NOTE ON ARCHIMEDEAN VALUATIONS

By Tsuyoshi HAYASHIDA

Ostrowski¹⁾ proved that any archimedean valuation of a field & can be obtained by embedding & in the field K₁ of complex numbers. Professor Iwasawa remarked in his lecture that this would also be proved easily if the following lemma were proved:

Lemma. Let K be the field of real numbers and $K(\alpha)$ be a simple extension of it. If $K(\alpha)$ has an archimedean valuation ϕ , then α is algebraic over K.

In this paper I shall give a proof²) of it and explain briefly Iwasawa s way of reduction.

Proof of the lemma. When ξ is a complex number, $\alpha^2-(\xi+\overline{\xi})\alpha+\xi\overline{\xi}$ belongs to $\kappa(\alpha)$. We shall define a function $\sigma(\xi)=\mathcal{P}(\alpha^2-(\xi+\overline{\xi})\alpha+\xi\overline{\xi})$ on κ_1 . Then it is readily seen that $\sigma(\xi)$ is non-negative and a continuous

 κ_1 . Then it is readily seen that $\sigma(\xi)$ is non-negative and a continuous function of ξ , and tends to infinity with $|\xi|$. Hence $\sigma(\xi)$ attains its greatest lower bound M. Put $mt = \{\xi \mid \sigma(\xi) = M\}$ then mt is a non-null, closed and bounded set.

Now if M=0, then there is a $\xi_0\in K_1$ such that $\sigma(\xi_0)=0$, which means that $\alpha^2-(\xi_0+\overline{\xi_0})\alpha+\xi_0\overline{\xi_0}=0$, namely α is algebraic over κ . Hence we have only to deduce a contradiction, supposing M>0.

If \mathcal{P}_0 is the projection of \mathcal{P} on \mathcal{K} , then $\mathcal{P}(a)=\|a\|^{\epsilon}$, $0<\epsilon\leq 1$. There must be a negative number C such that

$$(1) \qquad M > |c|^{\varepsilon} > 0.$$

From \mathfrak{M} we take a number ξ_i whose distance from the origin is largest. Since C is negative, at least one root \mathcal{N}_i of the equation

$$\chi^2 - (\xi + \overline{\xi}) \chi + \xi \overline{\xi} - C = 0$$

has a greater absolute value than $\,|\,\xi_i|\,$, and does not belong to $\,mt\,$. We shall consider an algebraic equation

$$\left\{x^{2} - (\xi_{1} + \overline{\xi}_{1})x + \xi_{1}\overline{\xi}_{1}\right\}^{n} - C^{n} = 0$$
,

and denote its roots by $\eta_{i}, \eta_{s}, \dots, \eta_{2n}$. Then $\left(M^{n} + |C|^{n\xi}\right)^{2} \geq \varphi\left\{\left[\alpha^{2} - (\xi_{i} + \overline{\xi}_{i})\alpha + \xi_{i}\overline{\xi}_{i}\right]^{n} - C^{n}\right\}^{2}$ $= \varphi\left\{\prod_{i=1}^{2n} (\alpha - \eta_{i})\prod_{i=1}^{2n} (\alpha - \overline{\eta}_{i})\right\}$ $= \varphi\left\{\prod_{i=1}^{2n} (\alpha - \eta_{i})(\alpha - \overline{\eta}_{i})\right\}$

$$= \prod_{i=1}^{2n} \varphi\{(\alpha - \eta_i)(\alpha - \overline{\eta}_i)\}$$

$$= \prod_{i=1}^{2n} \sigma(\eta_i) \ge M^{2n-i} \sigma(\eta_i)$$

Dividing by M^{2n} , we get

$$\left\{1+\left(\frac{|C|^{\varepsilon}}{M}\right)^{n}\right\}^{2} \geq \frac{\sigma(\eta_{i})}{M}$$

Since n can be arbitrarily large, it follows from (1) that $\sigma(n_i) \leq M$. But this means $\sigma(n_i) = M$, i.e. $n_i \in \mathcal{M}$. That is a contradiction.

Way of Reduction. Since the lemma is assured, we deduce as follows. Let $\mathcal P$ be an archimedean valuation of k. It is evident first of all that the characteristic of k must be zero. If $\mathcal P_0$ is the projection of $\mathcal P$ on the prime field R, then $\mathcal P_0(a)=|a|^{\xi}$ o $<\xi\leq 1$. as is well-known. When we complete k to k' with respect to $\mathcal P$ R is completed automatically to the field K of real numbers with respect to $\mathcal P_0$. $\mathcal P$ is extended uniquely to an archimedean valuation $\mathcal P'$ of k', and $\mathcal P_0$ to $\mathcal P_0'$ of K.

Take an element arbitrarily from k'. Then the subfield $K(\alpha)$ of k' has an archimedean valuation g'' which is the projection of g' on $K(\alpha)$. By the lemma, α is algebraic over K. Since α is an arbitrary element of k', k' is algebraic over K. Therefore k' and its subfield k' may be looked on as contained in K_1 . Or more precisely, there is an isomorphism K_1 from K_2 in K_1 and K_2 and K_3 K_4 K_4 K_4 K_5 K_6 $K_$

Our final result is: a set of equivalent archimedean valuations of k (which gives the same topology of k) corresponds one-to-one to a pair (S,\overline{S}) of isomorphisms of k in K_1 (bar indicates the complex conjugate).

- (*) Received October 16, 1949.
- (1) Ostrowski: Ueber einige Loesungen der Funktionalgleichung g(x)g(y) = g(xy). Acta math. Bd. 41 (1918) S.271-284.
- (2) The lemma was also proved by T.
 Asatani, using the theory of normed rings.

Tokyo Institute of Technology