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GRADIENT IS OF CONSTANT NORM Π
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Abstract

We continue to study the metπcal structure of complete Riemannian manifolds
which admit a smooth function / with ||V/|| = 1 for the gradient vector V/. We again
show that Ricci curvatures controll such metric structure considerably appealing to
recent Cheeger-Colding's methods.

1. Introduction

Let (M,g) be a complete connected smooth Riemannian manifold of di-
mension m and / : M —> R a smooth function satisfying

(i.i) liv/ll = i,
where V/ denotes the gradient vector field off. We denote by φs, s e R the flow
generated by V/, and set Z —f~l(0). Then for any p e Z, the curve c : s\-+φs(p)
is a geodesic such that dM(Z,f~l(s)} = L(c|[0^) = s =f(c(s)). Namely, the map
Φ:X = RxZ-^M defined by Φ(ί,z) := φsz is a diffeomorphism. Now sup-
pose the Ricci curvature Ric^ of M satisfies

(1.2) RicM(V/,V/)>-(m-l)<5,

where δ is a nonnegative constant. In the previous paper ([S-l]) we showed

THEOREM. For the Laplacian Δ/ = -gijViVjf off we have

(1-3) |Δ/|<(m-l)J.

Moreover, if δ = 0, i.e., Ricji/(V/, V/) > 0, then f is an affine function and
Φ : X —> M is an ίsometry, where Z ' =f~l(ty is endowed with the totally geodesic
induced Riemannian metric, and X = R x Z means the Riemannian product.

Next suppose δ = 1 and |Δ/| = m — 1. Then Φ : X —> M is an isometry,
where X is endowed with a warped product metric Rxψ Z with \j/(t) = exp(±f).
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RIEMANNIAN MANIFOLDS 103

Moreover, f is a Busemann function defined by asymptotic rays 1 1-> (/,/?) (or,

"-> (-*,/>))•

In fact, in [S-l] we have assumed that RICM > — (m— 1)<5 instead of
(1.2). However, the proof presented there works under the assumption
(1.2). See also [S-2] for the case where we take a general warped product as a
model.

Now in the present note first we ask what happens for the case where
RICM(V/,V/) is almost nonnegative. Recently, in their very important papers
([C-1,2,3], [C-C-1,2]) J. Cheeger and T. H. Colding gave new powerful methods
to study the structure of complete Riemannian manifolds whose Ricci curvatures
are bounded below. In the following we apply their ideas to our rather restricted
situation.

We set Ψ^Φ- 1, i.e., Ψ(/>) = (/(/>), π(/>)) with φf(p](n(p}) = p, where
n(p) — Φ-f(p}(p) is the foot of the perpendicular of p on Z along a trajectory of
V/. Then we get

THEOREM 1.1. Let M be a complete connected Riemannian manifold of
dimension m admitting a smooth function f : M — > R with \\Vf\\ = 1. Suppose the
Ricci curvature of M satisfies RICM > —(m—\)κ and RICM(V/, V/) > — (m — 1)<5,
where δ, K are positive constants. Then for any χ > 0, ε > 0 and R > 0, there
exists τ = τ(m,χ,ε,κ,R) > 0 such that if 0 < δ < τ then the following holds:

Let BR(P] M) denote the distance ball in M centered at p 6 Z. There exists a
distance dχ on Z defined by (2.30) which is almost totally geodesic when restricted
to ZΓ\BR(P-,M) in the sense that

( dM(z, z') < 4(z, z') < dM(z, z') + ε,

j^,c=7XZ;M) foranyz,z'eZπBR(p M),

where yzz, is a minimal geodesic in M joining z to z1 and Tε(Z\M] is the ε-tubular
neighborhood of Z. Now let dχχ be the Riemannian product metric on X \—
R x (Z; 4). Then Ψ := V\BR(P,M] : BR(p M) -* X satisfies

(1.5) \dM(x,xf) -rf^(Ψ(jc),Ψ(y))| < fi,

and for any y e BR((Q,p)]dxiX) c= X there exists an xeB^p M) such that

(1.6) dx,x(y,V(x))<ε.

In particular, for the Gromoυ-Hausdorff distance we get

(1-7)

In fact, Theorem 1.1 holds under the assumption that RICM > —(m — l)/c,
RicM(V/,V/) > -(m- \)δ on J?^(p;M), and that

vo\B
J f
^(/>;M)J*Λ-(p;.

}Bji(p M}
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with e.g., R = 16R for given R > 0. If we assume that RicM > -(m - 1)<5, (1.7)
follows from a far more general result Theorem 6.62 of [C-C-1]. However, I
would like to emphasize that in our restricted situation it is possible to apply
geometric part of Cheeger-Colding's method directly to our function / and the
proof presented here, which also motivates the following Theorem 1.2, is con-
siderably simpler. In fact, we do not need analytic argument of Cheeger-Colding
aproximating distance functions via harmonic functions. In the following we
follow the notations of [C-C-1] in principle. However, note that the sign of the
Laplacian Δ/ is different from that of Cheeger-Colding's papers.

Next we are concerned with the case where the Ricci curvature of M satisfies

(1.8) RicM > -(m - l)κ, RicM(V/, V/) > -(m - 1) - δ

on l?£(p;Af), and that |Δ/| is almost equal to m - 1 in the sense that

(L9) v *, MΛ \ IΔ/ ± (m - \)\2dvg < δ2.
vo\BA(p;M))B..(p.M}

Then we get

THEOREM 1.2. Let M be a connected complete Riemannίan manifold of
dimension m admitting a smooth function f with \\Vf\\ — 1. Then for any
(1 >)χ > 0, ε > 0 and R>Q, there exists τ = τ(m,χ,ε,κ,R) > 0 such that if (1.8)
and (1.9) hold for 0 < δ < τ with e.g. R = 30jR, then we have the following:

There exists a distance dχ on Z defined by (2.30) which is close to the distance
on Z obtained from the induced metric. Let dχ,χ be the distance on X which is the
warped product distance Rxφ(z^dχ) defined by (3.23) with ψ(t) = exp(±ί).
Then Ψ := V\BR(P.M}, peZ =f~l(0) satisfies

(1.10) \dM(x^)-dx^(x)^(x'))\ <ψ(ε\χ\R)

and for any y e B&(p\ (X, dχ,x)) there exists an xe BR(P-, M) such that

(1.11) dx,x(y,V(X))<ιl,(ε\χ\R).

In particular, for the GromovΉausdorff distance we get

(1.12) dGH(BR(p M),BR(p](X,dx.χ))} <ψ(s\χ\R),

where ψ(ε \ χ \ R ) means that for fixed R > 0 we have ψ(ε \ χ \ R) | 0 as χ [ 0 and
taking ε = ε(χ) I 0.

In §2 we give a proof of Theorem 1.1, and in §3 we give a proof of Theorem
1.2. As mentioned above our proof much owes to Cheeger-Colding's ideas
([C-C-1]), and our results may be regarded as test cases which verify the power of
their methods. The author would like to thank Tobias. H. Colding for some
helpful conversations and the referee for some valuable suggestions.
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2. Almost nonnegative Ricci curvature case

Let (M,g) be a complete connected Riemannian manifold of dimension
m. Suppose we have a smooth function / : M -» R with ||V/|| = 1, where V/
denotes the gradient vector field of /. Now let φs be the flow generated by
V/. Then for any peM, st-*φs(p) is defined for all seR and is a geodesic
realizing the distance between levels of/. Hence the map Φ : X := R x Z —> M
with Z=f~l(Q) defined by Φ(s,z) := φs(z) is a diffeomorphism. Note that at
any point Φ(s,z) e M, tangent vectors Z)Φ(JjZ)(0,w) = Dφsu and DΦ(SίZ)(d/ds,Q) =
Vf(Φ(s,z)) are orthogonal to each other. We denote by π : M —> Z the map
composed of Ψ := Φ"1 and the standard projection R x Z —» Z.

Now suppose that the Ricci curvature Ric^/ of M satisfies

(2.1) RicM(V/,V/)>-(m-l)<5,

where δ is a nonnegative constant. Then we showed in the previous paper ([S])
that the Laplacian Δ/ of/satisfies |Δ/| < (m — \)δ everywhere. If δ = 0, then/
is an affine function in the sense that / o γ is an affine function for any geodesic
γ in M, and Φ is an isometry between M and the Riemannian product
X := R x Z -» M where Z is endowed with the totally geodesic induced metric.

Now we ask whether Φ is close to an isometry in some appropriate sense
when δ > 0 is small. First to explain our motivation we consider the special case
where Δ/ varies only little in the direction of the gradient of/in the sense that

(2.2) V/(Δ/)<<5,

and see that Φ is close to an isometry in Lipschitz sense. In fact, recall the
Bochner formula:

(2.3) IΔ||Vu\\2 = <Vw, VΔw> - RicM(Vw, Vn) - \\D2u\\2,

where D2u denotes the Hessian of u. Applying this especially to / for which
= 1 and (2.2) hold, we have

(2.4) \\D2f\\2<mδ.

Since D2f restricted to any level of/is the second fundamental form of the level,
(2.4) geometrically means that levels of / are almost totally geodesic. Then it
follows that for u e UPM, p e Z

d

ds

= 2\D2f(Dφsu,Dφsu)\ < 2vmδ(Dφsu,Dφsuy.

Integrating the above inequality we get

exp(-Vmδs) < \\Dφs(u)\\ < exp(Vmδs),

and for the operator norm of DΦS^Z : T^X —> 7φ(J>z)M, it follows that
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(2.5)

Therefore, we have the following result.

PROPOSITION 2.1. Suppose M and f with ||V/|| = 1 satisfy (2.1) and (2.2).
Then for any ε > 0 and any R > 0 there exists τ = τ(ε, m, R) > 0 such that if
0 <δ < τ in (2.1) and (2.2), fήew we get for Φ restricted to BR((Q,p);X) c A",
;?eZ

(2.6) (1 -β)<fr(*,jO < rfAr(ΦW,Φ(y)) < (1 +β)4K*,X>,

vv/zere Z=/~1(0) w endowed with the induced metric and X = RxZ is the
Riemannian product. Furthermore, levels of f are almost totally geodesic in the
sense of (2.4).

In fact, we get Proposition 2.1 under the assumption that (2.1), (2.2) hold on
a larger concentric ball B2κ(p',M). Of course the assumption (2.2) is geo-
metrically not nice, and we turn to the original problem, namely, consider M
admitting a function / with ||V/|| = 1, whose Ricci curvature satisfies

(2.7) RicM >-(m- l)/c, RicM (V/, V/) > -(m - \}δ,

where A;, δ are positive constants. We assume that δ < 1, K > 1 in (2.7). Recall
that a map Ψ : X -» Y between metric spaces X, Y is called an ε-Hausdorff
approximation if we have

- dx(x,xf)\ <ε for x,xf e JT,

where we set Γε(Ψ(^)) := {;; e 7 1 d(y, Ψ(JΓ)) < ε}. We say that the Gromov-
Hausdorff distance dQπ(X, Y) < ε if there exists an β-Hausdorff approximation
Ψ : X -> 7.

In the following we show that for any R > 0 and ε > 0, Ψ :=
Φ"1 : M — > I? x Z is roughly an ε-Hausdorff approximation when restricted to a
distance ball BR(P\M), if δ > 0 is sufficiently small and Z is endowed with a
distance which is close to the induced metric in some sense.

We begin with the following lemma.

LEMMA 2.2. There exists C = C(m, K, R) > 0 such that for p e M we have

(2-8) * f \\D2f\\2dvg<Cδ.VOIBR(P))BRP

Proof. By the Bochner formula (2.3) and the assumption (2.1) we get

(2.9) \\D2ff = <V/, VΔ/> - RicM(V/, V/)
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Now take a cut oίf function φ : M —> [0,1] such that

(2.10) Φ\BR(P) = 1, supp^ c B2R(p), ||V^||,|Δ^| <c(m,κ,R)

(see [C-C-1], Theorem 6.33). Then we have

[ φ\\D2f\\2dvg < f φ<Vf,VAfydvg + (m-l)δ\ φdvg.
JB2R(p) JB2R(p) JB2R(p)

Since

^<V/, VΔ/> = div(φΔJVf) - (Vφ, V/>Δ/ + ̂ (Δ/)2

holds, it follows from the Green formula that

P>2/llX<-πk

<(m— l)J{sup||V^|| 4- (m — \)δ + 1}

<(m-l)δd(m,κ,R)-

where ^(r) denotes the volume of distance r-ball in the simply connected space
form of constant curvature —K, and we have used the Bishop-Gromov volume
comparison theorem. This completes the proof of the lemma. Π

Modifying the proof above slightly we get the following:

Remark. (2.8) holds under a weaker assumption that

RicM > - (m - l)jc, RicM(V/, V/) > - (m - l)δ

and

1
— f \Δf\2dvg<(m-l)2δ2.
,M)ίB2R.MvolB2R(p-,

Now to compare M with the Riemannian product space X = R x Z we
recall some fundamental metrical properties of X:

(2.11)

Then we have the triangle inequality

p(r\,r^ vι -f 1*2) < p(r\,r2, in) + /?(r2, r3, ι;2),

where equality holds choosing r2 suitably. Let r:RxZ-+R,π:RxZ-^ZbQ
canonical projections. Suppose xl9 y eRxZ(i=l,2) satisfy K(XI) = n(y^>
π(x2) =Έί(y_2) Then we have
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(2.12) dx(y_vy_2) = ̂ dx(x^x2)
2 + (r(y2) - rjyj}2 - (r(x2) - rfe

and

ρ(r\,r2,v) = ρ(0,rι,0,r2,ι;).

Now if Z is a Riemannian manifold and γ(s) = (r(s),c(s)), 0 < s < /, is a
geodesic of X = R x Z parametrized by arclength, then θ(s) := L(γ(s),d/dr) is
constant, and we have

' r(y(j)) = r0 + (r/ - r0) j =: *(j)(= *(j; r0, r/, /))

cosfl(j) = &(s) = Γ-l-j^-, θ(s) =: Θ(r0, r/, /),

where we set ro=ί(0), r/ = r(/). Note that r, ιg only depend on / and the
boundary condition ΓQ, r/, and do not depend on Riemannian metrics on Z.

Now we turn to our Riemannian manifold M. For a minimal geodesic γyιy2

joining y\ to 72 in M parametrized by arclength, we set

(2.13)

Then we easily see that

Γ 4^(5) = <V/,yΛΛ(ί)> =: cos(?(5),
(2.14) ^

U"(,)

Now we want to compare <9ί(s) with ^(j)(:=^(j;ro,r/,/)) setting ΓQ =f(yι) =
), r/ =f(y2) = <%(l), / = 6? (^1,72). First we assume that

(2.15) [V'
Jo

Recall that

*"(*) = 0, ^'(ί)=

*(0)=«(0), *(/) = «(/)•

Then from

, U)- '

we get

Γ|«"
Jo

- r I f 7

T~ = 7j0^
/(
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namely,

V(o)-^q <ε2.

Therefore, it follows that

Now to compare tfl(s) and (̂5-) for general γyιy2 we recall the following
result which follows directly from [C-C-1], Theorem 2.11, and converts (2.8) into
the corresponding statement on a family of minimal geodesies. Such an idea was
first introduced by T. H. Colding to get an L2-Toponogov comparison theorem
for manifolds with Ricci curvatures bounded below, and has many important
applications ([C-1,2,3]).

LEMMA 2.3. Suppose that

(2.17) * [ \\D2f\\dvg<sλ.VO\B4Rl(p)]B4Rι(p]

Then there exists C(m,κ,R\) > 0 such that the following holds:

\ ^2 ί dv'*' ί ll^/ll ° WJ)ds

2Rl(p)) JB2Rl(p}xB2Rl(p) Jθ

where we set I = d(yl,y2). Note that D2f(yyιy2(s),γyιy2(s)) = W"(s',yι,y2).

To be precise, in (2.18) we should integrate over the set B<^B2Rl(p)x
B2Rί(p) of full measure such that for any (yι,y2)e B there exists a unique
minimal geodesic γyιy2 parametrized by arclength. Also note that from Lemma
2.2 with Cauchy-Schwarz inequality, the assumption (2.17) holds for any 4R\ > 0
taking δ = δ(m,κ,R\) in (2.1) sufficiently small.

This lemma roughly means that for almost all y\ e B2Rl (p) and y2 e B2Rl (p)
we have J0 \^f'(s]y\,y2)\ds < ε2, where "almost all" means "except for a set of
very small volume". To be more precise, we denote by Dε2(y\), y\ e B2Rl(p), the
set of points y2 e B2Rl (p) such that there exists a unique minimal geodesic γyιy2

joining y\ to y2 parametrized by arclength, and that J0 \%"(s)\ds < ε2

(qt"(s) :=Wf(s;yi,y2)) holds. Note that γyιy2 c: B4Rl(p). Next we set

Q£2 := {yιeB2Rl(p)\volDε2(yι) > (1 - ε2)vo\B2Rl(p)}.

Then from the lemma above it easily follows that for any ε2 > 0 there exists
ι = τ(ε2,m,κ,R\) > 0 such that if 0 < εi < τ and

\\D2f\\dvβ<ει
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holds, we have

(2.19) vo\Qε2>(l-ε2)vo\B2Rl(p).

Note that for y\ e QE2, y2 e DE2(y\) we have

for <W(s) :=W(s;yι,y2) by (2.15), (2.16). Summing up we get the following:

LEMMA 2.4. For any ε2 > 0 there exists τ = τ(ε2,m,κ,R\) > 0 such that if

—jJ—- j \\D2f\\ dvg < fil ((2.17))

holds for 0 < ε\ < τ, then we have for y\ e g£2, y2 e DB2(y\)

(220) ),/)| <2ε2,

f |c
Jo

where we again set I = d(y\,y2).

Note that for any fixed y e Q82, from (2.15) and (2.16) we get for almost all
z e B2Rl (p)

namely,

1 r^ ίΪ^ΛwJ

where we set l = d(y,z). Here also note that \W(s)\, \W'(s)\ < 1.
Now we give our version of [C-C-1], Proposition 2.80.

LEMMA 2.5. For any ε > 0 there exists ζ = ζ(ε,m,κ,R\) > 0 such that if

v^β! ((2.17))

/or 0 < £ι < ζ, then we have

(2.22) \dM(yι,y2) - Q(f(xι),f(yι),f(x2),f(y2),dM(Xί,X2))\ < ε

for any xι, x2, y\, y2 e BRl(p) with /(j, ) -f(x,) = d(xl,yi) (i = 1,2).
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Since we follow the proof of Proposition 2.80 of [C-C-1] in principle, we give
a sketch. Considering a minimal geodesic γxιyz, which is contained in
&2Ri (P'Ί Λf), it suffices to show our claim in the case of x\ = y\ = x. Set λ = γX2y2

and first assume that xeQ£2, λc:DS2(x). Then setting l(s) := d(x,λ(s)),
d:=d(x2,y2) we have

cosθ(l(s)]x,λ(s)) = qt'(l(s) χ,λ(s))

and

f/W
\®"(t χ,λ(s))\dt<ε2.

Jo

It follows from (2.20) and cosθ(/(x),/μ(j)),/(j)) = (f(λ(s)) - f ( x ) ) / l ( s ) =
(s + a)/l(s) with a :=f(x2) -f(x) that for any ε2 > 0

(2.23) co*θ(l(s);x,λ(s))-
s + a

<2ε2,
1(3)

if we take ε\ > 0 sufficiently small.
On the other hand, in the model space R x Z take x, x_2, y_2 such that

Zfe) =/(*), r_(x2)=f(x2), r(j2)=/(j2)

d(x2,y2) = d = r_(y2) - r_(x2), d(x,x2) = 1(0).

Let λ be a radial geodesic joining x_2 to > 2̂, and set [(s) := d(x,λ(s)). Note that
/(O) = 7(0) = dM(x,X2) and we have

, . " , LW Z(j)

with a2 + b2 = /(O)2. Then note that

l(d) = dM(χ,y2) and l(d) = Q(f(χ),f(χ),f(χ2),f(y2

Now from the first variation formula we have

l'(s) = co*θ(l(s);x,λ(s)), f(s) = cos&(f(x)J(λ(s)),l_(s)).

Then it follows from (2.23) that \l(s)l'(s)-f(s)L(s)\ = \ l ( s ) l ' ( s ) - ( ,
2ε2(s + l(Q)). Integrating this inequality we get

Therefore,

(2.24)

where ^(ε2 | RI) means that for fixed R\ > 0, ^(β2 I R\) i 0 as ε2 I 0.
Now in general case we need some approximation argument. Let

x = xι=yι, x2, y2eBRl(p). We may assume that d(x2,y2)>η for a fixed
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sufficiently small η > 0. Taking 82 > 0 sufficiently small we may choose
yeBη3(x)nQη3, qeBηι(x2), w e B^(y2) nDf(q) by virtue of (2.19) and the
Bishop-Gromov volume comparison theorem. Set

* = V l(^=d(y,λ(ή), d = d(q,w).

Now applying Theorem 2.11 of [C-C-1] to (2.21) as in Lemma 2.3, we may
assume in the above that

ΓJo
(2.25) l(s)\<V(l(s) ,y,λ(s))-^(l(s) ,f(y),f(λ(s)),l(s))\ds< η2,

Jo

where &(l(s);f(y),f(λ(s)), /(*)) = cosθ(f(y),f(λ(s)),l(s)) = (f(λ(ή) -f(y))/l(s)
in this case. On the other hand, since w e Dηι(q), noting that d > η — 2η3 and
(2.16) we have

Then we set <x(s) := L(γyλ(ή(l(s)),λ(s)) and note that l'(s) = cosa(^) and

|cosφ) - V(l(S);y,λ(S))\ < \\λ(s) - Vf(λ(s))\\

It follows from (2.25) that

(2.26)

where \l/(ε2,η\R\) [0 as 82, η | 0 for fixed R\ > 0. Considering the same
situation in the model space X with /(O) = 1(0) etc. as before, we have

(2.27)
o

<ψ(ε2,η\Rι),

where we also denote /(y) = r(y) etc. Here note that

\l(s) cos θ ( f ( y ) , f ( λ ( S ) ) , l ( s ) ) - l_(s) cos ®(f(y),f(λ(S))d(s))\

= \f(λ(s))-f(λ(S))\<ψ(ε2,η\Rl).

Now by the first variation formula we get

l- (l(s)2 - l(s)2)' = l(s) cos φ) - l(s) cos α(j)

almost everywhere for 0 < s < /. Then integrating the equation above as before
we complete the proof of Lemma 2.5. Π
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We note that (2.22) holds under the condition that \f(yt) -/(*,) | = d(xl,yi).
Now we turn to the proof of Theorem 1.1. Recall that we have a diffeo-

morphism Ύ:M->X = RxZ with Z =/~1(°) defined by Ψ(jc) = (/(*), Tφc))
with x = <pf(x)(n(x)). Note that Z is connected. We restrict Ψ to a distance
ball BR(P; M), p e Z. First we consider the induced distance dz on Z from du,
i.e., d z ( z , z f ) = £/M(Z,Z'), and let X be endowed with the product metric dx (see
(2.11)). Then noting that «fr(Ψ(x),Ψ(jO) = β(0,/(x),0,/(y), rfz(π(x),π(y)))
and π(x), π(x') e BΊR(P), for any ε > 0 we get from Lemma 2.5 with R\ = 2R

(2.28) |4ι/(*,jO - 4r(Ψ(jc),Ψ(y))| < e

if we take ei sufficiently small. Next we see that the above induced distance dz
on Z is close to the distance defined from the induced Riemannian metric on Z
and is almost totally geodesic.

Indeed, for z, z' e ZΠ BR(P\ M) take a minimal geodesic γ = γzz, : [0, /] — > M
in M with / = dM(z,z'). Then in view of (2.16), \f(γ(s))\ should be small. In
fact, for any 0 < s < / we set w = π(γ(s)) and get

dM(z, w) + JM(w,z/) > έ/Λrfoz7) = rf^(z,y(j)) -f

From (2.12), (2.22) it follows that

dM(z, γ(s)) > d M ( z , w ) + f ( γ ( s ) ) - e,

>, y(s)) > dM(z>,w)+f(y(s)) - ε.

Then adding these two inequalities we easily obtain

(2.29) \f(γ(ή)\ = dM(y(s),Z] < 2V

/ΦT^) =: ̂

namely, γ c Tδ3(Z). Next take a subdivision {X s/); j/ = il/N, i = 0, . . . , N} of y,
and note that π(y(j/)) e B$R(P). Then from Lemma 2.5 with .Ri = 4.R we obtain

dz(n(γ(st)),π(y(sM))) <B + dM(γ(si),γ(si+\)) = ε + χ

It follows that

Now for x > 0 we define a metric dx on Z by

(#ι-l

(2.30) 4(z,z') := inf < rfz(*,,*,+ι) | z, 6 Z (/ = 0, . . . ,M - 1),
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Then for any χ > 0, choose ε > 0 and a positive integer N := N(χ, R) so that
ε+(2R/N) < χ. It follows that dz(π(γ(si),π(γ(sM))) < χ, and

< dχ(z,z')

with 84 := max^3,Afe}. Because of (2.31) we call dχ an almost β4-totally
geodesic metric. Then we endow X with the product metric dχίX = dR x dχ, and
from (2.28) we get

(2.32) \dM(x,x')-dx,χ(V(x),Ψ(x'))\ <ε + ε4:=ε5,

for x, xf eBR(p\M). For the above distance dχ,χ on X, if R<dχ,χ(p,y) <
R + ε$, then considering a minimal geodesic in M joining p to Φ(y) and noting
(2.32) we see that there exists / eBR(p\ (X,dχιX)) with dχΛ(yrf) < 4ε5. We
may also easily verify that for any y e BR(p-, (X,dχιX)) there exists x e BR(p-,M)
with

(2.33) ^(y,ΨW)<2β5.

Then modifying Ψ slightly we see that dGH(BR(p\M), BR(p-, (X,dχίX)) < 9ε5.
Note that εs may be arbitrarily small if we take ε = ε(/, jR) sufficiently
small. This completes the proof of Theorem 1.1. Π

Note that in the proof above we only need that the Ricci curvature con-
ditions RICA/ > -(m - l)ιc, RicM(V/, V/) > -(m - \}δ and (2.8) hold on suffi-
ciently large concentric distance ball BR(p\M) of radius R, e.g. R = 16R,
compared with BR(p;M).

Finally, we give an application. Let {((M,,/?/),/-)} be a sequence of pairs of
pointed complete connected Riemannian m-manifolds (M^pt) and smooth
functions/ on Ml with ||V/ί|| = 1 such that pt ef~l(0) and their Ricci curvatures
satisfy RicM > ~(m - l)ιc, RicMl(V/;, V/ ) >-(m- 1)̂  . Suppose J/ 1 0. Then
for fixed R > 0, {BR(pi]Mt)} are uniformly compact in the sense of Gromov
([G]) and so is {BR(pi](Z^dXt))} with above chosen ^—^0. From Gromov
precompactness theorem we may assume that {(Z,,/?/)} converges to a pointed
metric space (Z,/?) in the pointed Gromov-Hausdorff topology taking a sub-
sequence if necessary. It follows that {(M^pi}} converge to (X = R x Z,/?) by
Theorem 1.1. Note that we may choose Hausdorff approximations Ψ, : Ml — »
Xl — R x Zz so that / \ = r_ι ° Ψ/? where rz : A^ — »• I? denotes the canonical pro-
jections. This roughly means that fi converge to r : X — > R, the canonical
projection to the first factor R of the product X. Therefore we have the
following:

Remark 2.6. In the situation above any pointed Gromov-Hausdorff limit X
of {(ML pi}} splits X = R x Z as a direct product of metric spaces. Further-
more, fi converge to the function r_ : X — > R in the sense above.
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3. Proof of Theorem 1.2

First we remark the following elementary fact.

LEMMA 3.1. Let (M,g) be a complete connected Riemannian manifold
admitting a function f 'with \\Vf\\ = 1. Let Z :f~l(0) be endowed with the induced
Riemannian metric. Then M is isometric to a warped product metric R xψ Z with
ψ(Q) = 1 so that f corresponds to the canonical projection onto the first factor if
and only if there exists a function k : R — » R such that

(3.1) D2f=(kof){g-df®df},

where k, ψ are related by k(s) — ψ'(s)/\l/(s) or φ(s) = exp (&k(t)di).

Proof. Suppose M is isometric to R xψ Z in the above way. Then for any
u e UPZ, p e Z we get

Differentiating this equation with respect to s, we obtain

D2f(Dφsu, Dφsu) = (Dφsu, Dφsu).

Since V/ is orthogonal to Dφsu and belongs to the null space of the Hessian
it follows that

Conversely, suppose D2f = (kof){g — df ® df}. Then we get for ueUpZ,
p E Z

d _

ds s ' s

and therefore

/ (s \
(Dφsu, Dφsu) = exp 2 k(ί) dt = ψ(s)\u, κ>.

V Jo /

This completes the proof of the Lemma. Π

For instance, if k = 0 we have the Riemannian direct product M = R x Z,
and if \k\ = 1 then M = R xψ Z with ψ(t) = exρ(±ί) Also note that

(3.2) kof=-
m-Y

Now let (M, g) be a complete connected Riemannian manifold of dimension
m with RicAf(YΛV/) ^ —(m— 1), where / : M —» R is a smooth function with
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= 1. Then we recall that |Δ/| < m - 1, and |Δ/| = m - 1 holds if and
only if M is isometric to a warped product X = /? x^ Z, where Z ^/"^O) is
endowed with the induced Riemannian metric and ψ(ή = exp(±f). Now in the
present section we ask what happens if Ricj/(V/", V/) > — (m— 1)— δ (0 <δ < 1)
and |Δ/| is close to m — 1. First we assume a rather strong condition

(3.3) |Δ/±(/ιι-l)|«J,

Then by the Bochner formula we get

(3.4) D2f
Δ/

m - l

= -RicM(V/,V/)

(g-df®df) = P>Vf-m - l

, VΔ/> -
(Δ/)2

m - l

<5ό.

For M e UpM, /? e Z, it follows that

= 2
D2f(Dφsu,Dφsu)

(Dφsu,Dφsu)

<2 + 2
Δ/

m - l

and therefore integrating the inequality above we obtain

exp(±j) exp(-4v^5 ) < ||I>^w|| < exp(±5 )

namely, for the operator norm of DΦ : T(S^X —> Tφ^z)M

exp(-4Vδs) < \\DΦ(StZ)\\ < exp(4Vδs),

where X = R x Z is endowed with the warped product metric with warping
function ψ(i) = exp(±ί), and Z is endowed with the induced metric. Thus we
proved

PROPOSITION 3.2. Suppose M and f with \\Vf\\ = I satisfy RicM(V/, V/) >
—(m — 1) — δ and (3.3). Then for any ε > 0 αwrf αwy ^ > 0 ί/zere exists
τ = τ(ε,m, jR) > 0 swcλ ίλαί ?/ 0 < δ < τ, /Λ^w /or Φ restricted to BR(p\X) c. X,
p e Z we have

(3.5) (1 -e)d!r(*^) < dM(Φ(x),Φ(y)) < (l+e)dx(x,y),

where X = R Xψ Z is a warped product metric with ψ(t)=Qxp( + t) and the
induced metric on Z. Furthermore, levels off are almost totally umbilical in the
sense of (3.4).
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In fact, to get (3.5) it suffices to assume that RicM(YΛ V/) > -(m-l)-δ
and (3.3) hold on a larger concentric distance ball B2R(p-,M).

Again, the assumption (3.3) is geometrically not nice, and now we consider
complete connected Riemannian m-manifold M admitting a function / with

= 1 which satisfies

(3.6) RicM >-(m- l)κ, RicM(V/, V/) > -(m - 1) -δ

on B2R(p-,M) and

<3 7) vniκ \n M [ |Δ/± (m- \)\2dvg <δ2.vo\B2R(p;M)JB2R(p.M}

In the following we take plus sign Δ/+ (m— I) in the integrand of (3.7) which
corresponds to the case where the model space is the warped product space
R xψ Z with warping function ψ(t) = expί. Δ/ — (m — 1) in (3.7) corresponds
to the case with ψ(t) = exp(— t). Now we show the following lemma.

LEMMA 3.3. Suppose that (3.6), (3.7) hold on B2R(p-,M), peM. Then we
have

\ \ D 2 f - ( g - d f ® d f ) \ \ d v g < C δ ,

where C = C(m, K, K) is a positive constant.

Proof. Take a function/ such that Δ/ = 1 — m on B2κ(p\ M). Now from
the Bochner formula we obtain

= -RicM(V/, V/) + <VΔ/, V/> < m - 1 + δ + <VΔ/,

Then taking a cut off function φ as in (2.10) we get

Now note that we have

ί |Δ/ - Δ/l rfv, < J vol£2*(/>; M),
J52Λ(/7;M)

, < 2{δ2 + (m- \)2}volB2R(p M)

by (3.7). It follows from the Green theorem, Cauchy-Schwarz inequality and
Bishop-Gromov volume comparison theorem that



118 TAKASHI SAKAI

f
JB2R(p

< δvo\B2R(p; M) + cι(m,κ,R)v<AB2R(p;λf) |Δ/ - Δf\2dvg

< δc2(m, K, R) vol B2R(p-, M) < δc(m, K, R) vol BR(p M)

as in Lemma 2.2, and hence

< C(m,κ,R)δ.

This completes the proof of the Lemma. Π

Now let γ — y^^ be a minimal geodesic joining 71 to y2 in M parametrized
by arclength. As in (2.13) we set <ίl(s) = <%(s]yι,y2) :=f(γ(s)), and get (2.14).
We want to compare W(s) with the corresponding Φ(,s) satisfying the same
boundary condition in the model space X = RxψZ, where ψ(ή=expt and
Z=f~l(0) is endowed with a Riemannian metric. Note that for/(x) :=r(x),
the projection onto the first factor, we obtain

(3.9) Δ / = l - m , D2f = g-df®df,

where gf denotes the warped product metric on X with warping function .̂
Again as in the previous section, for some function p : R+ x /?+ x R+ — >• /?+ we
may write

(3.10) rfjr((rι,zι),(r2,2r2)) =/>(ri,r2,rfz(^i,^2))-

Next suppose that x,9 yeX(i=l,2) satisfy π(xl) = π(y.), π(x2) = π(y-).
— I — 1 — L

Then we may write the distance function d,χ in the form

(3.11)

See e.g., [C-C-1] for general warped product case. In our special case, we have

(3.12) cosh/>(rι, r2, ι>) = eXP^+Γ^t;2 + cosh(r2 - n)

and
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(3.13) cosh dx(yv y_2) = coshdx(xl,x2) expfe^) + r(y_2) - rfe) - r(x_2))

- sinh^) - rfei)) expfeQ^) - r(*ι))

- anhfeQ^) - r(x_2)) exp^)

Then it easily follows that for z\, 22 e Z

(3.14)

We briefly explain how to get (3.12), (3.13).
Let y i p , / ] - * ^ be a geodesic in X. We set jc( s) := Φ;(j), where

Φ(,y) ~f(γ(s))β Then we have

Solving this equation under the boundary condition ΓQ = ̂ (0), r/ = ̂
(\rι - r0| < /), we get

*,/«v_ Λ,,Λ. ,, „. m _ ι_ exPro sinh(/ - s) + expr/ sinh*(3.15)

(3.16)

"" & sinh/

exp r/ cosh s — exp ΓQ cosh(/ — s)

exp r/ sinh s + exp ΓQ sinh(/ — s)

=: cos #(*), θ(s) =: Θ(j; ro, r/, /).

Then (3.13) may be obtained by solving the corresponding differential
equations for the warped product case using (3.15), (3.16) (see (3.21) below).
Note that this formula is nothing but the one for the hyperbolic plane
H2 = R xψ R with \l/(t) = expί, since these differential equations do not depend
on particular Z. To show (3.12) it suffices to consider in H2 = R xψ R. We
write a geodesic γ(s), 0 < s < /, in H2 parametrized by arclength joining (r\,z\)
to (7*2,^2) in the form γ(s) = (f(s),y(s)) eR xψ R. Observe that

\\y(S)\\R =

Then we get

= sinh/\/2exp(rι + r2)cosh/ - (exp(2rι) + exp(2r2))

dsi:o (exp r\ sinh(/ — s) + exp r^ sinh.y)2

1

exp(rι + r2)

from which (3.12) follows.

χ/2exp (ri -f r2) cosh/ - (exp(2n) + exρ(2r2)),
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Then the formulas (3.12), (3.13), (3,14) determine the warped product
distance on X with \j/(t) = expf, once a distance is given on Z. Also note that
for fixed ΓQ, r/v, {vt}l=l there exist rι, . . . ,r#_ι such that

N-l / N \

^ />(>**, r,+i, f>, +ι) = /? r0, r#, ̂  ι>ί I •
/=o V 1=1 /

Now we compare <%£(s) = %(s',y\,y2) with tft_(s) = (%_(s',rQ,rιJ) setting
ro =/(yι) = 4f(0), r/ =/(y2) - #(/), / = <f(yι, Λ). First we assume that

pi

l*77

Jo
(3.17) l*77^) + (V(s)) -I\ds<s2.

Setting ^(5) := W"(s) 4- (Φx(j)) - 1 and Xs) := exp^(^), y(s) := exp^(^),
we have

Note that since 1^(^)1, IΦ'WI < 1 we have uniform bounds |#(s)|, |*(j)| <
C(/,ro), 0 < ,y < /. Now we set z = j — j and get z"^) = z(5 ) 4 oc(s) with
α(j) = β(s)y(s). Note that z(0) = z(ί) = 0. "It follows that

f7 f7

{/(j)2 4 z(s)2} ds = z'(/)z(/) - z'(0)z(0) - z(,s)α(j) έfr
Jo Jo

From the above we easily see that \z(s)\ is small enough and \z* (s) — z1 (0)\ <
ψ(ε2\Rι). It follows that \z'(s)\ is also small, namely we get

(3.18) \V(s)-%!(s)\, |*W -*(*)! < ^felΛi).

Now to compare Φ(j) with Φ(,y) for general y^^ we again appeal to [C-C-1],
Theorem 2.11 and get

LEMMA 3.4. Suppose that

Then there exists C(m,κ,R\) > 0 such that

(3.20)
(\θlB2Rl(p))

f dvg@g ( \^'(s) 4 V(S)
2 -\\ds

JB2Rl(p)xB2Rl(p) Jo

^ jeί tfl(s) = tfί(s;y\,y2) and l =

Again note that from Lemma 3.3, (3.19) holds for any 4#ι > 0 taking
= δ(m,κ,R\) in (3.8) sufficiently small.
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Then we may argue as before with corresponding changes in Lemma 2.5 to
get the following Lemma 3.5. For instance, [(s) in this case is given by

(3.21) cosh/(s) = cosh/(0) Qxps - exρ(/(;c) -

instead of [(s) = y(s + a)2 + b2. Indeed, (3.21) may be obtained by solving the
differential equation

f(s) rinh/Cs) = c

= cosh/(j) - exp(/(x) -/(*2)) exp(-s).

We consider

f siiih/Wl^ί/W ^ A W ) -^(s)(l(s\J(y}J(λ(s})J(s)}\ds < η
Jo

instead of (2.25). Note also that

smhα

(ί)),/(ί))

exp/(A(5 )) cosh /(j) — exp/(j)

and that

f (5) = cosα(ί), α(ί) := Δ(

holds almost everywhere with

Then setting w(s) := cosh /(j) — cosh [(s) and recalling that

cosθ(/(j);/(y),/μ(ί)),/(j)) sinh/(5) = cosh/(5) - exp(/M -/(A(j))) etc.,

we obtain

M/(J) - w(ί) = sinh/(ί)(cosα(j) -c

- exp(/(y) -f(λ(s))) + exp(/()0 -/(AW))

almost everywhere. It follows that

f \rf(s)-w(s)\ds<ψ(ε2,η\Rι)
Jo

with w(0) =0 as before. Considering exp(—^)w(j) we obtain
^(β2,^|Λι) by integration, and therefore \l(d) — [(d)\ <\l/(ε2,η\R\).
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LEMMA 3.5. For any ε > 0 there exists ζ = ζ(ε,m,κ,R\) > 0 such that if

— -!— -f \\tff -(g-df®df)\\dvβ<*ι ((3.19))
vo\B4Rl(p)iB4Rι(p}

holds for 0 < ε\ < ζ, then we have

(3.22) |4if(yι,w) - β(/(^),/(yι),/(^2),/(y2),*/(^,^2))| < *
,, yitBRl(p) with \f(yϊ)-f(xι)\ = d(xl,yi) (i= 1,2).

Now for small (1 >)χ > 0 we define a distance d^ on Z by (2.30). Then on
X we define a distance rfy,* by

(3.23) ^((r,z),(/,z')) :=^y,4(z,z')),

which is in fact a warped product distance with warping function ψ(t) =exρί.
Here note that

(3.24) p(r, r', rfj, (z, z')) < β(0, r, 0, /, <fo(z, z'))

/ / r / / x x dM(z,2fγ
< p(r, r;, ί/M(z, z7)) + 3 exp

holds if dM(z,z') < 1 by (3.14).
Now our aim is to show that

(3.25) \dM(x,xf)

for x, xf eBR(p;M), where ε > 0 in (3.22) may become arbitrary small if we
choose δ in (3.8) sufficiently small. For that purpose we take a minimal geodesic
γ = γχχf of M parametrized by arclength and a subdivision {γ(si);Si = il/N,
ί = 0, . . . , N} of y, where we set / = d(x, xf). Note that γ(st) e BΊR(P\ M),
π(γ(si)) el?4#(/?;M). Then applying Lemma 3.5 with R\ = 4R we obtain

\dM(π(γ(si)),π(γ(si+ι))) - β(/(y(j|)),0,/(y(^ι)),0,έ/jι/(y(j/),y(j/+ι)))| < ε.

Taking a sufficiently large N := N(χ, R) it follows that

(3.26) dj(f(π(γ(si))ί τr(y(j, +ι))) < /.

Note that dx(π(γ(si))9 π(γ(si+ι))) = dM(π(γ(si)),π(γ(sM))). Then from Lemma
3.5 and (3.26) we obtain

N-l

(3.27) dM(x,xf) = / ^ dM(y(sj), y(^ +ι))
t=0

N-l

-εN

ι=0
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= Σ
ί=0

where εΛΓ may be arbitrarily small if we take ε > 0 sufficiently small. On the
other hand, for x, xf e BR(p\M) set (r,z) := Ψ(x), (/,z') := Ψ(jc'). Then from
the definition of the distance dx there exist points z, (/ = 0, .. . ,Nι) eZ with
ZG = z, z#ι = z' such that

#,-1

0 < Σ dM(zt,zt+ι) - dχ(z,z') < ε, dM(zt,zl+ι) < χ.
ι=0

Then there exist points (r,, z,) 6 1? x Z (/ — 0, . . . , N\) with ΓQ = r, r^ = r7 such that

ι=Q \ ι=0 /

We set xt = Φ(r,,zI), namely, (r,,^) = Ψ(x,). It follows from (3.12) that

#ι-l

ι=0

where C = C(R) is a positive constant. Note that |r/| < 2Λ + Cε,
Zj e j#4κ(/r, M), xt 6 BΊR(P M). Then Lemma 3.5 with (3.24) implies that

where Ci = C\(R) is a positive constant.
Now we give an estimate of Λ^. Noting that dχ(z^zl+\) -\-dχ(zl+\,zl+2) > χ

we have

Set v:=dχ(z,zr). Then from (3.27) we get

taking ε > 0 small. Hence noting that cosh/?(r, /,£>) > (v2/2) + 1 we obtain

. . t /?(ry,ι;) . . .
t;<2sιnhF V ' ' ; <2smh

2R

It follows that

Therefore, we have

#ι-l

Λ/) < y j ^Af( ^u ^ϊ+l) ^ ̂ ,^(^W>^( ̂ )) + (M
1=0
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where €2 = C2(R) is a positive constant and for fixed R > 0, ψ ( ε \ χ \ R ) becomes
arbitrary small if we take first χ > 0 small and then choose ε = ε(χ) > 0 further
small. In the arguments above note that it suffices to assume that (1.8), (1.9)
hold on a sufficiently large concentric distance ball Bχ(p',M) of radius R, e.g.
R = 3QR, compared with the given BR(P-,M). We may proceed with the re-
maining argument as in the proof of Theorem 1.1, and the proof of Theorem 1.2
is complete. Π

Remark 3.6. Let {((Af,,/*,-),/-)} be a sequence of pairs of m-dimensional
complete connected pointed Riemannian manifolds Ml and smooth functions ft
on Mt with ||V/5|| = 1 and ||Δ/ί| - (m - 1)| < δ,, where/?/ e Zt :=f~l(0) and their
Ricci curvatures satisfy Ric^ > - (m - l)κ, RICM, (V/, V/) > - (m - 1) - of. Sup-
δi I 0. Then as before we may assume that {((Zz,d^),/?j)} with above χt(l 0)
converges to a pointed metric space (Z,/?) in the pointed Gromov-Hausdorίf
topology taking a subsequence if necessary. It follows that {(M^pi)} converge
to X = RxψZ with ψ(t) =exp(±t) by Theorem 1.2. Therefore, any pointed
Gromov-Hausdorff limit X of {(Af,,/?,-)} splits X = R xψ Z as a, warped product
metric space.

We also note that we may give a similar version of Theorem 1.2 for the case
where we take a general warped product space RxψZ with convex ψ as the
model ([S-2]).
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