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1. Let G be a Fuchsian group of
linear transformations S.(z) (n=0,1,
2,. , which make Jz|<1 1nvar1ant
and Do, be its fundamental domaln,
which contains z=0 and is bounded by
orthogonal circles to Iz{ =1 and a
closed set €, on I1z1=! . We remark
that ‘D, can be so constructed that
the equivalent points on the boundary
of D, are equidistant from z=o01
Let zZa , Dn , €n be equivalents of
2o =0 » Do » €0 respectively.

Theorem 1, If m€o>0O , then
228, (1L-1zal)< 00 o The converse 1s
not true in general.

Proof. Since me,>0 , we have

men>0 (n=0,1,2,---) » Let
_ 2
un(z):f __1_.._'3:%—2 de
2, ‘Z - e I »

then w,(z,) =uwl(o)=m €, , so that

2 Mg
ME, = Uny(z < -
° " 'ru) - 1- |z~n,l 2’
hence i
.o 22, me 41
1_ z é n=0 : —_— < 0o
&t ) e e, .

Let K{, ee0 » Ko, (Z3) be m ecir-
cles on the w -plane, which lie out-
side each other, We invert them on
any one of them indefinitely, then we
obtain infinitely many circles cluster-
ing to a non-dense perfect set

As Myrberg? proved, E 1is of posir,ive
logarithmic capacity, so that if we map
the outside of on Izl<i by w=f(z),
then +(=) is automorphic to a cer-
tain Fuchsian group G , such that
Sao (1-1Znl) < 0o . On the other
hands as I have proved in a former pa-
per;}’ Mme,=0 , Hence the converse
i1s not true in general.

2. Let z be any point injz|<1 and
(z) De 1ts equivalent in Do . Let
z=re® (0=2r<i) be a radius throu-

gh ¢® . We denote the set (re*®)(0sr<i)

by E() , Then

Theorem 2. (1) If Zg, (1-1Za]) <o

then L'M«rai e®|=1 for almost all
e'® . (11) 1f Zu-o (1~1Zp ) =00 »

then E(8) 18 everywhere dense in
D, for almost all e'®

\z(i—lznl):oo

I have Proved this theorem in a for-
mer paper, but my proof depends on a
theorem, which 1s fnlae. A proof is
given by Yij8b8.57 I will give the
following proof, which is somewhat sim-
pler than his. 1In t)se proof, we use
the following lemma.’’ Let E, be a
closed set in D, , which 1is of posi-
tive logarithmic capacity and E, be
its equivalents. We take off =y, E,
from |zl<1 and let A Dbe the re-
malning dome.in. We map A on Jgi<1
and 16t T,., E» be mapped on a set <&
on {Z}=1 « Then

Lerma, (1) If 3.2, (1-1Zal)<eo ,
then o< me.<2m , (11) If
s then me=271 .,
Proof of Theorem 2;
(1) Suppose that n§°(1—12n|)<°¢ N

then the Green’s function

=3 log !ﬁ——i ZnZ| W
exists and lim,, g8 G(2z) = almost

everywhere on (z|=1 » when z-» e’
non-tangentially to 1z =1{ o From
this, we see that lnn.t_,t |(re®]| =

for almost all e

(11) Next sux?ose that Zazo (1-12xl)
= s Let be a disc contained
in D, and K, Dbe its equivalents and
Cn Ye 1ts boundary. We take off I, K,
from 1z\<1 and A Dbe the remaining
domain and we take off ¥7° K, from |z|<{
and A,, be the remaining domain,

Let Un(z) Dbe a bounded harmonic
function in A, s’%ch that

WUp(z)=0 on v{_oc., , @)
Up(z)=1 on |z|=1‘
First we will prove that
Lim u.,az)*- in A a)

NI oo
#e map A on [21<1 , then by the
lemma, |z] =1 1s mapped on a null
set on (5]=1 . LetZ3, C, be
mapped on a set €, on jgj=1 , then
1Moo Men =0 o Let un(z) become
e harmonic function (&) 1inigi<1,
then, since I1z/=1 1is mapped on a null
set;, we have
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Vn(3)= ;%;L v (e*f) TR a8

Since 0<Vv,(e®) <l and lim, me.=0 ,
we have lim . Un(5)=0, OF lim __ U.(2)=0
in A , q.e.d.

Let K 3112-&,1<T, be a disc
contained in D, . For any o<pP<1 ,
let M (P be the set of e s
such that the part of the radius z=re
(1-p<r<c) does not meet the
equivalents of K .« Then M(P) 1is a
closed set.

Let K’ 3 1z=6.]) < %/2 | Since
the segment z=re'® (1-P<r<i) does not
meet the equivalents of K and the
non-euclidean distance is invariant by
Sp » it 1s easily seen that for any
e € M(P) - » 1ts neighbourhood:

A€ 8) : 1z-e®l<p  |arg(1-2¢0) (<8

does not meet the equivalents of K,
if § 1s sufficiently small, where
5 depends on &, and ¥, only.

Then by the well known way, we can
construct a rectifiable Jordan curve
A in 1zl<l , such that A meets
1zl = { in M(Pf) and A(e®, §) 1s
contained in A for any e'® e M(P) .
We may assume that the equivalents of
K’ 1lie outside A . If mM(p) >0,
then there exists a bounded harmonic
function 47(z) in A , such that
o< v(z)< 1 in A , v(z)=0 on
A-M(P) and wz)={ almost every-
where on M(P) .. Let un(z) be de-
fined .as before with respect to XK’/ ,
then 0<vV(z)E Un(z) on A , so that
0<V(Zz) =y, (z) IiIn A . Since by
(3), lim,us00 Un(z) =0 , Wwe have V(2)=0,
which is absurd. Hence mM(pP)=0 .,

Let fi>f > > f~>0 and M=n>=:lm(fn) R
then M s a mull set and if ©° does
not belong to M , then the radius
through €'® meets the equivalents
of K Infinitely often. ILet An
(n=1,2,---) be rational points in Do
and I, >Y,> - -->r, >0 and Km,n ©
1z-a,i<r; , then there exists a null
set Mmn on Izl=1 s such that if
PAdd does not belong to Mmn »
then the radius through e‘° meets
the equivelents of K, infinitely
often, Hence if we put M=13, ., Mmn,
then M 1s a null set and if <%
does not belong to M , then E(9) 1is
everywhere dense in D, , Q.0.d.

By modifying slightly the proof, we
can prove

T 3. If S, (1-1znl) =00
then there- exists a null set M on

1z} =1 , such that if e'® does not
belong to M , then for any segement
through e*° s 1ts equivalent in D,

i1s everywhere dense in D, .

3. Suppose that D, has a boundary
point onjzi={ and for any o<pP<1 ,
1let D/ (P) be the part of D, ,
which 1lies in 1-y<izl<1l o D4(p)
consists of a finlte number of connec-
ted closed domains. We consider only
such connected ones, which have boundary
points on|z)=1 and let D,(f) be :the
sum of such domains and D, (p) be its
squivalents and put

aP) =% Duce) |

Then A(f) consists.of a countable
number of disjoint contlinua A, (p) ,
such that A(P) = 332, A, (P)

Since as remarked in §1, equiva-
lent points on the boundary of D, are
equidistant from z=0 _, A, (p) 1is
bounded by Jordan arcs X3, (f=0,t,2,--)
and a closed set [, on jz)=1 e
We put

E(P)zé En w

XE ends at two points ?f » ’Lfm

on Jz}=1 » which are fixed points

of some 3, . If 5%=%% for onef ,
then A, (p) is bounded by a single
Jogdnn curve, which touches [z1=1 at
Ix =7k . It 13 easily seen that
173k %k, then )% 1is contained be-
tween two circular arcs Ck , ¢k
through ;ﬁ s 1% , which meets izi=1

with an angle O(Tf - respec-

tively. Since A\ (n,£=0,1,2, ...)

can be grouped into a finite number of

equivalent classes, there exists «, @3
(0< ok <@B< 7)) , such that for any
X® , for which 3% &9% ,

«LoLtsp, sk’ oy
(n, & 30,4,2, -+ )

We will prove
Theorem 4. (1) If Xn., (1-IZxl)<ce

then m E(F) =27 | (11) 1f Taco (1-
~ 1zZn|)=00 , then mE(P)=0 ., Hence
if we put E:%L‘? E(P) , then
mE=21c , 1f X (1-12zn]) <00,
n=o
and

mE=o if é(,i-tznl)=oo.

®

For the proof, we use the f‘olloviné
lemma.

Lermma. Let K be a circle on the

-plane, which meets a half-line L s
arg z=7(0<1< %) and the real axis -
at two polnts A , B with an angle
of>0 . We suppose that A 1lies
to the right of the origin O and B
lies to the right of A, Let M be
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the middle point of AR . Then
AMZOM sin %%

Proof. First, denoting by ¥ the
radius of K , we have AM=r-sina .
Next, while we change the position of
K with fixed T , we see easily that
oM attains its maximum, when K 1s
inscrived in the angle between the po=-
sitive real axis and L. and the maxi-
mum value is cot . Hence Y=
oM -$.. 1 , so that AMgoMsino(.h.\,_}
q.e-dcz °

4. Proof of Theorem 4.

(1) First suppose that Siaco(1-1Znl)<s2
Then Do has a boundary point on izl=1,
since, otherwise, D, lies inizlexr, <1,
so_that we can prove easily that
Zneo (1-1Zal)=00, which contradicts the
hypothesis., Let G(z) be the Green’s
function defined in the proof of Theo-
rem 2, then limyy,s G(re'®)=0 for almost
all ¢'® , Let o'® be such a point,

then, since G(2)2 a(f)>0 outside

ACP) . , the segment L (0,8 :

2 =v¢'®(1-5<rt<1) belongs to A(f)
for a sufficiently small & >0 .
Since An(f) are disjoint from
each others, L (6,9§) belongs to
a certain An,(P) s SO that_
€*®cE, o Since the set of e°° 1s
of measure 27C , we have mE(f)=2T,

(11) Next suppose that Y., (1 —IZ=l)
=00 , We will prove mEn=0 (n=0,1,%2; "),
We may assume that % +7X for
any & , since otherwise, E, reduces
to one point as remarked above. Let
e'® be a point of En .., We divide En
into three parts EW % 5 E9
according t@ whether h) L,
meets $2, Ay for any 3>0 (ii)L(e)S)
belongs to A, (f) for a value §>o ,
or (111) L (e,5) lies outside A,(p)
for a value §>0 .

ir e'° GE(},,) and 51{:*’1—{»\, , then

by mapping 1z1<1 on the upper half

w- -plane, such that z=0 , z=¢® Dbe-~
come w=1 sw=0 and applying the
lemma with %=1 s we see that the
lower density of F, at ¢® 1is =1-sink
< , where « 1s defined by (2),
Since by Lebesgue’s theorem, the den-
sity 1s { almost everywhere on E, ,
we have m g!) =0 .

ir ee E(,: » then the equivalent
of L(o,8) in D, 1lles in 1-p<izl<i,
so that 1s not everywhere dense in D. .
Hence by Theorem 2, mEY =0 .

ire®eg? , then it must coin-
clde with one of 23 %75, since the
complementary set of A, (f) with re-
spect to [zl<1 consists of a countable
number of domeins, each of which 1is
bounded by a single A% and an arc on
1zl =1 + Hence mE® =0 , Thus we

have proved mEm=mE;{’+mEt’+mE(y=01

hence mE(p) =,io""-5n=° s Qe€ade

Remark. By means of the lsmma, we
can prove similarly as the above proof,
the following theorem:

et D Dbe a -domein in |zi<i
which 18 bounded by orthogonal circles
to IZI={ and a.tdosed set e on
1zl=1 . Then for almost all ¢'®
of ¢ , 1ts S\Efficiently small neigh-
bourhood: [z ~€®1< & =§@M) »
lacg (1~ ze-¢9)] <%-7 1is contained in D
for any 7> 0 °

5., Let F be an open Riemann sur~
face of hyperbollc type spread over the
w=-plane and we map [ on izl<l by

w=w(z) , then w(z) . 18 automor-
phic to a Fuchsian group G . We ap-
proximate ' by a sequence of Riemann
surfaces F, ¢ FCF, C:-c FunAF
where F, consists of only inher points
and consists of a finite number of
sheets and is bounded by a finite num-
ber of analytic Jordan curves.

Let 4, be the image of F—F, in
[EAR » then A, consists of e
coustable number of connected domains

A% . Let EX Dbe the part of the
boundary of Ak, which lies on Iz|=]
and let E—;n=‘£ EZ o Then we call

E=lim E.  the image of the ideal
boundary of F . It is easily seen
that £ 1s independent of the appro=-
ximating sequence F, and coincides
with the set £ defined in Theorem 4,
E is the set of all ¢® , such that
there exists a certain curve in (zl<1
ending at e'® s whose image curve
on [ tends to the 1deal boundary of
F . Since as Myrberg? proved, the
Green’s t‘unctl_gn of F exists or not,
according as 1‘2’,‘,(1—-12.,L|)<1><: s Or
2;0(1~12nl) = o3 , We have

Theorem 5, Let F be a Riemann
surface of hyperbolic type spread over
the w -plene. We map F on |z|<1 and
let the 1deal boundary of [ be map-
ped on a set E on (z1=1 , Then
mE = a1 or mME =0 , according as
the Green’s functlon of F exists or
not,

In the case that the Green’s func-
tion of F does not exist, we have
ME, =0 by Theorem 4, so that to a
curve on F , which tends to ths ideal
boundary of F , there corresponds
in |z1<1 a curve ending at a point of
E , where mE =0 .

6., We will prove
Theorem 6, Let F be a Riemann

surface spread over the w -plane, on
which the Green’s function does not

exist. Let K s lw-al<?p be a disc
and F be a connected pilece of F ,
which 1ies above K . Then F co-
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rers any point of X , except a set
sf logarithmic capacity zero.®

For the proof, we use the following
lerma V) .

Lemma., Let w = f(z) Dbe regular
and” 1f(=z)) < 1 in 1zl<1 , f(0>=0 .
Let E be the set of e » such that

lim f(re'®) = £(e°®)  exists and | )

= ', such that f(e®) = eV

and E, be the set of ev on wl=1 .

Then £ and E, are measurable and
mE £ mE,

If 0<K<mE<2n , then mE<‘mE*.

%. Proof of Theorem 6.

(1) First suppose that F s of
parabolic type. Then £ 1is a Riemann
surface of an inverse function z=2z2(w)
of a transcendental meromorphic func-
tion w=w(z) (Izl<e), We map Fp
on (gl1< 1 by w=¢(%) , then by
Fatou’s theorem, lim.,,.e (%)= ¢(e®)
exlsts almost everywhere on |51=4 ,
when %> e* non-tangentially to
12)=1 . Let E Dbe the set of e ,
such that [P(e®)—al<f , then P(e'®)
belongs to the boundary of F , so,
that z (P(%)) 200 , when ¢ > ¢*®
non-tangentially to (5} =1 , Hence
by Lusin-Priwaloff’s theorem, m E =0,
so that almost all points of {z]=1 are
mapped on |w-al|=F » hence (%)
belongs to the U -class in Seidel’s
sense, so that by a Frostman’s theorem,

w = Q%) takes any value in K ,
except a set of logarithmic capacity
Zero.

(11) Next suppose that F~ 1s of
hyperbolic type. We map F oniz|<i,
then by Theorem 4, the ldeal boundary

of F 1s mapped on a null set M on
lz|=1 , We map Fp on [51<1 by
W= @(z) » then by a Fatou’s

theorem, lim ;e P(3)=¢pe'®) exists al-
most everywhere on [g)=1 , when Z->e'
non-tangentially to {3i=1 , Let E
be the set of ¢'® , such that
lp(e®)-a|<f o We will prove that
mE =0 » Suppose that mE >0 , then
E contains a closed sub-set E, ,
such that mE,>0 and limg, .o P%)= ¢e'®)
uniformly, when % -5¢‘® 1in an angular
domain A(e®) s larg(lt-ze™®) |<m/4 .
We construct a rectifiable Jordan curve
A 1in lgi<i , such that /A meets
IZ1=4 4in E, and for any ¢® ¢ Eo ,
its sufficlefitly small nelighbourhood

in A (e®) 18 contained in A
Let the inside of A Dbe mapped on

F,,’ <k « Then Fg 1s mapped
on a countable number of equivalent
domains {4, inlzl<1 . We con-
sider one 4. of them and let M, be
the part of the boundary of A4,
which lies on Izl=1 . Then M, is
a sub-set of M , so that mM,=0 .
We map the inside of /A on|x|<1 and
let E, be mapped on a set e, onlix|={

Then by F.Riesz’ theorem, me,>0 ‘,
Then (x|< 1 is mapped on Ao and €,
corresponds to M, . We may sufpose
that z=0 1liles in A, and z=o0 cor-
responds to X=0 . Then by the lemma,
me, £mM, <0 5 80 that me,=0 ,
which is absurd. Hence mE =0,

From this, we proceed similarly as (1)
and we conclude that F covers any
point of K , except a set of logarith-
mic capacity zero, q.e.d.

From Theorem 6, we have the follow-
ing extension of Myrberg’s theorem,f?

Theorem 7. Let [ be a Riemann
surface spread over the w -plane and
F be a connected plece of §f ,
which lies above a disc K : lw-al<f.
If K does not cover a set in X , .
which is of positive logarithmic capa-
city, then the Green’s function of
exists,

Myrberg assumed that the boundary
of F contains a sub-set, which lies
in a schlicht disc and is of positive
logarithmic capacity.

8., Let F Dbe a Riemann surface
spread over the w =plane, which con-
3ists of a finite number of sheets and
the projection of 1ts boundary on the
w-plane 1s a closed set of logarithmic
capacity zero. We will call such a F
a quasi-closed Riemann surface. We
can prove easily that:

On a quasi-closed Riemann surface,
the Green’s function does not exist,

Proof.. Let /\ be the boundary of
and A be 1its projection on the
W -plane, then Aw 18 of logarithmic

capaclty zero, We map F on [zl<{
by w=w(z) and let A be mapped
on a set £ on (zI=1 , Since A.

1s the cluster set of w=w(z) on E,
if mE >0 , then by a theorem proved 2
by the author, A, 1s of logarithmic
capacilty positive, which 1is absurd.
Hence mE =0 » 80 that by .Theorem

5, the Green’s function of F does

not exist,

By means of Theorem 6, we can prove
similarly as in the former paper/®the
following theorem.

Theorem 8, Let F Dbe a Riemann
surface spread over the w-plane, on
which the Green’s function does not
exist. If F 1s not quasi-closed,
then F covers any point of the w -
plane infinitely often, except a set
of logarithmic capacity zero.

It was proved formerly by K,Arimaﬂ)
that F covers any point of the w -
plane, except a set of logarithmic ca-
pacity zero.
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