ON BOUNDED ANALYTIC FUNCTIONS AND CONFORMAL MAPPING , I.

By Mitsuru OZAWA.

(Communicated by Y. Komatu)

§ 1. An extension of Schwarz's lemma.
One of the most important theorems in
the theory of functions is the so-called
Schwarz's lemma, various extensions of
which have been established in various
directions by many authors. Garabedian
has recently established an important
and elegant extension of the lemma for a
finitely-connected domain, but his re-
sult concerns with a coroilary of this
lemma, namely, the first coefficient of
the expansion of function at a given
point. On the other hand, Robinson has
attempted to extend the lemma itself,
that is, the absolute value of f(z) |,
especiaily, in the doubly-~connected do-
main, In the present note we shall
first establish some extensions which
correspond to Robinson's one in an N -
ply connected domain.

We shall simply explain some domain-
functions.

Let. D be a given m -ply connected
domain bounded by m simple closed
Jordan curves [, (v=1,- , m) , and

G(z,t) and £,(2) be the analy-
tic functions whose real parts %(z g)
and Wy (z) are the Green's func-
tion of D with a simple logarithmic
pole & and the harmonic measure of [
respectively. Moreover, we put

G2, 8)= gr,5) +o §(z5)

and : ~
Qv(z) = @, (%) + i w, (%)

respectively. The following two rela-
tions are well-known: -
W,(0)« =g | B pETIds, 2 Am=1,

;%x' being the outer normal deri-
vative. Regarding to the periodicity
moduli

R
fvlu"'ﬁﬂr, A G BId,
v
we know
L3
DA ¢ o

Tvr.-" rfw, ot J.v’, =

We are nov in a position to attack
the explained problem.

Theorem 1. Suppose that %‘z) is
a single-valued analytic function, re-
gular and non-vanishing in D except
eventual poles 4= (x=1,--, 1) and
zZeros &0 (p=1, - -, m) , and that it
satisfies the conditions

[f] 2 e, fox ze

Then we have the inequality:

(| = ($Cw{)~§* .
]L W 1"—:1,2 v (Z ;‘?*,}(Z»‘lr)
+ 259z, Qf)) .

p=l
Proof, The function lg fiz) 1is

not single-valued in , in general,
on account of its poles and zeros. In
order to avoid the many valuedness we
settle a set of cuts A which con-
sists of simple Jordan curves, connec-
ting the points a. , Q; to the
boundary points 5 » €7 ,respec-
tively. Then 1 f(z) becomes single-
valued in the doiain D, obtained from

D by cutting along 4 . Now we
consider the integral

T- ZL;J lg forGugran
r'+a

the residue theorem we can imme-
g{ately calculate the value of
and get

[ -- lg feon

On the other hand, we have
'Eil{!,*£ Hg fiz) Gtz yaz,

First, we make use of the fact that
lé f£(z) has the saltus 2®i along
both sides of A , and hence obtain

Hg o Gl 5)ds = f(ﬂr:a,is

L
pLIA)

a - K] p=t
-1 536 8)) - 2 GG an
Il s
ti égj}<g ko),

remembering that
P A )= § (5 ) =0

Comparing the real parts of both ex-
pressions for | , we obtain

le o] = 2] 1§10l 23w 0r s
r

m L
TZ g s,
i -

for Ze [, and always (z,8) 20,
and hence we obtain the desired result:

S L
Lg 1] ¢ gc;—ﬁ—ffv--;’—ﬁ:z,gm
- ’Z-\,g,(s:q;) +,§}(g ary

But, by the assumption, 1g!if1)‘é c,
3

L L) ]
= é’c,w,,(g) -[Z_-,;?’((fl’:) +};%45;a:)_
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Equality sign holds here if and only if
f= & Foll - 26 ’*EG(“ ).

But, in general, the extremal funection
does not exist, because, if the set of
parameters tL,‘, ar and ¢, are
arbitrarily chosen, the monodronw con-
ditions, which are necessary and suffi-
cient for f(z) being single-valued,
will not be satisfied. Momodromy con-
ditions can be stated ?s follows:
'M.

c I ~LJco(a)+__.<0La’°) =%,

Zopty - e - Towed) - §

(vet,-, n)

where the denote some integers.
Such a Diop tine character makes the
problem difficult to solve but plays
an important role in conformal mapping.

Theorem 1 may be considered as an
extension of Schwarz's lemm2 and of
Hadamard's three circle theorem. Some
special cases will be mentioned as
illustrating examples.

Example 1. If we take, as the do-
main D , the unit circle (z{<{ amd
suppose (z)] €1 for |zl=1
then the t eorem 1 yields the well-’
known result:

[fal € 1T 12 mT-_lgg—;

Example 2 In the case D is
“V<lz\<1 and [f(z)|€1 for iz]=1
and |z|= ¢ , we have

[f(m' ( Z‘}/za h._\j/(z'a ))

explicit expression for ¢(%Z,7) is
known in this case, namely

it Sl %)
G(z a),-%( % ?m;%')

+11C,

Robinson's theorem can also be proved
by our method.

Bxample 3. If we adopt as D the

annular ring 1 ¢ (Z[£ R nd if HZ)
satisfies the conditions lf(z)l ¢{ for
iu {1 , ol for |z|=R

and (=0 , then we obtain the in-
equality

5 o< LC w,(z) - Z;,%(z:a;),
= ]g gt , C0=0

Making use of the Teichmiiller's lemma
2, we have

oL g™ e
15\)&@\ 4 Tg_i' g el ~ gz, ~a).
&:--——x%——- , ms ]éh/]g K, .
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This theoren is an extension of
Hadamard'!s three circls theorem due to
Teichmuller.

Example 4. If f(Z) hes, about

the point up | an expansmn of the
form (z-a )*‘“1(’-‘4 : and is
boumieé that is, Ifol 1
for 2D é <o °, then

there exists the relat:.on
o | e (=700t - ;13/(%’,&:)),

vhere ¥(%) 1is the Robin's constant.
This is an extension of corollary of
Schwarz!s lemma.

on the subares 1, of [ ([ EE;,

Tia Pva =0, i¥§) , let (fols et
be valid. Then we can extend our
theorem 1 to a wider theoren.

Theorem 2. Suppose that F(2) 1is
s:l.ngle-valued analytie, regular and
non-vanisb:mg in D except eventual
poles & (p=t, ) and zeros a,.
(p=t-, w)and that it satisfies the
conditions

flole ™ fa ze Do
Then we have the inequality:

"
lg“}(’l)l L‘)a—' u‘o(“’unk ,D) -}:_“‘}(Z).,\Lf)

where W(z, [Vi, D) genotes the harmo-

nic measure of subarc [, .

Proof. Considering the same inte-
gral | as in the proof of théorem 1,
and remembering the fact

I 2362

w(z; L, D)=";?l- an J
V4

we obtain our theorem 2.

Theorem 2 can be considered as an
extension of Doetsch's three line
theorem. For, taking the strip
iRe 2]4u, ~o<Jmlioo as the domain D
and (=0 5, mad 5 &;= , We have

lg Huw] ¢ ¢ @l Re2s4,D)+ C, w0 (z, %ezz-u,D)
. N ]
2(iaf)

£ ¢ wlz; Renu, D) + Gy W(Z; Rzse, D)

Remembering the relations

Wz, ReZ=u. D)= %Z}ﬁ ,
@, RRJ-~“D)_M -RzZ
we obtain
Rz

the desired result.

Moreover, we shall explain another
application of theorem 2.



Let D be a domain boundec oy
~adial half straight lines zex -5
EEXURS , and a Jordan curve [’
nassing between them which connects «
point on the line Z= g ¢ with
2 point on the line amgz-+49 .

let [' have the maximum distance R
from the origin. Let 71(2) be re-
gulsr and single-valued in D , Hfzii¢ly
for gz =xtemw , Ifi®)l £ m for ze
and M, m 21 . Then we have the ~

Iinequality ) n
(1= anchan (£ F)  niton [ )
m

fae M

for ang 7 =0, lzj=1 .

For simplicity, we may take K=1

From the theorem 2, we can easily ob-
tain the inequality:

lg ])((Z)} P co(z,amgz =i'%i£ D) Igm
- oz, I D) 15««,
Cit the other hand, by the domain-ex-

tension :rineiple (Prinzip der Gebiets-—
erweiterung) for the harmonic measure

w , we can replace D by the domain
D, bounded by the lines: ay %= tior
and [zl=1 . For D, , we can easily

calculate the harmonic measure explicit-
ly and we obtain |

Wiz ey T2 EE DY 2 f - anctan (1)

and |

wlz: zi=1 D) = = M‘tm(\’r)?,

for o4 %=0, [zj=T
desired evaluation.

Thus we obtain the

Analogous result can be established
for other straight lines. Carleman had
established an analogous evaluation.
Moreover, we can discuss an extension
of the well-known Phragmen-Lindelof's
theorem in a sector domain.

8 2. Painlevé problem.
can be stated as follows:

The problem

Let A be a compact set in the com-
plex plane. Under what condition does
there exist a non-constant function
which is single-~valued, analytic and
bounded outside of [ ? The correspond-
ing problem for the existence of bounded
harmonic functions has already been
solved by making use of the notion of
capacity and may be stated in the fol-
lowing manner.

A necessary and sufficient condition
for the existence of a function, non-
constant, bounded and harmonic outside
of B is that E be of positive loga-
rithmic capaeity. Of course, this con-
dition is also necessary for Painlevé
problem. It seems, however, very im-
portant to separate a condition for
Painlevé problem from that of harmonic
function, and an effort may be attempt-
ed in the following manner.
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Theorem 3. A necessary and suffi-
cient condition for the existence of a
function non-constant, bounded and ana-
iytic in the exterior D of a compact

set F is that
(&) Lo enp (=¥, (a01) >0
m =y
and
(b) U (—?ﬂ'j'(ﬂl" W )) 7o
h m-:n;: (%F ;:71- v

where lu is the level curve 4(z;47)
and the system AJ. (vzi,-, m)

=
satisfies the monodrony conditions
Yo
i (m) ° o
e w, (‘l,um)‘-‘i, alm:q“)’
M
5 = 7
nere g Lo [.. bounds a subdomain D,
of D and W,/ are the harmonic

measure of [, with respect to D., .
Proof. Ahlfors has established a
condition necessary and sufficient for
the existence of non-constant, bounded

and analytic functions, which states

Lo man [ | >o 1. fz)
~ fm o, L
it f Z"?Q? u"&f fm
Max f(?\ﬂ;m]
f ; is attained by the
function

f2) < enp "EGMW“?‘),

satisfying the monodromy condivions
~

5 )

Z_au)‘r‘(m (O,ﬁm) = 1 .
g

Denoting by $ml% %))

function of D,

the relations

|
}M‘\Z ' Zo)‘ ?(1120)‘7‘“‘ )

the Green's
, and making use of

lw (2002, - _1 . (z,),
. fen % (71,1 )= Y
we obtain

[l & e[~ 7, (a0) exp (- L Yla?, 4l

Vs

+ )

”m 7
equali sign holds here if and only if
qftm) K 1§ the function stated above.
So we obtain the desired result by let-

ting M — oo .

This theorem is only a restatement
of Ahlfors! one, with a slight preci-
sion, for the separation of the condi-
tion to () and (4) is made.
course, (&) 1is a necessary and suffi.-
cient condition for the corresponding
problem for harmonic functions.

Analogous problem and
applications.

A theorem of Blaschke and Ostrowski
whieh refers to zl<1 can be ex-
tended to the M -ply connected case.

Theorem 4. Let f'm be a level
curve %(%,8)» , and let f)

& 3.



have an infinite mumber of zero points

G,x , and be regular and single-
valued in D , and let [’ satisfy
the conditions

”&t:; M,_M¢0 and 4}3‘: MVM‘F“’,

imand M., being defined by the
inequalities:

%)M, <-2ogwm) £ M (5 =)

for (3 -I'm.

Then a necessary and sufficient condi-
tion for the convergence of the posi~
tive term series

_".‘i' o
%_Jl ?(a/“/ g)
is the boundedness of integral
{, lglj(z)|d.)s forali m (0gm <o),

Proof. In the first place, we as-
sume that §(Z, %o . In the proof of
theorem 1, we have obtained

lg [~z)]+ »ET‘ G Bo,00) = z_‘m L lg 1§

2
-, 5520 e

= Ilﬁ‘g, 18 1501 (-2 9(5r2)) b,

which yields
I:i:zm ng H—l ds £ lg i)((za“ +

L
rzl?fmm,a;)
1§ I$1 do,

/__r_j_m_
= 2%

!

On the other hand, there exists
M G (m500) = G,y A8)
gives the desired result.
consider the case f(z) =0 .

we have only to consider the sum

3 (a2,
Eﬂ j/ ( r )
where } denotes the multiplicity of
1, = al° .

Theorem 5. Let %) be a single-
valued, analytic function whose real
part satisfies the inequalities

R f(x) & Cv for =z¢l, , and
has'a finite number of poles a;‘
(w21, £) « Then we have

which
Next, we
Then,
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m

20, @u(2)

r.=l
24 !
0 R(4 Gy
P:l

% fzy <

t. being defined by the equalities
= L —a=) M

‘G'r, z._,a’:’(z Qf‘) }(z),

vwhere A, denotes the multiplicity of

the zero oy .

Proof. We consider the integral

I :%L&z)&/(z,g)dz,

we can make use of similar dis-

Then
fon as in Theorem 1.

cuss
Theorem 6. A necesgary and suffi-
cient condition for SUR (&uGlar;2))

<o is R $(2)d5 ¢ oo where
we adopt the following assumptions:

1)
(11) of{-(:o)les

e My, %o, L M 40,

has an ;.dnfinifi” mmber,
o7 anmd 4 = s (z-a2)*
® a zHa 1T,

11N

(111) R fw £C, for zelL .

(*) Received May 15, 1950.
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