NOTE ON LAPLACE-TRANSFORMS (VII)

ON THE OVERCONVERGENCE AND SINGULARITIES OF LAPLACE-TRANSFORMS

By Chuji TANAKA

(Communicated by Y. Komatu)

(1) THEOREM I. Let d(x) be of bounded variation in any finite interval $0 \le x \le X$, X being arbitrary. Put

$$(7 \cdot 7) \qquad F(3) = \int_0^\infty \exp(-32) \, d\alpha(2)$$

$$(A = \sigma' + it, \quad \alpha(0) = 0)$$

In this present Note, we shall discuss the relation between the overconvergence and singularities of (1.1). We shall begin with

THEOREM I. Let F(A) be simply convergent for $\sigma > 0$. If $Ad(\alpha)$ = 0 in $\alpha \in (\lambda_1, \tau_2)$ ($\gamma = 1, 2$) with $\tau_{\gamma - 1} < \lambda_1 < \tau_2$ and fine $\tau_{\gamma - 1} < \tau_1$, then in the sufficiently small neighbourhood of the regular point on $\sigma = 0$, the sequence of partial sums $\int_{0}^{\infty} \exp(-3\pi) dd(\pi) \ (y=\pi,2,\dots)$ is uniformly convergent, 1.e.

Formly convergent, 1.e.

Formly eng(AI) Add(I) (7.=0)

is uniformly convergent.

If we apply Theorem 1 to Dirichlet series, putting $\alpha(\alpha)$ $=\sum_{\lambda_{n}<\infty}a_{n}$ ($0\leq\lambda_{1}<\lambda_{2}<\dots\lambda_{n}$ we get easily

COROLLARY I (A.Ostrowski), (1]1, (2) p.39). Let $F(A) = \sum_{i=1}^{n} a_i \exp(-\lambda_i A)$ be simply convergent ror o'>0 . It'in \lambda h \, there exists a subsequence \lambda h, with $\frac{\lim_{\lambda \to \infty} \lambda_{irn_{y}}/\lambda_{n_{y}} > 1}{\lambda_{irn_{y}}/\lambda_{n_{y}} > 1}$, then the sequence of partial sums $\sum_{i=1}^{n} \frac{1}{a_{n_{i}}} \exp(-\lambda_{i}, \lambda_{i})$ (r=12 ····) is uniformly convergent in the sufficiently small neighbourhood of the regular point on $\sigma = 0$

(2) $\underline{\text{LEMMA}}$. For the proof of Theorem 1, we need next Lemma.

have

(27)
$$\frac{1}{y} \log |\mathcal{R}_y(S)| < -\delta + \varepsilon_y(S),$$

 $S \in \mathcal{P}$

 $\underline{ \text{where}} \quad \text{(i)} \quad \mathcal{R}_{\mathcal{Y}}(\delta) = \mathcal{F}(\delta) - \mathcal{S}_{\mathcal{Y}}(\delta) \;, \quad \mathcal{S}_{\mathcal{Y}}(\delta) = \int_{0}^{\mathcal{Y}} \exp(-\delta \mathcal{X}) \; dd\alpha)$

(ii) p: bounded domain, in which F(d) is regular.

(iii)
$$\varepsilon_{y(B)} + o$$
 as $y \to re$ unitorm-
ly in p

<u>Proof.</u> Put $l = \frac{1}{2} (\sigma_0 + \sigma_0^2)$ $(0 < \sigma_0 < I)$, $M = \max_{A \in \mathcal{A}} |F(A)|$ By Lemma 1 of the previous Note ([3]),

$$|\mathcal{R}_{y}(J)| \leq M + |\mathcal{S}_{y}(J)|$$

$$A \in \mathcal{P}, \sigma \leq 2$$

where (i)
$$d(\sigma, \gamma) = \max_{S \in \mathcal{P}} |S - \sigma_s|$$

(ii) $|S_{\#}(\sigma_s)| < \chi(\sigma_s)$ (04 $\gamma < +\infty$)

Since σ - σ .< o , for sufficiently large γ , by (2.2) we get

$$\angle 2 \times (\sigma_0) \exp \left(-(\sigma_0 - \sigma_0) \psi\right) \left\{ J + \frac{d(\sigma_0, \gamma)}{\sigma_0 - \gamma} \right\}$$

Hence

(23)
$$\frac{1}{y} \log |\mathcal{R}_y(I)|$$

 $S \in \mathcal{P}, \sigma \notin \mathcal{C}$

 $\langle -\sigma' + \sigma_o + \frac{1}{2} C, (\sigma_o, 2.7) \rangle$ where $C_r = log \{ 2 \times (\sigma_o) (1 + \frac{2(\sigma_o, 7)}{\sigma_o}) \}$ On the other hand, by Lemma 2 of the previous Note ([3]),

where (i) $\left| \int_{y}^{y'} \exp(-\sigma_{o}^{2}x) dd(x) \right| < \chi_{1}(\sigma_{o}), y' > y \ge$ (ii) $d(\sigma_{0}^{2}, p) = \max_{A \in P} |A - \sigma_{0}^{2}|$

Letting
$$y' \rightarrow +\infty$$

so that

$$\langle -\sigma' + \sigma'^2 + \frac{1}{y} C_2 (\sigma, \chi, \mathcal{P}) \rangle$$

where $C_2 = \log \{\chi_1(\sigma'), \frac{d(\sigma'^2, \mathcal{P})}{2 - \sigma'^2} \}$
Finally, by (2.3) and (2.4),

$$\frac{1}{\theta} \log |\mathcal{F}_{y}(J)|$$

$$<-\sigma+\sigma_{0}+\sigma_{0}^{2}+\frac{1}{\theta}(e_{1}+c_{2})$$

Since σ_o is arbitrary, we can put

(3) <u>PROOF OF THEOREM I.</u> By the assumption $\lim_{T \to \infty} \frac{\nabla r}{r} / \lambda_r > I$, there exists $\Re \left(> 0 \right)$, such that

(31)
$$\gamma \nu / \lambda_{\nu} > 1 + \nu^{0}$$
 for $\nu > \mathcal{N}(\nu^{0})$

Putting $f_{\nu} = \tau_{\nu} - e^{-(\varepsilon > 0)}$, for sufficiently large ν , we have evidently

Hence, by Lemma and the assumption dd(x) = 0 , $x \in (\lambda v, Ty)$,

$$\frac{1}{5\hat{y}} \log |\mathcal{R}_{5\hat{y}}(J)|$$

$$= \frac{1}{5\hat{y}} \log |\mathcal{R}_{\lambda\hat{y}}(J)|$$

$$< -\sigma' + e_{5\hat{y}}(J)$$

In particular

(3.2)
$$\frac{1}{5\nu} \log |\mathcal{R}_{\lambda\nu}(\lambda)|$$

$$\leq 0$$

$$< -\sigma + \varepsilon_{\pi\nu}(\lambda)$$

Again, by Lemma,

$$\frac{1}{5\nu} \log |\mathcal{R}_{\lambda\nu}(J)|$$

$$< (\frac{\lambda\nu}{5\nu}) (-\delta) + (\frac{\lambda\nu}{5\nu}) \mathcal{E}_{\lambda\nu}(J)$$

$$< (\frac{\lambda\nu}{7\nu}) \frac{1}{1 - \mathcal{E}/\tau_{\nu}} (-\delta) + \mathcal{E}_{\lambda\nu}(J)$$

$$< (-\delta') \frac{1}{/+\nu} \frac{1}{/-\mathcal{E}/\tau_{\nu}} + \mathcal{E}_{\lambda\nu}(J)$$

by (3.1), whence, for sufficiently large 1 log (Rx, (d) | (3.3)

$$\langle (-d) \frac{1}{\sqrt{1+\sqrt[3]{2}}} + \varepsilon_{\lambda\nu}(\lambda)$$

Let \mathcal{A}_{ℓ} be the regular point on $\delta = 0$, and $F(\delta)$ be rein $|\delta - \delta_1| \le \delta$. We define the F(A) be regular harmonic function A(d) such that

(i)
$$h(s) = -\sigma'$$
 on $|s-s| = \delta'$, $\delta \ge 0$,

(ii)
$$A(\lambda) = (-\delta)$$
 $\frac{1}{1+\sqrt[3]{2}}$ on $|\lambda - \lambda_1| = \delta$, $\delta < 0$

Hence, we have evidently

in particular

By (3.2) and (3.3),

 $\frac{\frac{1}{8y} \log |\mathcal{R}_{\lambda_{Y}}(d)|}{|\mathcal{S}^{-1}(d)|} < h(d) + \max \left\{ \mathcal{E}_{\lambda_{Y}}(d), \; \mathcal{E}_{\pi_{Y}}(d) \right\},$ whence, by (3.4), in the sufficiently small neighbourhood of A, , we can put

for sufficiently large /

Therefore, the sequence of $\int_{\lambda_{V}}(J)$ converges uniformly in the neighbourhood of A_7 , which is to be

(4) THEOREM II. As an application of Theorem 1, we can establish the next gap-theorem of Hadamard's type.

THEOREM II. Under the same conditions as Theorem 1, if, for any given ε (>0), $\int_{\tau_r}^{\tau_r} |dd(x)| = O\left(\frac{\delta r p}{r}(-\varepsilon \lambda_{rr})\right)$ ($\tau_r \leq \lambda(\lambda_{rr})$), $\sigma = o$ is the natural boundary for (1.1).

<u>Proof.</u> If there would exist a regular point A_1 on d=0, by the Theorem 1, the sequence of partial sums $\int_{-A_1}^{A_2} \exp(-\lambda \alpha) \ d\alpha(\alpha)$ (y=7.2...) would uniformly convergent in the neighbourhood of A_7 . $|J-J_1| < \delta$. Hence, in particular, the sequence of λ_{ν} exp(ϵx) $\epsilon dd(x)$ ($\gamma = 1, 2 \cdots$, $\epsilon \epsilon(\delta)$ is convergent. For any given λ (>0), we can put $(47) \int_{-\infty}^{\lambda} \exp(\epsilon x) dd(x)$

= $\int_{0}^{\lambda_{y}} \exp(\xi x) dd(x) + \int_{0}^{\lambda_{y}} \exp(\xi x) dd(x)$,

where $\tau_{V} \leq \lambda \langle \lambda_{I+I} (V \cup I) \rangle$. By the assumption.

$$\left| \int_{-\tau_{\gamma}}^{\lambda} \exp(\epsilon x) \, dd(x) \right| \leq \exp(\epsilon \lambda_{HI}) \int_{-\tau_{\gamma}}^{\lambda} |dd(x)| = o(\tau)$$

Therefore, (4.1) is convergent for $d = -\varepsilon$, which is impossible, q.e.d.

From Theorem 2, we get easily

In this case, since $\lambda_{\gamma} = \tau_{\gamma-\gamma}$, we have evidently $\int_{\tau_{\gamma}}^{\lambda} |a_{\alpha}(\alpha)| = 0$, (でる人く/タチメ) Hence corollary immediately follows from Theorem 2.

(5) THEOREM III. In this section, we shall prove

THEOREM III. Let (1.1) be simply convergent for $\sigma > 0$. If ad (x) = 0 in $x \in (\lambda, \tau_r)$ $(r = z, z, \cdots)$ with $\tau_{r-1} < \lambda_r < \tau_r$

 $t_{\text{max}} = t_{\text{max}} = \infty$, then the sequence of fartial sums $t_{\text{max}} = t_{\text{max}} = t_{$

REMARK. Since $\sum_{\tau} \int_{\tau_{\tau'}}^{\lambda_{\tau'}} \exp(-\lambda x) \, d \, d(x)$ $(\tau \cdot = \sigma)$ is convergent uniformly in the wider sense in \mathcal{P} , by well-known Weierstrass's theorem E is the simply connected domain.

From Theorem 3 follows next corollary.

COROLLARY III (A.Ostrowski), (21 p.43, (41). Let $F(\lambda) = \sum_{\lambda} a_{n} \exp(-\lambda_{n}\lambda)$ be simply convergent for $\delta > 0$. If in $\{\lambda_{n}\}$, there exists a subsequence $\{\lambda_{n}, \}$ with $\lim_{\lambda \to \infty} \frac{\lambda_{n} + n_{n}}{\lambda_{n}} = \infty$, then the sequence of partial sums $\lim_{\lambda \to \infty} \frac{\lambda_{n}}{\lambda_{n}} = \frac{2\pi}{n} \frac{(-\lambda_{n}, \delta)}{(-\lambda_{n}, \delta)}$ is convergent uniformly in the wider sense in the existence-domain of $F(\lambda)$

 $\frac{\text{Proof.}}{\ell_{\text{Proof.}}} = \infty \qquad \text{by the assumption}$ we can put

(57)
$$(\tau_{\nu}-\lambda_{\nu}) > \nu_{\nu}\lambda_{\nu}$$
, $\lim_{N\to\infty} \nu_{\nu}^{2} = +\infty$

If $\delta=0$ is the natural boundary for $F(\Delta)$, Theorem 3 is trivial, so that we can assume that E contains points with negative real parts. For any given bounded domain \mathcal{P} (c E), we can surround \mathcal{P} by the closed analytic curve \mathcal{C} , which is contained in E and contains points with negative real parts. Let us denote by Δ the bounded domain surrounded by \mathcal{C} . By (3.2) and (3.5), we have

(52)
$$\begin{cases} \frac{1}{5y} \log |\mathcal{R}_{\lambda_{y}}(J)| & <-\sigma' + \xi_{y}(J) \\ A \in A \text{ of } Z = 0 \end{cases}$$

$$\frac{1}{5y} \log |\mathcal{R}_{\lambda_{y}}(J)| & <(-\sigma') \frac{1}{1 + \frac{2y}{2}} + \xi_{\lambda_{y}}(J)$$
Heavis

Now, let us define the harmonic function $\mathcal{L}(J)$ such that

$$(3) \left\{ \begin{array}{ll} h(b) = \sigma' & \text{on the boundary arc} \\ & \text{of } C & \text{contained} \\ & \text{in } \sigma' \succeq \sigma \end{array} \right.,$$

$$h(b) = 0 & \text{on the boundary arc} \\ & \text{of } C & \text{contained} \\ & \text{in } \sigma' \leqslant \sigma \end{array} \right.,$$

so that

(5.4)
$$min h(\delta) = m > 0$$

 $\delta \in \mathcal{P}$

On the other hand, by (5.2) and (5.3),
$$\frac{1}{f_{\mathcal{P}}} \log |\mathcal{R}_{\lambda_{\mathcal{P}}}(b)|$$

$$\leq (-d) \cdot \frac{1}{1 + \frac{2}{2}} - (1 - \frac{1}{1 + \frac{2}{2}}) k(b) + \max \left\{ \mathcal{E}_{\lambda_{\mathcal{P}}}(b), \mathcal{E}_{f_{\mathcal{P}}}(b) \right\}$$
Accordingly, in \mathcal{P} ,
$$(5.5) \frac{1}{f_{\mathcal{P}}} \log |\mathcal{R}_{\lambda_{\mathcal{P}}}(b)|$$

$$\leq \frac{1}{1 + \frac{2}{2}} \left\{ k(b) - d \right\} - k(b) + \max \left\{ \mathcal{E}_{\lambda_{\mathcal{P}}}(b), \mathcal{E}_{f_{\mathcal{P}}}(b) \right\}$$

$$\mathcal{E}_{f_{\mathcal{P}}}(b)$$

Since $\frac{A(b)}{p} - \delta'$ is bounded in $\frac{1}{3}$, by (5.1) and (5.4), $\frac{1}{3}$, by $|\mathcal{R}_{\lambda_{Y}(b)}| < -\frac{m}{2}$

for sufficiently large / .

Hence.

$$\lim_{\gamma \to \infty} \begin{array}{c|c} |\mathcal{R}_{\lambda_{\gamma}}(s)| = 0 \\ s \in \gamma \end{array}$$
 uniformly in γ .

Since \mathcal{P} is arbitrary, the sequence of partial sums $\int_{a}^{Av} \omega \phi(-3I)$. ad(x) is convergent uniformly in the wider sense in E . c.e.d.

- (*) Received July 28, 1951.
- [1] A.Ostrowski: Über eine Eigenschaft gewisser Potenzreihen mit unendlich vielen verschwindenden Koeffizienten. Berl.Sitz.1921.
- [21 V.Bernstein: Sur les progrès récents de la théorie des séries de Dirichlet. Paris. 1933.
- (31 C.Tanaka: Note on Lapalacetransforms. (VI) On the distribution of zeros of partial sums of Laplace-transforms.
- [4] A.Ostrowski: Über vollständige Gebiete gleichmessiger Konvergenz von Folgen analytischer Funktionen. Abh. Hamb.Math.Sem. t.1.1922.

Mathematical Institute, Waseda University, Tokyo.