By Masatsugu TSUJI

(Communicated by Y. Komatu)

1. Let G be a Fuchsian group of linear transformations $S_{n}(z)(n=0,1$, 2,.) , which make $|z|<1$ invariant and D_{0} be its fundamental domain, which contains $z=0$ and is bounded by or thogonal circies to $|z|=1$ and a closed set e_{0} on $|z|=1$. We remark that D_{0} can be so constructed that the equivalent points on the boundary of D_{0} are equidistant from $z=0^{1}$. Let z_{n}, D_{n}, e_{n} be equivaients of $z_{0}=0, D_{0}, e_{0}$ respectively.

Theorem 1. If $m e_{0}>0$, then
$\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$. The converse is not true in general.

Proof. Since $m e_{0}>0$, we have $m e_{n}>0(n=0,1,2, \ldots)$. Let

$$
u_{n}(z)=\int_{e_{n}} \frac{1-|z|^{2}}{\left|z-e^{i \theta}\right|^{2}} d \theta
$$

then $u_{n}\left(z_{n}\right)=u(0)=m e_{0}$, so that

$$
m e_{0}=u_{n}\left(z_{n}\right) \leqq \frac{2 m e_{n}}{1-\left|z_{n}\right|},
$$

$$
\begin{aligned}
& \text { hence } \\
& \sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right) \leqq \frac{2 \sum_{n=0}^{\infty} m e_{n}}{m e_{0}} \leqq \frac{4 \pi}{m e_{0}}<\infty .
\end{aligned}
$$

Let $K_{1}, \ldots, K_{n}(n \geqq 3)$ be n circles on the w-plane, which lis outside each other. We invert them on any one of them indefinitely, then we obtain infinitely many circles clustering to a non-dense perfect set E. As Myrberg ${ }^{2)}$ proved, E is of positive logarithmic capacity, so that if we map the outside of E on $|z|<1$ by $\omega=f(z)$. then $f(z)$ is automorphic to a certain Fuchsian group G, such that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$ - On the other hand, as I have proved in a former papers ${ }^{33} m e_{0}=0$ - Hence the converse is not true in general.
2. Let z be any point in $|z|<1$ and (z) be its equivalent in D_{0} Let $z=r e^{i \theta}(0 \leqq r<1)$ be a radius through $e^{2 \theta}$ - We denote the set ($\left.r e^{i \theta}\right)(0 \leqq r<1)$ by $E(\theta)$ - Then

Theorem 2. (1) If $\Sigma_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$. then $\lim _{r \rightarrow 1}\left|\left(\underline{r} e^{i \theta}\right)\right|=1$ for almost all $e^{\imath \theta}$ - (1i) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$, then $E(\theta)$ is everywhere dense in D_{0} for almost all $e^{i \theta}$.

I have proved this theorem in a former paper, but my proof depends on a theorem, which is false. A proor is given by Yûjôbô. 5) I will give the following proof, which is somewhat simpler than his. In the proof, we use the following lemma. ${ }^{6}$ Let E_{0} be a closed set in D_{0}, which is of positive logarithmic capacity and E_{n} be its equivalents, We take off $\sum_{n=0}^{\infty} E_{n}$ from $|z|<1$ and let Δ be the remaining domain. We map Δ on $|\zeta|<1$ and let $\sum_{n=0}^{\infty} E_{n}$ be mapped on a set e on $|\zeta|=1$. Then

Lerma. (1) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$.
then $0<m e<2 \pi$ 。 (1i) If
$\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$, then $m e=2 \pi$.
Proof of Theorem 2:
(1) Suppose that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$,
then the Green's function

$$
\begin{equation*}
G(z)=\sum_{n=0}^{\infty} \log \left|\frac{1-\bar{z}_{n} z}{z-z_{n}}\right| \tag{1}
\end{equation*}
$$

exists and $\lim _{z \rightarrow e^{i \theta}} G(z)=0 \quad$ almost everywhere on $|z|=1$, when $z \rightarrow e^{i \theta}$ non-tangentially to $|z|=1$. From this, we see that $\lim _{x \rightarrow 1}\left|\left(r e^{i \theta}\right)\right|=1$ for almost all $e^{i \theta}$
(11) Next suppose that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)$ $=\infty$. Let K_{0} be a disc contained in D_{0} and K_{n} be its equivalents and C_{n} be its boundary. We take off $\sum_{r=0}^{\infty} K_{\nu}$ from $|z|<1$ and Δ be the remaining domain and we take off $\sum_{v=0}^{\infty} \mathcal{K}_{v}$ from $|z|<1$ and Δ_{n} be the remaining domain.

Let $u_{n}(z)$ be a bounded harmonic function in Δ_{n}, such that

$$
\left.\begin{array}{lll}
u_{n}(z)=0 & \text { on } & \sum_{v=0}^{n} c_{v}, \tag{2}\\
u_{n}(z)=1 & \text { on } & |z|=1
\end{array}\right\}
$$

First we will prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}(z)=\text { in } \Delta \tag{3}
\end{equation*}
$$

Ne map Δ on $|\zeta|<1$, then by tho lemma, $|z|=1$ is mapped on a null set on $|\zeta|=1$ - Let $\sum_{v=n+1}^{\infty} C_{v}$ be mapped on a set e_{n} on $|\zeta|=1$, then $\lim _{n \rightarrow \infty} m e_{n}=0$. Let $u_{n}(z)$ become a harmonic function $v_{n}(\zeta)$ in $|\zeta|<1$ then, since $|z|=1$ is mapped on a nuil set, we have
$v_{n}(\zeta)=\frac{1}{2 \pi} \int_{e_{n}} v_{n}\left(e^{i \theta}\right) \frac{1-|\zeta|^{2}}{\left|\zeta-e^{i \theta}\right|^{2}} d \theta$
Since $0<v_{n}\left(e^{i \theta}\right)<1$ and $\lim _{n \rightarrow \infty} m e_{n}=0$. we have $\lim _{n \rightarrow \infty} v_{n}(\zeta)=0$, or $\lim _{n \rightarrow \infty} u_{n}(z)=0$ in Δ, q.e.d.

Let $K:\left|z-a_{0}\right|<r_{0}$ be a disc contained in D_{0}. For any $0<p<1$, let $M(p)$ be the set of $e^{2 \theta}$, such that the part of the radius $z=r e^{i \theta}$ ($1-p<r<1$) does not meet the equivalents of K. Then $M(\rho)$ is a closed set.

> Let $K^{\prime}:\left|z-a_{0}\right|<r_{0} / 2$ Since the segment $z=r e^{i \theta}(1-p<r<1)$ does not meet the equivalents of K and the non-euciidean distance is invariant by S_{n}, it is easily seen that for any
> $e^{i \theta} \in M(\rho)$ its neighbourhood:
> $\Delta\left(e^{i \theta}, \delta\right):\left|z-e^{i \theta}\right|<\rho,\left|\arg \left(1-z e^{-i \theta}\right)\right|<\delta$
does not meet the equivalents of K^{\prime}, if δ is sufficientiy small, where δ depends on a_{0} and r_{0} only.

Then by the well known way, we can construct a rectifiable Jordan curve Λ in $|z|<1$, such that Λ meets $|z|=1$ in $M(\rho)^{\prime}$ and $\Delta\left(e^{2 \theta}, \delta\right)$ is contained in Λ for any $e^{i \theta} \in ' M(\rho)$ We may assume that the equivalents of K^{\prime} ile outside Λ. If $m M(\rho)>0$, then there exists a bounded harmonic function $v(z)$ in Λ, such that $0<v(z)<1$ in $\Lambda, v(z)=0$ on $\Lambda-M(p)$ and $v(z)=1$, almost everywhere on $M(\rho)$ Let $u_{n}(z)$ be defined as before with respect to K^{\prime}, then $0<v(z) \leqq u_{n}(z)$ on Λ, so that $0<v(z) \leqq u_{n}(z)$ in Λ. Since by (3), $\lim _{n \rightarrow \infty} u_{n}(z)=0$, We have $v(z)=0$, which is absurd. Hence $m M(p)=0$.

$$
\text { Let } P_{1}>P_{2}>\cdots>P_{n}>0 \text { and } M=\sum_{n=1}^{\infty} M\left(\rho_{n}\right) \text {. }
$$

then M is a null set and if $e^{i \theta}$ does not belong to M, then the radius through $e^{i \theta}$ meets the equivalents of K infinitely often. Let a_{n} $(n=1,2, \cdots)$ be rational points in D_{0} and $r_{1}>r_{2}>\cdots>r_{n}>0$ and $K_{m, n}$: $\left|z-a_{n}\right|<r_{n}$, then there exists a null set $M_{m n}$ on $|z|=1$, such that if $e^{2 \theta}$ does not belong to $M_{m, n}$, then the radius through $e^{2 \theta}$ meets the equivalents of $K_{m, n}$ infinitely often. Hence if we put $M=\Sigma_{m, n} M_{m n}$. then M is a null set and if $e^{i \theta}$ does not belong to M, then $E(\theta)$ is everywhere dense in $D_{0}, q \cdot \theta . d$.

By modifying slightly the proof, we can prove

Theorem 3. If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$, then there exists a null set M on $|z|=1$, such that if $e^{i \theta}$ does not belong to ' M, then for any segement through $e^{i \theta}$, its equivalent in D_{o}
is everywhere dense in D_{0} 。
3. Suppose that D_{0} has a boundary point on $|z|=1$ and for any $0<p<1$. let $D_{0}^{\prime}(\rho)$ be the part of D_{0}, which lies in $1-\Gamma<|z|<1$ - $D_{o}^{\prime}(\rho)$ consists of a finite number of connected closed domains. We consider only such connected ones, which have boundary points on $|z|=1$ and let $D_{0}(\rho)$ be the sum of such domains and $D_{n}(P)$ be its equivalents and put

$$
\Delta(P)=\sum_{n=0}^{\infty} D_{n}(P)
$$

Then $\Delta(P)$ consistsiof a countable number of dis joint continua $\Delta_{n}(P)$, such that $\Delta(P)=\sum_{n=0}^{\infty} \Delta_{n}(P)$.

Since as remarked in § 1 , equivalent points on the boundary of D_{0} are equidistant from $z=0, \Delta_{n}(\rho)$ is boundect by Jordan arcs $\lambda_{n}^{k}(k=0,1,2, \ldots)$ and a closed set E_{n} on $|z|=1, \ldots$ We put

$$
\begin{equation*}
E(p)=\sum_{n=0}^{\infty} E_{n} \tag{1}
\end{equation*}
$$

We will, prove

Theorem 4. (i) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$ then $m E(P)=2 \pi$. (ii) if $\sum_{n=0}^{\infty}(1-$ $\left.-\left|z_{n}\right|\right)=\infty$, then $m E(P)=0$. Hence if we put $E=\lim _{\rho \rightarrow 0} E(\rho)$, then
$\left.\begin{array}{l}m E=2 \pi, \text { if } \sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty, \\ m E=0, \text { if } \sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty .\end{array}\right\}$ (3)
For the proof, we use the following lemma.

Lemma. Let K be a circle on the -plane, which meets a half-ine L: arg $z=\eta\left(0<\eta \leqq \frac{\pi}{2}\right)$ and the real axis at two points A, B with an angle $\alpha>0$. We suppose that A lies to the right of the origin 0 and B lies to the right of A 。 Let M be
the middle point of $A B$ ．Then

$$
A M \geqq O M \sin \alpha \tan \frac{\eta}{2}
$$

Proof．First，denoting by r the radius of K ，we have $A M=r \cdot \sin \alpha$ ． Next，while we change the position of K with fixed r ，we see easily that OM attains its maximum，when K is inscribed in the angle between the po－ sitive real axis and L and the maxi－ mum value is cot $\frac{7}{2}$ ．Hence $r \geqq$ $O M \cdot \tan \frac{\eta}{2}$ ，so that $A M \geqq O M \cdot \sin \alpha \cdot \tan \frac{\eta}{2}$ ．

4．Proof of Theorem 4.

（1）First suppose that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$ ． Then D_{0} has a boundary point on $|z|=1$ ， since，otherwise，D_{0} iles in $|z| \leqq r_{0}<1$ ， so that we can prove easily that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$ ，which contradicts the hypothesis．Let $G(z)$ be the Green＇s function defined in the proof of Theo－ rem 2，then $\lim _{x \rightarrow 1} G\left(r e^{i \theta}\right)=0$ for almost all $e^{i \theta}$ ．Let $e^{i \theta}$ be such a point， then，since $G(z) \geqq \alpha(\rho)>0$ outside
$\Delta(P)$ ie the segment $L(\theta, \delta):$
$z=r e^{i \theta}(1-\delta<r<1)$ belongs to $\Delta(\rho)$
for a sufficiently small $\delta>0$
Since $\Delta_{n}(P)$ are disjoint from each others，$L(\theta, \delta)$ belongs to a certain $\Delta n_{0}(P)$ ，so that $e^{i \theta} \in E_{n_{0}}$ ．Since the set of $e^{i \theta}$ is of measure 2π ，we have $m E(\rho)=2 \pi$ ．
（i1）Next suppose that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)$ $=\infty$ ．We will prove $m E_{n}=0 \quad(n=0,1,2 ;)_{\text {．}}$ We may assume that $\xi_{n}^{k} \neq \eta_{n}^{k}$ for any k ，since otherwise，E_{n} reduces to one point as remarked above．Let $e^{i \theta}$ be a point of $E_{n}{ }^{\circ}$ ，We divide E_{n} into three parts $E_{n}^{(1)}{ }_{n}^{n} E_{n}^{(1)}{ }_{n}^{n} E_{n}^{(3)}$ according to whether（i）L（ $\dot{\theta}, \delta)^{n}$ meets $\sum_{k=0}^{\infty} \lambda_{n}^{k}$ for any $\delta>0$ ，（ii）$L(\theta, \delta)$ belongs to $\Delta_{n}(\rho)$ for a value $\delta>0$ ， or（iii）$L(\theta, \delta)$ lies outside $\Delta_{n}(p)$ for a value $\delta>0$ ．

$$
\text { If } e^{i \theta} \in E_{n}^{(1)} \text {, and } \xi_{n}^{k} \neq \eta_{n}^{k} \text {, then }
$$ by mapping $|z|<1$ on the upper half w－plane，such that $z=0, z=e^{i \theta}$ be－ come $w=i, w=0$ and applying the lemma with $\eta=\frac{\pi}{2}$ ，we see that the lower density of E_{n} at $e^{i \theta}$ is $\leqq 1-\sin \alpha$ <1 ．where α^{n} is defined by（2）． Since by Lebesgue＇s theorem，the den－ sity is 1 almost everywhere on E_{n} ． we have $m E_{n}^{\prime \prime}=0$－

If $e^{i \theta} \in E_{n}^{(2)}$ ．then the equivalent of $L(\theta, \delta)$ in D_{0} lies in $1-p<|z|<1$ ， so that is not everywhere dense in D_{0} ． Hence by Theorem 2，$m E_{n}^{(2)}=0$ 。

If $e^{i \theta} \in E_{n}^{(3)}$ ，then it must coin－ cide with one of $\xi_{n}^{k}, \eta_{n}^{k}$ ，since the complementary set of $\Delta_{n}(\rho)$ with re－ spect to $|z|<1$ consists of a countable number of domains，each of which is bounded by a single λ_{n}^{k} and an arc on $|z|=1$ ．Hence $m E_{n}^{(3)}=0$ ．Thus we have proved $m E_{n}=m E_{n}^{n}+m E_{n}^{(2)}+m E_{n}^{(3)}=0$ ，
hence $m E(p)=\sum_{n=0}^{\infty} m E_{n}=0$ ，q．e．d．
Remark．By means of the lemma，we can prove similarly as the above proof． the following theorem：

Let D be a domain in $|z|<1$ which is bounded by orthogonal circles to $|z|=1$ and a，ciosed set e on $|z|=1$ ．Then for almost all $e^{i \theta}$ of e ，its sufficiently small neigh－ bourhood：$\left|z-e^{i \theta}\right|<\delta=\delta(\eta)$
larg $\left(1-z e^{-i \theta}\right) \left\lvert\,<\frac{\pi}{2}-\eta\right.$ is contained in D for any $\eta>0$ 。

5．Let F be an open Riemann sur－ face of hyperbolic type appead over the $w-$ plane and wo map F on $|z|<1$ by $w=w(z)$ ，then $w(z)$ is automor－ phic to a Fuchsian group G ．We ap－ proximate F by a sequence of Riemann surfaces $F_{n}: F_{1} \subset F_{2} \subset \cdots \subset F_{n} \backslash F$ where F_{n} consists of only inner points and consists of a finite number of sheets and is bounded by a finite num－ ber of analytic Jordan curves．

$$
\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty \quad \text {, we have }
$$

Theorem 5．Let F be a Riemann surface of hyperbolic type spread over the w－plane．We map F on $|z|<1$ and let the ideal boundary of F be map－ per on a set E on $|z|=1$－Then $m E=2 \pi$ ，or $m E=0$ ，according as the Green＇s function of F exists or not．

In the case that the Green＇s func－ tion of F does not exist，we have $m E_{n}=0$ by Theorem 4，so that to a curve on F ，which tends to the ideal boundary of F ，there corresponds in $|z|<1$ a curve ending at a point of E ，where $m E=0$

6．We will prove

Theorem 6．Let F be a Riemann surface spread over the ur－plane，on which the Green＇s function does not exist．Let $K:|w-a|<p$ be a disc and F_{p} be a connected piece of F ， which lies above K ．Then F_{p} com

rers any point of K, except a set of logarithmic capacity zero.8)

For the proof, we use the following lemma ${ }^{9)}$.

Lemma, Let $w=f(z)$ be regular and $|f(z)|<1 \quad$ in $|z|<1, f(0)=0$ Let E be the set of $e^{i \theta}$, such that $\lim _{x \rightarrow 1} f\left(r e^{i \theta}\right)=f\left(e^{i \theta}\right)$ exists and $\left|f\left(e^{i \theta}\right)\right|$ $=1$, such that $f\left(e^{i \theta}\right)=e^{i \psi}$ and E_{*} be the set of $e^{i \psi}$ on $|w|=1$

$$
m E \leqq m E_{*}
$$

If $0<m E<2 \pi$, then $m E<m E_{*}$.

7. Proof of Theorem 6.

(1) First suppose that F is of parabolic type. Then F is a Riemann surface of an inverse function $z=z(w)$ of a transcendental meromorphic function $w=w(z) \quad(|z|<\infty)$. We map F_{p} on $|\zeta|<1$ by $w=\varphi(\zeta)$, then by Fatou's theorem, $\lim _{\zeta \rightarrow e^{\cdot \theta}} \varphi(\zeta)=\varphi\left(e^{i \theta}\right)$ exists almost everywhere on $|\zeta|=1$ when $\zeta \rightarrow e^{\iota \theta}$ non-tangentially to $|\zeta|=1$ - Let E be the set of $e^{i \theta}$ such that $\left|\varphi\left(e^{i \theta}\right)-a\right|<\rho$, then $\varphi\left(e^{i \theta}\right)$ belongs to the boundary of F, so that $z(\varphi(\zeta)) \rightarrow \infty$, when $\zeta \rightarrow e^{i \theta}$ non-tangentially to $|\zeta|=1$. Hence by Lusin-Priwaloff's theorem, $m E=O$, so that almost all points of $|\zeta|=1$ are mapped on $|\omega-a|=\rho$, hence $\varphi(\zeta)$ belongs to the U-class in Seidel's sense, so that by a Frostman's theorem, $w=\varphi(\zeta) \quad$ takes any value in K except set of logarithmic capacity zero.
(11) Next suppose that F is of hyperbolic type. We map F on $|z|<1$, then by Theorem 4, the ideal boundary of F is mapped on a null set M on $|z|=1$. We map F_{p} on $|\zeta|<1$ by $\omega=\varphi(\zeta) \quad$, then by a Fatou's
 most everywhore on $|\zeta|=1$, when $\zeta \rightarrow e^{i \theta}$ non-tangentially to $|\zeta|=1$. Let E be the set of $e^{i \theta}$, such that $\left|\varphi\left(e^{i \theta}\right)-a\right|<\rho$. We will prove that $m E=0$ Suppose that $m E>0$, then E contains a closed sub-set E_{0}. such that $m E_{0}>0$ and $\lim _{\zeta \rightarrow e^{i \theta} \varphi(\zeta)}=\varphi\left(e^{i \theta}\right)$ uniformly, whon $\zeta \rightarrow e^{i \theta}$ in an angular domain $\Delta\left(e^{i \theta}\right):\left|\arg \left(1-z e^{-i \theta}\right)\right|<\pi / 4$ We construct a rectifiable Jordan curve Λ in $|\zeta|<1$, such that Λ meets $|\xi|=1$ in E_{0} and for any $e^{i \theta} \in E_{0}$, its sufficiently small neighbourhood in $\Delta\left(e^{i \theta}\right)$ is contained in Λ. Let the inside of Λ be mapped on $F_{p}^{\prime} \subset F_{p}$. Then F_{p}^{\prime} is mapped on a countabie number of equivaient domains $\left\{\Delta_{n}\right\}$ in $|z|<1$. We consider one Δ_{0} of them and let M_{0} be the part of the boundary of Δ_{0}, which lies on $|z|=1$. Then M_{0}^{\prime} is a sub-set of M, so that $m M_{0}=0$. We map the inside of Λ on $|x|<1$ and Iet E_{0} be mapped on a sot e_{0} on $|x|=1$

Then by F.Riesz' theorem, me >0. Then $|x|<1$ is mapped on Δ_{0} and e_{0} corresponds to M_{0}. We may suppose that $z=0$ lies in Δ_{0} and $z=0$ corresponds to $x=0$. Then by the lemma, $m e_{0} \leqq m M_{0}=0$, so that $m e_{0}=0$, which is absurd. Hence $m E=0$. From this, we proceed similariy as (i) and we conclude that F covers any point of K, except a set of logarithmic capacity zero, q.e.d.

From Theorem 6, we have the following extension of Myrberg's theorem. ${ }^{14}$

Theorem 7. Let F be a Riemann surface spread over the w-plane and F_{p} be a connected piece of F, which lies above a disc $K:|w-a|<\rho$. If F_{p} does not cover a set in K which is of positive logarithmic capacity, then the Green's function of exists.

Myrberg assumed that the boundary of F contains a sub-set, which iles in a achlicht disc and is of positive logarithmic capacity.
8. Let F be a Riemann surface spread over the w-plane, which consists of a finite number of sheets and the projection of its boundary on the w-plane is a closed set of logarithmic capacity zero. We will call such a F a quasi-closed Riemann surface. We can prove easily that:

On a quasi-closed Riemann surface, the Green's function does not exist.

Proof. Let Λ be the boundary of F and Λ_{w} be its projection on the w-plane, then Λ_{w} is of logarithmic capacity zero. We map F on $|z|<1$ by $w=w(z)$ and let Λ be mapped on a set E on $|z|=1$. Since Λ_{w} is the cluster set of $w=w(z)$ on E if $m E>0$, then by a theorem proved i2) by the author, Λ_{w} is of logarithmic capacity positive, which is absurd. Hence $m E=0$, so that by. Theorem 5, the Green's function of F does not exist.

By means of Theorem 6, we can prove similarly as in the former paper ${ }^{13}$ the following theorem.

Theorem 8. Let F be a Riemann surface spread over the w-plane, on which the Green's function does not exist. If F is not quasi-closed, then F covers any point of the w plane infinitely often, except a set of logarithmic capacity zero.

It was proved formerly by $\mathrm{K}_{0} A \mathrm{Arima}^{14)}$ that F covers any point of the w plane, except a set of logarithmic capacity zero.
（＊）Received October 17，1950．
（1）L．Bleberbach：Lehrbuch der Funktionentheorie，II．S． 48 （Berlin u．Le1pzig，1931）：
（2）PoJoMyrberg：Die Kapazität der singulären Menge der linearen Gruppe． Suomaiaisen Tiedeakademian Tomituksis Annales Academiae Scientiarum Fenni－ cae．Serie A。（1941）．
（3）M．Tsuj1：Theory of conformal mapping of a multiply connected domain． Jap．Journ．Math。18（1943）．
（4）M．Tsug1：Theory of conformal mapping of a multiply connected domain， III．Jap．Journ．Math．19（1944）．
（5）Z．Yujobd：A theorem on Fuchsian groups Mathematica Japonicae Io no． 4．（1949）．
（6）M．Tsuj1：Some metrical theorems on Fuchsian groups．Jap．Journ．Math． 19（1947）．
（7）P．J．Myrberg：Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche．Acta Math．61（1933）．
（8）This result was reported by Y ． Nagai on the annual meeting of the Math． Soc．Japan on May 30,1950 。
（9）M．Tsuj1：On an extension of Lönner＇s lemma．Proc．Imp．Acad． 18 1942）．For the case that $f(z)$ is schm licht in $|x|<1$ ，YoKawakami：On an ex－ tension of Löwner＇s lemma．Jap．Journ． Math． $17(1941)$ ．For another extension． cof．S．Kametani and ToUgaheri：A remark on Kawakami＇s extension of Löwner＇s lemma．Proc．Imp．Acad．18（1942）．
（10）O．r＇rostman：Potentiel d＇equi－ libre et capacite des ensembles． Lund．1935．
（il）Myrberg：l．c．（7）．A simple proof of Myrberg＇s theorem is given by A．Mori：A remark on Myrberg＇s theorem， which will appear in the Journ．Math． Soc．Japan．
（12）M．Tsuj1：Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero．Jap． Journ．Math。19（1944）．
（13）M．Tsuji：On meromorphic func－ tions with essential singularities of logarithmic capacity zero，which will appear in the rohoku Math．Journ．
（14）KoArima：Zengoku Sizyo Danwa～ kai． 255 （1943）．

Mathematical Institute，Tokyo Univ．

