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1. Let K be an algebraic field.
Under a (k-dimggsioml) formal analytic
transformation 'we mean a k-ple of in-
tegral formal power series in k varia-
bles X;, ..., X over K without constant
terms. Let a and b be formal amalytic
transformations;

ag £ (x)=1;(X, veo, %)
- N { }

=ra. JXheex)

b: g, (X)= g (xy, <0, X)

=Y, ! Jie
"wbj:‘- )R)li...xh R

(320, oesy 820, 4+ ...+szl)

The product ab can be expressed as
follows;

ab: i (x)= £, (84(x),...,8,(x)),
(i=1, ..., k)

where it is to be noticed that the co-
efficients of ab can be determined
formally as polynomials of those of a
and b. The associativity of this mul-
tiplication is easy to verity and we
obtain & semi-group Fy compoded of all
formal analytic transformations, whose
identity is

e: (=1, ..., k)

Next, letting correspond to any ele-
ment & of F, the linear part

e, (x)-x, .

Lat £.(x)}8,5. oKy ers ¥ 805y T
(i-1, ..., k)

we have a linear representation of Fy;

(1)

Now let E, be the group composed of all
elements having inverses in F,. E, may
be called the group of k~dimensional
formal analytic transformations. An
alement a of Py belongs to B if anmd
only if La is a non-singular linear

la-ILb = L(ab).

transformation. Now we define two sub-
groups of By in the following manner;
Ly='a s La=at,
R‘,_s'r-sta H L&=915-

Then (1) implies thattﬂ

x 1s an invari-
ant subgroup such the .

(2) E',:""RkLh, Rkﬂ LR’Z-‘ -0
Now, let G be a group, and G, D(G
XX , g e ﬂ.'c‘min&’

i Dn(a)_D D'A-Io)'dvo
serles of subgroups of G, where DI(G)
denotes the commutator subgroup o N
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}&en ND,(G)=e, we shall call G solva-
e.

a aple

PROPOSITION 1.

Froof. Let
a: £, =x +% A, (x)
(1=1, ..., k)

be an element of Ry, where A(x) de-~
notes the homogeneous part of degree
n. If a is not the identity, there
exists A:(x)#0. The small st number
r such that there exists A;(x)}£0 for
some 1 is called the rank of a: r(a)
=r. The rank of e is w,

Now let a and b be elements of R,
of rank r and s respectively; )

as fi=x, + A;‘, + higher terms,
bt g=X, + Bg + higher terms.
(i=1, ..., k)
Then clearly we have
(3) abs
{x;_ + (AL + Bf) + higher terms,

hi:i
(1=1, ..., k).

according as r=s, r<s, or r»s respec-
tively. Hente in the expressions of
ab and ba the terms of degree Min(r,s)
concide, amd this readily leads to the
following inequality;

(4) r(aba’v™)>Min(r(a),r(v)),
which 1s valid except for a=b=e.

X, + Ai. + higher terms,

X, + B; + higher terms,

Let RL be the subset of Ry composed
of all elements of rank at least t(t22).

Bg (3) R} 1s a subgroup, and we have
that NRi=e. the other hand we can

conclude from (4) that
D(Rk)sni; D,(Re) & Rt: evey
whence R, is solvable.

2. In this section we consider the
case where K ig the field of complex
(or real) numbers. Then we can intro-
duce a topology (the so-called weak to-
poloﬁ') in F, namely the sequence
{a(n)} ;



ain)s f((n)%Z}):jgn)xf...xf
(1=1, +oe, x)
converges to
afeo): £, (r-s);ZaJr,, e L xp
(1=1, ..., KV

if and cnly 1f every ah‘,én) converges
to a,” o). Ry can thus be considered
as a’topological group. It is clear
that L,, Ry, and R; are all closed sub~
groups.

Let us now define the topological
commutator group C(G) of a topological
group G as the closure of D(G); ﬁiG)%
CéG). Then we get the descending series
of subgrou (@)}, where C,(G)«
2(caf))

ps {C,(C

Whény’\cm$6)ae, we ¢all G
topelogically solvable.
mogirigation.of the proof of Proposition
1 we obtain

PROPOSITION 2.
solvable.

From this proposition follows readily
the following

Ry is topolugical

COROLLARY . ift E be a lﬂfﬁl Lie
group in B 5 1s seml-simple, then
a for a efines a faithful re-

[ atio

Now the following lemma, which is a
generalization of the so-called unigue-
ness theorem of H, Cartan, is known.

LEMMA 1" Let K be a compact sub-
group of Ey. Then K is a Lie group.
In detail there exists an element d of
R¢, such that

d%ad = Ia for every aeK.

On the other hand K. Iwasawa called
2 leeally compact ~voup G an (L)—grouga\
1 G can be approx:mated by Lie groups:’
¥We owe to him the following lemmas.

LEMMA Bf" A connected locally com-
pact solvable group is an (L)~-group.

3 A comected (L)~group is
a Lie group if it is locally euclidsan.
MMA 4. ‘The space of a comnected

(L)-group is a direct product of that
of a (maximal) compaet subgrovp and a
euclidean space.

LEMMA 517’ Let H be a locally com-
pact group, and N a closed invariant
subgroup of H. If N is a simply con-
nected solvable Lie group and if the
factor group H/N is compact, then there
exists a compact subgroup K of H such
that H=KN.

Using above lemmas we shall prove
the following theorem.

Then by a slight
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THEOREM. A locally compact subgroup
Gof Fg is a Lie group.

Proof. ILet Ny be the intersection
of G and R,, and N the connected compo-
nent of N; containing e. Since Rp is
solvable, so is N. Hence N is an (L)-
group by Lemma 2. From Lemma 4 N is
topologically a direct groduct of a com-
pact subgroup and a euclidean space.
On the other hand, from (2) and Lemma 1
N contains no compact subgroup but for
the identity group. Therefore N is a
(simply connected solvable) Lie group
according to Lemma 3.

Next let H be an open subgroup of N.
containing N such that H/N is compact.
Then from Lemma 5 there is a compact
subgroup K of H so that H=KN. Again by
Lenma 1 we have Kwe, H=N. Hence N is
open in N;. Therefore N; is & Lie group.

Now the correspondence a-»ILa for a- G
glves a faithful representation of G/N;
into L,. Hence G/N,is also a ILie group.
Our theorem follows directly from the
oxtension theorem of Lie groups due to

. Iwngawa and M, Kuranishi®
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