By Chuji tanaka

(Cormunicated by Y.Komatu)
(I) THEOREM. Let $f(x)$ be R integrable in any finite interval
$0 \leqq x \leqq X$, x being an arbitrary positive constant. Let the Laplace-transform of $f(x)$ be
(1.1.) $\quad F(d)=\int_{0}^{\infty} \exp (-s x) f(x) d x$

$$
(s=\sigma+c t) .
$$

$F(1)$ has generally four special abscisses, i.e. regularity-abscissa σ_{r}, simple convergenceabscissa σ_{s}, uniform conver-gence-sibscissa σ_{u}, and absolute convergence-abscissa σ_{a} ($\left.\sigma_{r} \leqq \sigma_{\Delta} \leqq \sigma_{u} \leqq \sigma_{a}\right)$ In the previous Note ([l] - See references placed at the end -), we have discussed the sufficient conditions for $\sigma_{s}=\sigma_{u}=\sigma_{a}$. In the present Note, we shall study the sufricient conditions for $\sigma_{r}=\sigma_{t}=\sigma_{u}=\sigma_{a}$. The theorem states as follows.

THEOREM. $\quad \prod_{t \rightarrow \infty} \frac{1}{t} \log |f(t)|=\sigma_{r}=\sigma s$ $=\sigma_{u}=\sigma_{a}$, provided that
(a) $f(z)(z=r \exp (i \theta))$ is regu$\frac{\operatorname{lar} \ln p}{z-0}$, and $|0| \leqq v<\frac{\pi}{2}$, except
(b) for sufficiently large r, $\frac{f(z)}{D}$; is of exponential type
(c) $\quad \lim _{r \rightarrow+0} r\left|f\left(r e^{i \theta}\right)\right|=0 \quad$ uniformly in ${ }^{r \rightarrow+0}$;
(d) $\lim _{\lim _{\varepsilon_{1} \rightarrow+0}} \int_{\varepsilon_{1}}^{\varepsilon_{2}}\left|f\left(r e^{i \theta}\right)\right| d r \quad\left(\varepsilon_{1}<\varepsilon_{2}\right)$

Furthermore, there exists at least $\frac{\text { one singular point }}{(-\infty<t<+\infty) \text { on } \sigma=\sigma_{r}}=\sigma_{r}+$ it
(2) Proof. On account of (a), (b), and (d), $f(t)$ belongs to $c\left\{I_{v}\right\}([1])$, so that

$$
\sigma_{s}=\sigma_{u}=\sigma_{a}=\lim _{t \rightarrow \infty} \frac{1}{t} \log |f(t)|
$$

By Cauchy's theorem, in D, we

$$
\begin{aligned}
& \begin{array}{l}
\text { have } \\
\begin{array}{l}
\text { (2-1) } \\
=\int_{R_{1}}^{R_{1} e^{i \theta}}+\int_{R_{1}}^{R_{2}} \exp (-\Delta x) f(x) d x \\
R_{1} e^{i \theta}
\end{array}+\int_{\substack{R_{1} e^{i \theta} \\
a \ln x=\theta}}+\int_{\substack{R_{2} e^{i \theta} \\
|x|=R_{2}}}^{R_{2}} \\
=I_{r}+I_{2}+I_{3}, \text { say. }
\end{array}
\end{aligned}
$$

By (b), there exists a constant C such that

$$
\begin{aligned}
& \text { (2.2) }\left|f\left(r e^{i \theta}\right)\right|<\exp (e r) \\
& \text { for sufficiently large } r
\end{aligned}
$$

Suppose that
(2.3). $0<t$, and max $\left(c, \sigma_{s}\right)<t \operatorname{coc} \theta$

Then, putting $s=t \exp (-i \theta)$, by (2.2) and (2.3),

$$
\begin{aligned}
\left|I_{3}\right| & \leqq \int_{0}^{\theta} \exp \left\{-t R_{2} \cos (\alpha-\theta)+R_{1} c\right\} R_{2} d \alpha \\
& <\theta R_{2} \exp \left\{R_{2}(e-t \cos \theta)\right\} \\
& \rightarrow 0 \text { as } R_{2} \rightarrow+\infty
\end{aligned}
$$

By (c),

Hence, by (2.1)
(2.4) $\quad F(\Delta)=\pi\left(t e^{-i \theta}\right)=\int_{0}^{\infty} \exp (-\Delta x) f(x) d x$

$$
=e^{i \theta} \int_{-\infty}^{\infty} \exp (-t|x|) f\left(|x| e^{i \theta}\right) d|x|
$$

$\left(\max \left(c, \sigma_{s}\right)<t \cos \theta\right)$.
On the other hand,

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} \exp (-s x) f(x) d x \\
& \text { is regular for } \quad x(s)>\varphi(0)= \\
& \lim _{t \rightarrow \infty} \frac{1}{t} \log |f(t)| \quad, \text { and } \\
& G(t)=e^{(\theta} \int_{0}^{\infty} \exp (-t|x|) f\left(|x| e^{i \theta}\right) a|x|
\end{aligned}
$$

is regular for $X(t)=\varphi(\theta)=$

$(b)^{2}, f(x)$ and $f\left(|x| e^{i \theta}\right)$ belong to $C\left\{I_{v}\right\}$, so that three convergence-abscisses coincide with $\varphi(\beta)(\beta=0 \sigma \theta)$ respectively. By (2.4), for $\max \left(c, \sigma_{s}\right)<$ $t \cos \theta, r\left(t t^{-i \theta}\right)$ is equal
to $G(t)$. Hence, $\bar{F}(s)$ is
regular in $D_{1} \cup D_{2}$, where D_{1}. and $R(S)>\varphi(0) \quad, D_{2} \cdot R\left(s^{i \theta}\right)>\varphi(\theta)$,
（2．5）$\quad F\left(t e^{-i \theta}\right)=e^{i \theta} \int_{0}^{\infty} \exp (-t|x|) f\left(|x| \epsilon^{i \theta}\right) d|x|$

$$
f a r \quad r(t)>\varphi(\theta) .
$$

Suppose that
（2 6）$\quad \sigma_{r}<\sigma_{J}=\sigma_{u}=\sigma_{a}=\alpha=\varphi(0)$ ．
For sufficiently small $\varepsilon(>0)$ ， we have

$$
u_{r} \backslash \alpha-\varepsilon<\alpha<\alpha+\varepsilon
$$

Then，$F(1)$ would be regular in $\mathcal{R}(S) \geqq \alpha-\varepsilon$ ． $\bar{F}(J)$ is abso－ lutely convergent for $\mathcal{k}(s)=x+\varepsilon$ and for $x>c$ ，$-(x)$ is ana－ lytic，so that $f(x)$ is continu－ ous and of bounded variation．
Hence，by the inversion－formula of Laplace－transform（52：p．105），

$$
f(x)=\frac{1}{2 \pi i} \int_{\alpha+\varepsilon-1 \infty}^{\alpha+\varepsilon+i \infty} \exp (d x) F(S) d s \quad(x>0)
$$

By Cauchy＇s theorem，

$$
\begin{gathered}
\quad \int_{\alpha+\varepsilon-i T}^{\alpha+\varepsilon+i T} \exp (\delta x) F(\delta) d s \\
=\int_{\alpha+\varepsilon-i T}^{\alpha-\varepsilon-i T}+\int_{\alpha-\varepsilon-i T}^{\alpha-\varepsilon+i T}+\int_{\alpha-\varepsilon+i T}^{\alpha+\varepsilon+i T} \\
=I_{1}+I_{2}+I_{3} \text { Lay }
\end{gathered}
$$

盾 $x(s) \leq \alpha+\varepsilon$ is contained in the angular domain $\mid \arg (s-s o l \mid$

؛ $\beta<\pi / 2$ ，where $R\left(\right.$ Soe $\left.e^{i \theta}\right)$
$>\varphi(\theta) \quad, \quad \frac{\pi}{2}-\theta<3<\frac{\pi}{2}$
Therefore，by (2.5) and the well－ known theorem（［2］p．49），we have
（2．8）$\quad \lim _{(t \rightarrow-\infty}|F(\sigma+i t)|=0$ uniformly with respect to σ ．

Accordingly，

$$
\begin{aligned}
& \left|I_{1}\right|<o(1) 2 \varepsilon \exp ((\alpha+\varepsilon) x) \rightarrow 0 \text { as } T \rightarrow+\infty . \\
& \text { Similarly }\left|I_{3}\right| \rightarrow 0 \\
& \text { Hence, by }(2.7), \\
& (2 \cdot 9) \quad f(x)=\frac{1}{2 \pi i} \int_{\alpha-\varepsilon-i \infty}^{\alpha-\varepsilon+i \infty} \exp (s x) F(s) d s \quad(x>0) . \\
& \text { By }(2.9), \\
& (2 \cdot 10) \quad f(x) \\
& =\exp ((\alpha-\varepsilon) x) \cdot \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp (i(x) F(x-\varepsilon+i t) \alpha t \\
& \quad(x>0) .
\end{aligned}
$$

on account of（2．8）

$$
\lim _{t \rightarrow-\infty}|F(\alpha-\varepsilon+i t)|=0
$$

so that

$$
F(\alpha-\varepsilon+i t)=\int_{+\infty}^{t} F^{\prime}(\alpha-\varepsilon+i t \cdot i d t
$$

Hence，$\quad \Gamma(\alpha-\varepsilon+i t)$ is of bounded variation in $T \leqslant t<+\infty \quad$ ． Therefore，by the well－known theo－ rem（［3］p．7），

$$
\int_{-\infty}^{0} e x p(i t x) F(\alpha-\varepsilon+i t) d t=O\left(\frac{1}{x}\right)
$$

Similarly，

$$
\int_{0}^{+\infty} \exp (i t x) F(\alpha-\varepsilon+i t) d t-O\left(\frac{1}{x}\right)
$$

Therefore，by（2．10），

$$
f(x)=\exp ((\alpha-\varepsilon) x) \quad O\left(\frac{1}{x}\right)
$$

so that
$\overline{\lim }_{x \rightarrow+\infty} \frac{1}{x} \log |f(x)| \leqq \alpha-\varepsilon<\alpha$,
which is impossible．Thus，we have

$$
\sigma_{r}=\sigma_{s}=\sigma_{u}=\sigma_{u} \Rightarrow \alpha .
$$

By what was proved above，the exi－ stence of so immediately follows． This completes our proof．
（к）Received July 28,1951 ．
i1）C．Tanaka：Note on Laplace－ transforms．（II）On some class of Laplace－transforms． （I）These Rep．
［2। G．Doetsh：Theorie und Anwen－ dung der Laplace－Transfor－ mation．1937．
〔3〕 S．Bochner：Vorlesungen uber Fouriersche Integrale． Leipzig． 1932.

Mathematical Institute， Waseda University，Tokyo．

