
SOME METRICAL THEOREMS ON FUCHSIAN GROUPS

By Masatsugu TSUJI

(Communicated by Y. Komatu)

1« Let Gr be a Puchsian group of
linear transformations ;Sn.U) c*- = 0

y
.l

y

2
}
. ) , which make ]z\ <1 invariant

and Do D® its fundamental domain,
which contains z = O and is bounded by
orthogonal circles to \z\ =• 1 and a
closed set e

0
 on 1*1 = 1 We remark

that PO can be so constructed that
the equivalent points on the boundary
of Do are equidistant from z-o^
Let z*, , I>n

 9
 en, be equivalents of

z
0
 =o > Do t -βo respectively.

>O , then
The converse is

Theorem 1. If
Σ£o (1 ~!2nJ)<- oσ .
not true in general*

Proof Since m.e
0
>o , we have

^ )
 Lθt

then it^Cz^) - ιt(o) — VYL €<> , so that

hence *,

v f i -I-T Π <̂ . *sβ __J1 ̂  -J7^ x ort

Let Kj , , , K n, £ *•£ 3J) be TV cir-
cles on the TXT -plane, which lie out-
side each other o We invert them on
any one of them Indefinitely, then we
obtain infinitely many circles cluster-
ing to a non-dense perfect set E" .
As Myrberg

 2
^ proved, E is of positive

logarithmic capacity, so that if we map
the outside of E" on !zl<i by ur=-jp(z) ,
then f tej is automorphic to a cer-
tain Fuefo sian group 6f- , such that
Σ^o ( * -

 |2r
*'> <• °° - On the other

hand, as I have proved in a former pa-
per/

5
 τn,e

0
 - o

 β
 Hence the converse

is not true in general.

2. Let z be any point in/;z.l<l and
(*•) be its equivalent in D

0
 <, Let

z = r«
cθ
 (o^r<l3 be a radius throu-

gh e
vβ

 « We denote the set
by E CΘ) . Then

Theorem 2
0
 ( i ) If S~

0
 ( 1 -l*n)) < *>

then ljw,
r̂
ι)fre

lθ
)i = 1 f

or
 almost all

I have proved this theorem in a for-
mer paper γ but my proof depends on a
theorem, which is false. A proof is
given by Yujδbδ.^ I will give the
following proof, which is somewhat sim-
pler than his. In the proof, we use
the following lemma /̂  Let B

0
 be a

closed set in D<? , which is of posi-
tive logarithmic capacity and EF̂  be
its equivalents. We take off Σ£

0
 E^

from ιz,Kl and let Δ be the re-
maining domain. We map Δ on
and let Σ£

O
 &n be mapped on a set

on |ξ I = i . Then

Lemma. (i) If (1- lz~i

then

then

Proof of Theorem 2;

(i) Suppose that Jl (1-|2>J)< <** ,

then the Green's function

α>

exists and liiâ ê ζ-CO = 0 almost,
everywhere on 1*1= 1 , when z -* £

lβ

non-tangentially to 1*1= 1 . From
this, we see that li *̂ ,̂  |(re

ίθ
)| * 1

for almost all €cd .

(il) Next suppose that ΣΓ»o (1-I2
« 0

= to
 β

 Let KΓ
0
 be a disc contained

in DO and X^ be its equivalents and
CVt "belts boundary. We take off Ẑ KΊ,
from \z>\< 1 and A he the remaining
domain and we take off 2.£

0
JZv from |z|<l

and An, be the remaining domain.

Let iL nίz
function in

be a bounded harmonic
Δ-yu » such that

βn
 Jl

 C
t,

 y

then E (θ) is everywhere dense in
D for almost all e

ίθ
 «

First we will prove that

nî
 u
^
(z)
-° i t Δ «;

We map ̂  on | ζ j < l , then by tho
lemma, \z\ =1 is mapped on a null
set o n | ξ | = J . Let 2j f̂, Cv be
mapped on a set 6^ on JJς | = l , then
liw^^^cx, ^β^ =o . Let tc^(z^ become
a harmonic function VVtC^) in |ζ}<! ,
then, since i χ | = I is mapped on a null
set, we have
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Since 0 < υ
 Λ
(e

CΘ
) < 1 and

we have lϊm, „.„.«, "Û (Λ)̂ 0 , or liw-
n
-»«o

 u
«,(*)

in A » q.e.d.

Let X i )z-Λ
p
|<r

β
 be a disc

contained in D
0
 o For any o< f»< 1 ,

let M(?0 be the set of €vθ ,
such that the part of the radius z=re
C.t-p<r<JL) does not meet the
equivalents of

 V
X . Then M (f) is a

closed set.

Let K
r
 i U-4

0
|
 <
 *•/*> . Since

the segment z=f^
9
 '&-?<•*-<.!.') does not

meet the equivalents of K and the
non-euclidean distance is invariant by
g^ , it is easily seen that for any
^ 6 AiCpJ '

 itβ
 neighbourhood:

does not meet the equivalents of K ,
if 5* is sufficiently small, where
£ depends on α

0
 and Tr

0
 only.

Then by the well known way, we can
construct a rectifiable Jordan curve
Λ in 12 1 < i , such that Λ meets
izf= i in M(f) and 4C«

xβ
y 5) is

contained in A for any -ê  eMCf) *
We may assume that the equivalents of
K' lie outside A . If w,M(p;>O,
then there exists a bounded harmonic
function v(z) in Λ > such that
0<v(z)<i in A , v(z )-0 on
A- M(f) andv(z)=l almost every-
where on M(f) .. Let Unix) be de-
fined .as before with respect to K'

 9

then 0< vCz) « ti^oO on A , so that
0<v(z) ̂û Uj) in A . Since by

(3), lΊw-̂ βo W-TL(Z) = O , we have αr(z )=o,
whic* is absurd. Hence

Let and

then M is a null set and if &* does
not belong to M, , then the radius
through £

v6
 meets the equivalents

of K infinitely often. Let O-n,
ίn,= i,2-j ') be rational points in I>

0

and Jr, >r
z
> -^r^^O and K

w
,̂  :

|2,-α
Λ
|<jfv

 f
 then there exists a null

set Mwt^ on 1^1 - 1 , such that if
£vβ does not belong to M^n, »
then the radius through c

vθ
 meets

the equivalents of Kwt-n, infinitely
often. Hence if we put M.̂ 2̂  M

wn
,#

then M is a null set and if V
θ

does not belong to M , then ECΘ.) is
everywhere dense in D

0
 , q.e.d

By modifying slightly the proof, we
can prove

If Σ O
then there exists a null set M. on
is.) = 1 , such that if e

iθ
 does not

belong to M , then for any segement
through €iβ , its equivalent in 2>

0

is everywhere dense in P
0 β

3. Suppose that P
0
 has a boundary

point on 1*1=1 and for any o<p<l ,
let B/ (f) be the part of J)

0
 ,

which lies in l-f<|z|<l . V<>(f)
consists of a finite number of connec-
ted closed domains. We consider only
such connected ones, which have boundary
points on|a| = l and let ϊ>

0
(f>) be the

sum of such domains and D^cp) be its
equivalents and put

Then (̂f) consists ̂of a countable
number of disjoint continua A^Cf) ,
such that

Since as remarked in § 1, equiva-
lent points on the boundary of D

β
- are

equidistant from z. =t 0 , Δ^ζf) is
bounded by Jordan arcs λ^ (̂  = ρ,t £,— )
and a closed set E^

 on
 \*\ —'\'

We put

Σ
n=o

(I)

n

A
Λ
 ends at two points In,

on Iz,} = 1 , which are fixed points
of some ̂  . If %* =7* for one* ,
then Anί?) is bounded by a single
Jordan curve, which touches |«1*Ί at
IΛ ~7ί . It is easily seen that
lf

 fΐl ̂ ^S »
 then

 λt
 ls

 contained be-
tween two circular arcs C£ , c'fc
through ξ̂  , ̂ ^ , which meets^zisl

with an angle ô , ,-<£•*, respec-
tively. Since X* (̂ ^ = 0^1,2^ ...)
can be grouped into a finite number of
equivalent classes, there exists ô  β
(o<o(</S^7C) , such that for any
X* , for which I* Ψ^* ,

We wi11,prove

Theorem 4» (i) If

then tn,ECf )=2τt ̂  (
ljL
)
 if
 £*

0
 (1-

— I*τt|) = oι» , then Ίτt£CP)—° Hence
if we put B =W E(P̂ ) > then

f-»o

*7C , if

For the proof, we use the following
lemma o

Lemma o Let K be a circle on the
-plane, which meets a half-line L i

arg ̂  = ̂(o<η^5:) and the real axis
at two points A 9 B with an angle
cX > o . We suppose that A lies
to the right of the origin 0 and B
lies to the right of A « Let K *>®
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the middle point of Then

Proof . First, denoting by T the
radius of K , we have AM. = tr-s\no(. .
Next, while we change the position of
K" with fixed r $ we see easily that
oM attains its maximum, when K is
inscribed in the angle between the po-
sitive real axis and L> and the maxi-
mum value is

 co
^ί « Hence T^

OM -feuJL , so that AM. ̂  θM S''n,o< feuvl
q.e.dβ* * '

4o Proof of Theorem 4.

(i) First suppose that ΣU»( 1-^1 X
8
*.

Then PO has a boundary point on UL! = 1 ,
since, otherwise, D

0
 lies in)χl^r

ί>
<i,

so that we can prove easily that
Σ£o(Λ-)**l)

β00
» which contradicts the

hypothesis. Let (ju; be the Gre'en's
function defined in the proof of Theo-
rem 2, then li nvr*! Q(r€ίθ)= o for almost
all e

ΐθ
 Let €

ίθ
 be such a point,

then, since Q Cz) ̂ <*
c
^ > ° outside

Δί?) , the segment L(θ
y
£? ϊ

χ=re (i'S"<TC<l) belongs to ̂ Cf)
for a sufficiently small ^ >°
Since AnΛP) a**

6
 disjoint from

each others, Ltθ,J) belongs to
a certain ^u

0
Cf) , so that

€CθeE
Uo
 o Since the set of €.^e is

of measure JLTC , we have ΌL E(f) = Z.K .

(ii) Next suppose that Γ£U t
1
 ~l

Zn
-0

=00 . we will prove mE
Λ
;po (n=o,l,

2
/ 0*

We may assume that |* Φ^ί for
any -& , since otherwise, E^ reduces
to one point as remarked above. Let
6
ΰθ
 be a point of En. We divide Ê

*
 }

S")
into three parts ,
according to whether (i)
meets £«!<,** for any
belongs to Δ^Cf) for a value
or (iii) LCΘ,£)

 llβs
 outside

for a value -

If e
ΐe € E and | * 1,, , then

by mapping Izl < 1 on the upper half
ur -plane, such that z — o , z. = eΐθ

 be-
come ur = i , w = 0 and applying the
lemma with Ί = Ig 9 we see that the
lower density of ̂  at e

iθ
 is ̂ 1 -sίn̂ c

<1 , where <χ is defined by (2)
0

Since by Lebesgue's theorem, the den-
sity is i almost everywhere on Ê  ,
we have w. E

(
^ = 0

If β
vθ
 6 E ̂ , then the equivalent

of Lie, 8) in I>o lies in i-p< |̂|< 1 ,
so that is not everywhere dense in D

0 β

Hence by Theorem 2, -m-E^ = O

If 6 £ -n, then it must coin-
cide with one of %*

 y
 ̂  » since the

complementary set of AtΛf) with re-
spect to \z*\< i. consists of a countable
number of domains, each of which is
bounded by a single \^ and an arc on
1^1 = 1 . Hence m E

(
^ ~O . Thus we

have proved w. En. =me

hence

RemarlL By means of the lemma , we
can prove similarly as the above proof,
the following theorems

Let P be a domain in |zj < 1 ,
which is bounded Jby orthogonal circles
to 1^1 = ί and avc4t),sed set e on
!z|= 1 . Then for almost all e

cθ

qt e , its sufficiently small neigh-
bourhood! I z - -ef-Q \ < F * Γ(̂ ) ,

UtgCl-%e-
£e
)|^5-^ is contained in P

for any •>? > 0 «»

So Let F be an open Riemann sur-
face of hyperbolic type spread over the
wr~plane and we map F on UKl by
ur - \jj~c&) 9 then ur(z.) is automor~

phic to a Fuchsian group Q . We ap-
proximate F by a sequence of Riemann

surfaces E^ i $ Cf*L C c Fn.,χ*F »
where fζv consists of only inner points
and consists of a finite number of
sheets and is bounded by a finite num-
ber of analytic Jordan curves„

Let ΔH, be the image of F- fv. in
|2.| < 1 , then /^ consists of a
countable number of connected domains
Δ&,

 β
 Let E£ be the part of the

boundary of z^
 9

 which lies on N-l
and let E^=.£ ̂ i Then we call

^ «*o ^

^~ i
1
,̂ En. the image of the ideal

boundary of F
 β
 It is easily seen

that E is independent of the appro-
ximating sequence P̂  and coincides
with the set E defined in Theorem 4.
b is the set of all €^e » such that
there exists a certain curve in |̂ I<1
ending at ecθ

 , whose image curve
on F tends to the ideal boundary of
F . Since as Myrbβrg

7)
proved, the

Green's function of p* exists or not,
according as jζ Γl—|ẑ |)<. t>o

 9
 or

•YL^O
eo

5L, ( i — ! ̂ TL.1 /
 ==

 c>o ^y

Theorem^e Let F be a Hiemann
surface of hyperbolic type spread over
the w -plane. We map p on \ z\<i and
let the ideal boundary of F be map-
ped on a set E on U) = l

 β
 Then

™ E = ZTC or niE. -0 , according as
the Greenes function of F exists or
not.

In the case that the Greenes func-
tion of F does not exist, we have
m,En. =°

 D
7 Theorem 4, so that to a

curve on F » which tends to the Ideal
boundary of F , there corresponds
In \z\<ί a curve ending at a point of
E » where mE — C »

6» We will prove

Theorem 60 Let F be a Riemann
surface spread over the TΛΓ-plane, on
which the Green's function does not
exist. Let K * |wr-αl < f be a disc
and Ff> be a connected piece of F ,
which lies above K" « Then f co~
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rers any point of K , except a set
>f logarithmic capacity

For the proof, we use the following

lemma
 R
> .

Lemma o Let w=fUJ be regular
andΠfίxM < 1 In 1*1 <1 , ffo)-O .
Let F be the set of €vθ , such that

ι
ίWM1

 ««">;,*£'•> ,
β
*
lst
V
nd
 If*"

9
!a: i , such that f («'*). f e

v
r

and E^ be the set of e
1
* on M = l .

Then e and fE are measurable and

If ό<τιtE"<5.7C , then TM, £f •<

7. Proof of Theorem 6
0

(1) First suppose that F Is of
parabolic type. Then F Is a Rlemann
surface of an inverse function z=-z(w}
of a transcendental meromorphlc func-
tion VΛ/ = \ΛΓ(:Z; (|z|«χ»Λ We map Fp

on (ξl<l by «λr.= <f(Λ) , then by
Fatou* s theorem, lιm̂ .,

e
,e <jp(Λ) - <F(e

ίβ
)

exists almost everywhere on \ζ\ = 1 ,
when *>->€* θ non-tangentially to
lζ)=l . Let E be the set of e

cθ
 ,

such that |<PCe
ίθ
)- α|< f , then p(e«9

belongs to the boundary of p , so
that ê<P(Λ)) -*

00
 » when ̂  -> <e^

θ

non-tangentially to |*,| = 1 * Hence
by Lusin-Priwaloff >s theorem, m, E" ~O »
so that almost all points of |ζ|-l are
mapped on !v*r-a| -f

 9
 hence <p(O

belongs to the U -class in Seldel's ̂
sense, so that by a Frostman's theorem,
w - fit,) takes any value In K ,

except a set of logarithmic capacity

(ii) Next suppose that p is of
hyperbolic type. We map F on }z\<i ,
then by Theorem 4, the ideal boundary
of P is mapped on a null set H on
1*1=1 . We, map Ff> on U)<1 by
ur-<p(,^) , then by a Fatou ̂s
theorem, lr»n,ί;W

θ
?(ξ)̂ f(e

ίβ
J exists al-

most everywhere on (*^«1 , when ξ->€cθ

non-tangentially to jξ l ~ 1 Let B
be the set of e

ce
 , such that

l<P(e
l
"
θ
)-Λ|<f * We will prove that

/
m.E=O „ Suppose that TrtE >o , then
E contains a closed sub-set £"

0
 ,

such that w.So>o and ti™-$+e** f(^=φ^
θ
)

uniformly, when ^-^€CΘ in an angular

domain ΔC«
ίθ
) *

We construct a rectifiable Jordan curve
Λ in Ifc.Kl , such that /\ meets
1^1=1 in EO and for any e

ΐθ € H0 ,
its sufficiently small neighbourhood

in Λ (e°θ) iβ contained in Λ
 0

Let the inside of Λ be mapped on
Fp

x
 c Fp

 β
 Then pf i» mapped

on a countable number of equivalent
domains -|Λ

U
V ln»«l<l . We con-

aider one Ao of them and let M
0
 be

the part of the boundary of Δ
0
 ,

which lies on 1x1 - 1 . Then H
0
 is

a sub-set of K , so that ̂ H
0
=0 »

We map the inside of Λ on|x|<l and
let En ϊ>

θ
 mapped on a sot β

0

Then by F.Riesz* theorem, ttιe
0
>° ' .

Then (x|< 1 is mapped on A
0
 and <

β

corresponds to M
0
 We may sutffcose

that z = o lies in Λ
0
 and z = o cor-

responds to x=o . Then by the lemma,
yn<?

ΰ
 •£ mfl

σ
 <±o » so that τne

β
 = o ,

which is absurd. Hence mB —o
 9

From this, we proceed similarly as (i)
and we conclude that F covers any
point of X , except a set of logarith-
mic capacity zero, q.e.d.

From Theorem 6, we have the follow-
ing extension of Myrberg^s theorem.

41
-*

Theorem 7. Let p be a Riemann
surface spread over the ur -plane and
f̂ , be a connected piece of F *
which lies above a disc K : Iw-α1<f.
If Fp does not cover a set in K 4
which is of positive logarithmic capa-
city, then the Greenes function of
exists.

Myrberg assumed that the boundary
of F contains a sub-set, which lies
in a schlicht disc and is of positive
logarithmic capaclty

e

80 Let F be a Riemann surface
spread over the ur-plane, which con-
sists of a finite number of sheets and
the projection of its boundary on the
"ur-plane is a closed set of logarithmic
capacity zero. We will call such a f
a quasi-closed Riemann surface. We
can prove easily that5

On a quasi-closed Riemann surface,
the Greenes function does not exist.

Proof« Let A be the boundary of
F and Λω- be its projection on the

wr-plane, then Λur is of logarithmic
capacity zero. We map F on |zl<i
by «r= ur(̂ ) and let A be mapped
on a set £" on 1*1 ~ I . Since Λur
is tbe cluster set of w = \*r(z) on E >
if mEr>0 , then by a theorem proved

1
^

by the author, Λ^ is of logarithmic

capacity positive, which is absurd.
Hence γn,E

r
=θ , so that by . Theorem

5, the Green's function of F does
not exist*

By means of Theorem 6, we can prove
similarly as in the former paper'^the
following theorem.

Theorem S. Let F be a Riemann
surface spread over the w-plane, on
which the Greenes function does not
exist. If F is not quasi-closed,
then F covers any point of the -ur -
plane infinitely often, except a set
of logarithmic capacity zero.

It was proved formerly by K
β
Arima

that F covers any point of the w-
plane, except a set of logarithmic ca-
pacity zero.
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(*) Received October 17, 1950.
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