NOTE ON LAPLACE-TRANSFORMS (VII)

OF THSZ OVERCONVERGENCE AND SINGULARITIES OF LAPLACE-TRANSFORMS
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(1) _I. Let dix) Dbe
of bounded variation in any finite
interval c=%x2X , X belng

arbitrary. Put

-
(r-7) Flh = exp(x02) decx)

(AN=0+it, ol0)=0)

In this present Note, we shall
discuss the relation between the
overconvergence and singularities
of (1.1). #e shall begin with

THEQOREM, I. Let F(4) be sinply
convergent for ¢>0 . II ad)
=0 n x€ (ArT) (y=r2- ) witn o<
Ay<t, and dem v, >1 , then in
the Juiiicieg‘ﬁ[ small neighbour-
nmwwms_n_r o,
the sequence of partial sums
/ "exp (:4%) dd(x) (V=72 ) 1s uni-
tormly .conyergent, l.e,

/n_, exp(A2) dd (2 (T =0)
is uni¢ormlv convergent.

1t we apply Theorem 1 to
Dirichlet series, putting o)

—'L‘\,«x Q. (og),%(..,{,,q% we get
a\l“ ?7

LOROLLARY I (A.Ostrowski),
(11, £23 p.39). Let FuW) =
T da p{-Ma4) D& simply convergent
for’ ¢so . I In (AL} A
there exists a subsequence {An}

lm» /\,,7.,,//\,., >1 , then the
quence of partial sums an %P (A8
(r=72 ) 1s uniformly con-
vergent in the suificiently small
neighhourhood of the regular point

on 'f._i .

{<) LENMA.
Theorem 1,

For the proof of
we need next Lemma.

LE¥NA., Let (1.1) be simply
convergent 10or 4s>0 . Then, we
have

2 7)) 7’—!»7,2;(/1)] <-o’-rf,(/f)’

Aep
where (j» 727(A1=F(J)—5,(J), J,/A)=/’M(-Azmazz/
(i1) » bounded domiain, in which
Fi4) s regular,
(iii) E&d)—=o as g—rrw unitorm-~
ly In 2

Proof. Put 7= (o +3') ,

(0<o.<Z) , H o= m2X |5 |
By Lemma 1 of the previous Note
(c31),

22 [ Ry |

Q6P . 057

= Mt Sal

o ?)
< Nt X@) ap(- o) {1+ 5, }
where (1) d (0. p) = mex |4-7, |
4EP 4

(11) ISpa |<x@) (o y<re)

Since o¢-d.,<0 , for surlficiently
large y , by (2.2) we get
Ry (4
eP, 5L
40, 7)
@ - -0 —_
L 2Ke) g (-W-dnpy{ T+ %7 k
Hence
4
@2 3) Aoy | Ry |
T AEP, I£Y]
(-F+do+ L ¢, 0, 22,
where ¢, =toj {axw) (1+ i,‘,f‘——’—’-)} .

On the other hand, by Lemma 2 of
the previous Note ( 31 ),

l/yy)w/f(-/:r) deuz/!

< onp (-(d-0Y) X @i AL
2-92
p
where (1) l// w(-a’,’amaml< Xi@o), >4
(11) 42 ) = max | 4-0,7 |
SEP
Letting ¢ — +e ,
[Ry | < erp(-(d-dP)f) Xioo) A0 D)
VI ITY 7-9°
so that
I fog 1Ry (4]
(24 o7 'Ry
g 7 V€D, 727
LRI NN N
where ¢, =ZIyixiv,) L& 7”}

Finally, by (2.3) and (2 4),
T a2
€p
(-T+0, +a,7 + _§. (€ +Ca)

Since &,
put

is arbitrary, we can



i,(J)=d’,+dj.2«r —;—(c,rt,) f e oA,
(3) PROOF OF THECOREM I. By the
assumption tLm /A > 2 , there

>80
# (>0)

B, > 1+F

exists , such that

(3 1) For Y >N (F)

Putting 3y =-¢ (€0
ficlently large v ,
evidently

, for sufr-
we have

Ar < Iy <Y

Hence, by Lemma and the assumption

dd(x) = © N xe W),
%;‘ j’a l?‘fy(x’)‘
= '—;-7 Log | Ry 2]
< -0t &)
In particular
. Z 2y, W
2 A
(3-2) 5 A’L@Z
< -0+ &y, 4
Again, by Lemma,
;;1,;,»[2,\,01;1
A d<o
v
(F)e) + (4 Hw
A 1 . s
<('Tv) 1 &/, (-4) + E4,04)

) 1 7 _
< (-0) T _—/_ 5/tp + &),

by (3.1), whence, for suificiently
large Y ,

(3-3) L talRy, 0 |
£y Lo “;

< &d) TIJ/,&— + EA (D
Let 4, Dbe the regular point
on o’ =0 , and F4d)
in J14-41%d .+ We deilne the
harmonic function 4¢4) sucn that

i) 4 =-d

Gi)

1
4) =(-d) —
X (-7) T
2

Hence, we have evidently

(3 4) 40U < -0
. in particular
A a0 P
By (3.2) and (3.%),
ERYFL SRR
4 b’udﬂ(d’

< AU+ mar ) ey}
whence, by (3.4), in the suffi-
ciently small neighbourhood of 4
we can put

be regular

o A-sl=d, d=0,

b

o | 4-A 1=,
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o

;Za.uwbmp be simpiy convergent ror

5 Lp R, h | < Lepp (o<p<T),

so that

IRy | < exp (-5 Log(F))
for sufficiently large YV

Therefore, the sequence of J )

converges unilormly in the neigh-
bourhood of /4, , which is to be

proved.

(4) TMEOREM II. As an appllica-
tion of Theorem 1, we can esta-
blish the next gap-theorem of
Hadamard's type.

THEOREM II. Under the same con-
ditions as Lheogqg_;, if, 1or any
given € (>6) , _/  ldotixr|=0 (exp(-£Am)

(twsAlAr) ,d=0 18 the natural boun-

dary for (1.1).

Proof. If there would exist
a regular point 4 on /=0
by the Theorem 1, the sequence of
partial sums /% oxp(4%) adz)
(V=72 --) would unitormly con-
vergent in the neighbourhood of 4, -
[4-4, 1< . Hence, in
particular, the sequence of
/‘*’m(izladzn (r=s2 - , o¢é<d) L8 con-
vergent. For any given A (>o)
we can put

A
(4 7) T ep€2) ddx)

Ay A
- ) g e anen) + [ ewpten) dex),
.
T

where Ty &\ (A, (YU .
assunption,

By the

A
I = ot (EAy) /'d“(l’l =0(7)

Ty

A
I/ oxXp(£2) dol(z)
Ty

Therelore, (4.1) is convergent for
’=-¢ , which is impossible,
qe€.ds

From Theorem 2, we get easily

COROLLARY II. Let Fd) =

dJ=0
F) .

s>0 o I1f tm S/, -1
is the natural boundary ror

In this case, since A, =7, ,
we have evidently //Jlddn},zza ,
T

(€ A< Apy ) . Hence corol-
lary immediately follows from
Theorem 2,

(5) IHZOREM TII.
tion, we shall prove

In this sec-

THZOREM III.

Let (1.1) be sim-

ply convergent tor >0 . It
dol (%) = O in xe A o) w=z2 )
with Ty < Av < Ty ana



g Ty = t the sequence of
Parvial sums /" erw(42) dotz)

is convergent uniformly in the
wider sense in the existence-

domain E of F(4) .
Since £;/C% enp (-47) AT,
(17:br " is convergent uniformly
in the wider sense in 2 , by
well-known Welerstrass's theorem
E 1s the simply connected do-
main,

JEM
;,«d

ARK.

From Theorem 3 fcllows next
corollary.

COROLLARY III (A.Ostrowskl),
( L21 p. 43, :Z:'). Let Fu) =

;}a, %ﬂl) be simply convergent
for 'Y . If in Ax} R

there exists a subsequence ila}
with L= A#ay [ An, = , then the
sequence of partial sums Z°

sap (-1,.6)  1s convergent unirormly
in the wider sense in the existen-
ce-domain of F(4) .

By the assumption
, we can put

Lim V) =+00
V=00

1f Jd=0 is the natural boundary
for Fid , Theorem 3 is trivial,
so that we can assume that E
contains points with negative real
parts. For any glven bounded do-
main P (¢ E) , we can surrcund
P by the closed analytic curve
o , which is contalned in E
and contains points with negative
real parts. Let us denote by 4
the bounded domain surrounded by

¢ « By (3.2) and (3.5), we have
( £ o, wl < - B
' AL dxo
4 2 i
Lol 2y, 0 <) —~
(1Y 7 %A ) 6‘
' Jea S<o 1+ % g
Now, let us define the harmonic
function 44 such that
hQ) =0 on the boundary arc
§ of ¢ contained
53 in Jdzo s
I
\ =0 on the boundary arc
of ¢ contained
in s¢o s
so that
(5-4) mn fd) = om >0
LEP

)
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On the other hand, by (5.2) and
(5.3), ,
% Loy 1Ry, (4]
Admo
< (=d-

1 b4
— 4
T " *% ) 4@

(
+ mal &, 4, 5@M4

Accordingly, in » ,

G55 % Log 1Ry, b
sep
4
1+ B/, {’w"/i - A+ mar & 1
5,—,(/1)}
Since 44 -7 is bounded in

2 , by (5.1) and (5.4),

'}; by 1 R, |
A€D
for sufficiently large Y .

”/

<- 772

Hence,
Lim IR)VM; {=0
it 4€p
uniformly in 2 .
Since » 1is arbltrary, the se-

quence of partial sums /" exp(41).

Aok(x) is convergent uniformly
in the wider sense in E °
q.€.do

(*)
€13
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