nothing
but *¥Y < y.> , and is not the
set of all functions trom X to Y.

2, Some identities.

We shall see that the following
identities hold:

X0y
1) Cz<zo =2<z0 0 Vi<,

xoY
1) Yz czo) <ty = " 2¢ 3y,

where fo € Y7 ¢z.> 1is such a
function that ror every yeV,
1.(y) = 2o.

Froof of I):

Let 1 e x ey Z2<¢z, . We denote
I by fx , when we regard 1 as a
function from X to Z, and for Vv
similarly by £y . The set My
={ue X®Y| f(u) #2.}] and so the
sets Mg ={Xx €X ]| fx(x)# 2.} and
Mey={yeY] fr(y)# 2.} sallsfy
the descending chain condition,
that is, £x€é *Z <¢z.y and fye
2 < 26> , and f is a couple of
those functions, so f € Xz¢ z,)°
Z<20>

Conversely, it fx € *Z <z,>
and fy ¢ ¥2<z.> , then the func-
tion f from X @ Y to Z such that
t£'(x) = rx{x) for x ¢ X, and f(y)=
y(y) for y ¢ Y is contained in
X0Y7 < 2.) . )

Now let f = (fx, fy) and g
=(gx, 8y) be contained in *Z ¢ z,e
Yz <z.,> , and let f ¢ g in this

ordinal product, This is equi-

valent to the fact that fyx < gy,

or fv= g, , Ly ¢ 8y, that is,

either £(x) < g(x) for all x ¢

min(Mgy , & ), or £x(X) = gxix)
for all x € X and r'y(y) < gy(y)

for all y ¢ min(Mgy , 8¢ ) :

we consider the function f from

X @ Y to Z, sucn that {'(x)

=t'x(x) for all x € X, and f(y)

=fy(y) for all y ¢ ¥V, the above

statement is equivalent to the

fact that either f(x) < g(x) for

all x ¢ min(M¢, g ~ X), or f(x)

=g(x) for all x ¢ X, and f£(y) < gly)

for all y € nin(Ms, g AY), that

is, t'(u) { g{u) tor all ue min

(N¢,g ). This is nothing but

the derinition of £ ¢ g in *°Ygz(z,,

Proof of II):

Let X(¥z <z.» ) ¢fo> 98
then for x ¢ X, 3 (x) e¥Z <z,
¥e denote ¥ (x) by Px , which
is a function from Y to 2. So
for ay eV, $,(y) e Z. This
shows that § 1s a function from
the set product (X, V) to Z.

Now the set Mg = {x| 3« # .}
satisfies the descending chain
condition, and if Fx = f,
then Px(y)= 2z, for all
y ey, and 1f P« # fo , then
the set Mgy = {y| 3,.(y) # 2z}
satisfies the descending chain
condition. 8o the set M'3 = {(x,
y) 1 &.(y) # zs satistries the



descending chain condition in
¥o Y, that 1s, $ ¢ *°Y 27 ¢ 20> ,

Conversely, if ¥ ¢ XXy ¢ Zey
then the set M'y = {(x, ¥) | ¥ (x,
y)# 2.} satisfies the descen-
ding chain condition. 30 the set
Mg ={x e X | (x, y) # z.for some
v e Y )}, being the homomorphic

gmage of M'y , doas also.

The tunction ¥ (x, y) with a trixed
x, 1s considered as a tunction
from Y to 2, which we denote by

x + The above statement im-
plies that the set My = {x|¥x# o}
satisfiss the descending chain
condition.

Still more, the set Mg,= { Y]
¥x (v) # 2o for a fixed x ¢
K , being a subset of M'y ,
must satisfy the descending chain
condition. So ¥x € Y Z<z.>

and T e (Y2 (zo> ) <L .

Now let €<¥ in *(Yo <z )b
, then ror any x in min(Mgs ,¥)
(Mg, 9 ={x12x# Ix} satis-
fi>s the descending chain condi-
tion) ¥x < ¥x , that is, for
any y in min(Mg, )
g o = (3] sy 4 2]
3« (¥) < $x(y).” But the ele-
ment (x, y) in which x ¢ min(M3 ,$)
and y ¢ min{Mg« ,¥x ) 1is a
minimal element of M'3, ¢ ={(x, y/
3, (y)# ¥x(y)} , and moreover it
ranges over all min(M's ,J ).

after a11, 34¥  in *(%z
{zs> ) Lo implies §x (y) < Ix(Y)

tor every (x, y) € min(M's ,3 ),
which means §4¥ in *°Y Z<z,.> .

Gonversely, let 3¢¥ in
*°Y 7 ¢z.> . We denote § (x,¥)
by Jx(y), where §, is a

function from Y to Z. 3 4&¥ in
*eY7 ¢z20> dimplies §, (y) ¢« ¥x\V¥)
tor any (x, y) ¢ min(N' s
(Mg
f we rix some x, such

that (x, y) € min(M' 3 , 3 ) ror
sone y, then the above condition
means that &4 (y) ¢ ¥, (y) tor
any vy € min(M 3, , §x )» This
implies &y ¢ ¥, in 7Z < z,>.
It xemin(Mg ,¥ ) (M5,
={x| ¥, # ¥x) ), then (x, y)
emin(M's , ) for some y ¢ V,
so the above relatlon implies § ¢¢
in *(YZ <z.> ) <f,>» . 4his
completss the proof.

3. The homogeneous case.

The new definition or ordinal
power is very convenient, because
any restriction on the original
sets is unnecessary, but on the
other hand, it has an inconvenient
point that the type of resultant
system of an ordinal power depends
on the cholce of a fixed element
in the base poset. In tact, let

' ¥
b3 = L3 )] 8 ()2 ),
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ST bs the chain of real numbers,
which are equal to or greater than
zero, and let J be the chain of
integers, then YS*¢o> has a
least element f such that f(n)= 0
for all n ¢ J, but 78" ¢ 1> has
no least element.

llowever, this difficulty is
avoidable in special cases.
Indeed, when X in *Y <y.> itselfr
satisfies the descending chain
condition, any function rrom X to
Y is admissible regardless of the
cholice of a tixed element in Y,
and in this case, the new defini-
tion ot the ordinal power is equi-
valent to the old one.

On the other hand, ii the
base poset Y is homogeneous, then
the type of resultant system of
*Y (y.) does not depend on the
choice of y, € Y, regardless of
the type of X.

As to this fact, we will take
8 more general standpoint,

Det'inition 3. Let X be a
poset, and for each x € X, there
be a corresponding pcset Yx .

Let yox be a 1ixed elcnent in
Yx . The lexicographic product

Tix ¥Yx < Yox> Is defined as
the set of all functions which
select r'or sach x ¢ X, a y=
I'(x) € ¥Yx , and 'make the sets

{x | £(X)# Yox} =Mz satisry the
descending chain condition!',
where f ¢ g means that 1or every
x € X sucn that 1(x) £ g(x), there
exists an x' ¢ X such that ((x')
Cglx').

It is all the same as in the
case of ordinal power, that,
based on this detriniticn, the
axioms of the order are satistied,
and that £ g is equivalent to
the fact that f{x) < g(x) ror alli
x € min(M¢ ,8 ), Ms,g being tne
set { x |f(x)# g(x)} .

Tspeclally, let Yx = Y and
Yox = ¥, lor all x e X, then TxYx
CToxd is reduced to *Y<VY.),
« So, we will study espe-
cially the case or lexicographic
product in the tollowing lines.

Definition 4. Let VY be a poset,
and y, , ¥, ¢ Y. ¥, Ls called
transitive to y, , ir and only it
there exlsts an automorphisrm ¢
of Y which maps y, to y, . If any
two elements of Y are rutually
transitive, then we call the seat

Y homogeneous.

Io TTx ¥Yx < Yox> and
Yix> are isomorphic
to each other, if every y,, 1s
transitive to v, .




Proof. For each x, there exi-
sts an automorphism @ of ¥x
such that P (y,x) = ¥.,x» Let
7€ TTx Yx <F¥ox> , and consider
the function g of X such that g(x)
= Py £(x). If £(Xx) = ¥yox, then
2(x) = y,x and vice versa. So,
che set M'g = { x | g{x)# ¥y,x}

=M;={x| £(x)# J.x} satlsfles
the descending chain condition,
and 80 ge T x¥x < Tpp> -

It we map ' €¢Tlx ¥x < yox> to
g ¢ Tx¥x < ¥,xy so that g(x)
=9, f(x), then it 1s obvious that
this mapping 1s one-to-~one and
order-preserving, because every

®yx is an automorphism of ¥Vx .
So TTx ¥x < YJex>» 1is isomorphic
to Tx¥x <¥,ix> o

Lemma II.  TIx ¥x < Jox>
ccincides wivth TTx ¥Yx <¥,x>
if the set N= { X | Yox # ¥/x}
satlisfies the descending chain
condltlion.

Proof. Let £ €Tlx¥x < yex> ,
then the set Mg ={xl £(x) 4 Yox }
satisfies the descending chain
condition. On the other hand,
the set N={Xx) yox# ¥/,x} satls-
fies the descending chain condi-
tion, so does the set MY

={x | r(x) # y.x} € K¢~ N also,
This implies 1 6 TTx Yx < ¥,x> o

We can see Ty VY. J,u> D
MY« < ¥,x» all the same, and this
completes the proof,

The above two lemmas can be
stated together as follows,

Theorem I. TIy Yy < Yox) is
isoforphic o Tx Yx ¢ ¥sxy » if
the sat of x € X, such that y.x
is not transitive to y,x in Yy ,
satisfies the descending chaln
eondition,

Corollary I. If the set of all
x € X, such that ¥x are not homo-
geneous, satisfies the descending
chain condition, thep the type
of TIx ¥x< Yo.x» does not depend
on the cholce of the fixed elements

TJox o

Corollary II. If Y is homoge-
neous, then the type of XY <y.»
doos not depend on the choice of
n fixed element y, .

Theorem II. If all Yx are ho-
mogensous, then ITy Yx < Vox)
is homogensous.

Proof. Let f, g € Tlx Yx<Y¢x.
Then the set Mjsg = { x|
f(x) # g(x)} satisfies the
descending chain condition. Now,
for every Vx is homogeneous, we
can take automorphisms 9Px of ¥Yx
such that @ (f(x)) = g(x). The
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set M ¢ of all x such that %

is not an identical mapping, sa-
tisfies the descending chain con-
dition., Consider the rollowing
mapping of ITx ¥a < Vox> @

P (h)=k for h € TTx¥ < ¥ox> ,
where k(x)= P« {(h(x)).

Then k € TxYx < Y.x> , because
the My ={ x | h(x) # Vox} and the
set My satisfy the descending
chain condition, so does the set
Me = {x | k(X) # Vox}< Mp™ Mg
also.

It is obvious that § is one-
to-one, and order-preserving, be-
cause each Py 1s an automorphism
ol Yx °

Still more, § (f) = g by the
definition of ¢ . So any two
elements £,z € Mx¥x < YoxD> are
mutually transitive, that 1s, the
resultant system is homogeneous.

Finally, we note the following
obvious fact,

Theorem III. If X and all ¥
are chalns, then T[x Yy < ¥..»
is a chain.

In the case of corollgry I,

TI, if only the type of the resul-
tant system comes into question,
we can omit writing the tixed ele-
ments of the tactor posets. On
account or it, the new definlitions
of ordinal power and lexicographic
product sseem useful especially in
this hortiogeneous case.

With the application of the
definitions and theorems ot the
present paper, the author continued

is study on the type-problem of
some homogeneous chain, which will
be glven in a subsequent paper.

(X) Received, Nov, 13, 1951,

(1) G.Birkhoff, An extended ari-
thmetic. Duke Journ. 3
(1937), 311-16.

(2) G.Birkhoff, Lattice Theory.
Colloquium Publication 25.
of Amer. Math., Soc, (1949).

(3) T.0hkuma, On Discrete Homo-
gensous Chains. These
Rep., (1052),

(4] M.M.Day, Arithmetic of or-
dered system, Trans.,
Amer, Math. Soc. 58
(1945), 1-43.

Tokyo Institute of Technology.





