
T. SAKAI
KODAI MATH. J.
19 (1996), 39-51

ON RIEMANNIAN MANIFOLDS ADMITTING A

FUNCTION WHOSE GRADIENT IS

OF CONSTANT NORM

TAKASHI SAKAI*

Abstract

Let M be a complete Riemannian manifold which admits a smooth funo-
tion / such that | |V/| |=const. holds for the gradient vector field of /. We
show that the Ricci curvature of M controlls such / considerably.

1. Introduction

Let /(x1, •••, xm) be a smooth function of real m variables which satisfies

Then it is known that locally there is a variety of such functions. However,
globally a smooth function / : Rm-^R satisfies (*) if and only if / is an affine
function (see e.g. [Co] for these facts from a viewpoint of symplectic geo-
metry).

Now in the present note we are concerned with a similar problem from a
viewpoint of Riemannian geometry. Let M be a complete connected smooth
Riemannian manifold. We ask when M admits a smooth function / : M-^R
satisfying

(**) || V/1|= const,

where V/ denotes the gradient vector field of / . Locally again we have a
variety of such /'s (see Remark 2.2). Now recall that a function / : M-+R is
said to be an affine function if f°γ: R—+R is an affine function for any geodesic
γ in M (see [In-1]). Then affine functions / are turned out to be of class C°°
and satisfies (**). Innami proved that M admits a nonconstant affine function
if and only if M splits as a Riemannian product M=NxR. Now are there
many smooth functions which satisfy ||V/||=const. other than affine functions?
In fact, Busemann functions on the hyperbolic spaces Hm (or on Hadamard
manifolds, see [B-G-S]), and the signed distance functions to N for warped
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product manifolds M—NXψR give such examples (see Example 2.5).
The purpose of the present note is to show that the Ricci curvature con-

trols the behavior of such / with UV/||ΞΞconst. (Φθ) considerably. Namely, we
get

THEOREM A. Let M be a complete connected Riemannian manifold of non-
negative Ricci curvature. Then any smooth function which satisfies | |V/||=const.
is an affine function.

THEOREM B. Let M be an m-dimensional complete and connected Riemannian
manifold whose Ricci curvature satisfies Ricci tr^ — (m—1). Let f be a smooth
function on M with | |V/ | |=1. Then we get |Δ/|<£m—1, where Δ/(=—traceD2f)
denotes the Laplacian of f. Moreover, we have | Δ / | = m — 1 everywhere if and
only if M is isometric to the warped product M=Nxφ R, where N := f~\0) is a
complete {m—l)-dimensional Riemannian manifold of nonnegative Ricci curvature
and φ(t)=et (resp. e~ι). Furthermore, in this case f, which is the signed distance
function to N(=NX (0}cM), is the Busemann function defined by asymptotic
rays *->(/>, —0 {resp. t*-*(p, t))<^NxφR, p<=M up to the sign.

In § 1 we give an elementary characterization of a smooth function / with
||V/1| ΞΞconst. (>0) on a Riemannian manifold M as a signed distance function to
a complete hypersurface of M. We also give some characterizations of affine
functions for completeness. In §2 we give proofs of the above theorems (see
Theorem 3.1 and Theorem 3.5). In the first version of the present note the
author gave a proof of Theorem A using the Cheeger-Gromoll splitting theorem
([C-G], [E-H]), and Theorem B was stated under the assumption on the sec-
tional curvature. Then the referee pointed out that it is possible to give more
direct proofs of Theorem A. Inspired by the referee's suggestion, Theorem B
is also improved in the above form. I would like to express my hearty thanks
to the referee for kind suggestions and giving alternate proofs of Theorem A,
which considerably improved the first version. I also thank N. Innami for use-
ful comments and pointing out Kanai's work ([K]), A. Katsuda and H. Takeuchi
for discussions. We treat smooth functions in the following for the sake of
simplicity, although the following argument requires only the differentiability
of class C2.

2. Preliminaries

Let (M, g) be a connected complete Riemannian manifold. Suppose we have
a smooth function / : M^R with ||V/|| = α(>0), where Vf denotes the gradient
vector field of /, namely the vector field characterized by g(V/, X)—Xf for
any vector field X on M. Now let φs be the flow generated by 7/. Then
ψs(P), P^M is defined for all se/2. Also note that f(φs(p))=f(p)+a2s and
f(M)=R. Now since / admits no critical points, f~\t), t^R are complete
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hypersurfaces and M is diffeomorphic to f~\0)xR. Furthermore, for p<=f~\t0),
a trajectory γp : s^φs(p), 0<s^s0 is in fact a minimal geodesic between hyper-
surfaces f~\U) and f-\tx\ t^to+a'so, namely d{f'\Q9 f~\U))=L(c\\_Q9 s0])
=αs 0 . In fact, / : (M, g)-*(R, a2g0) is a Riemannian submersion, where g0 de-
notes the canonical Riemannian metric on R with go(d/dt, d/dt)—l, and we have
for any curve c: [0, /]->M parametrized by arc-length joining a point of f~\U)
to a point of f~\U)

Lg(c)=
Jo

__1_
α

= Z/ί(fp| [0, s0])

(see also [E-H]).
Now we give a simple characterization of such a function /

PROPOSITION 2.1. Let M be a connected complete Riemannian manifold.
There exists a smooth function f: M-+R with | |V/||^a (>0) if and only if there
exists a connected complete hypersurface N of M with a smooth unit normal vec-
tor field X such that the normal exponential map exp 1 : v(N)->M is a diffeomor-
phism, where v(N) denotes the normal bundle of N. Further, in this case (I/a)/
coincides with the signed distance function to N, namely we have f(expLtXp)=
at, p(ΞN.

Proof. Let f: M-*R be a smooth function with | |V/| |=α (α>0) and set
N:—f~\0). X'.— Vf/a gives a smooth unit normal vector field to N. Then
our first assertion is clear from the description preceding the proposition. In
particular, we get

/(exp1 sXp)=f(rp(s/a))=f(φ9/a(p))=as,

namely, f/a is the signed distance function to N.
Conversely, suppose we have a complete connected hypersurface N with a

smooth unit normal vector field X to N such that exp 1 : v(N)—>M is a diffeo-
morphism. Then define a map Φ : NxR-+ M by Φ(p, t) \— exp1 tXv, which is a
diffeomorphism. Then any unit speed geodesic γp : s ^ e x p 1 sXv emanating from
p<=N perpendicularly to N is a minimal geodesic realizing the distance to N,
and the signed distance function / to N is given by f(q)=pr2°Φ~1(q), where
pr2 denotes the canonical projection NxR-^R. It follows that / is a smooth
function. Next we show that | |V/ | |=1. In fact, for q^M take (/>, s)^NxR
such that q=Φ(p, s). Then for s^O (resp. s<0) γp\l0, s] (resp. γp\[s, 0]) is a
minimal geodesic from N (resp. q) to q (resp. N), which emanates from (resp.
ends at) p<=N and perpendicular to N. Now let u^TqM be given. Then there
exists a unique iV-Jacobi field Y along γp such that Y(s)=u (see e.g. [Bi-Cr],
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[H-K], [S]), since exp1 is a diffeomorphism. From the first variation formula
we get for any

uf= 211 t=o f(expq ftt)=sign(s)^ | ί = 0 d(expq tu, N)

), fp(s))=sϊgn(s)g(u, fp(s)).

Namely, we get V/=sign(s)jrp(s) and therefore | |V/ | |=1. π

Remark 2.2. Let M be a not necessarily complete Riemannian manifold.
If we take a (local) hypersurf ace N with a smooth unit normal vector field to N
and consider a domain U of M which is a diffeomorphic image under exp-1 of
a disk bundle of the normal bundle v(N) of N. Then the signed distance
function f to N restricted to U gives a local smooth function with | |V/ | |=1.
Therefore, we have a variety of local smooth functions /wi th ||V/||ΞΞ const, for
any Riemannian manifold.

Now the simplest examples of / with ||V/||ΞΞconst, are affine functions.
Geometrically it is natural to define that / : M-+R is an affine function if foγ:
R->R is an affine function for any geodesic γ in M. Then / is smooth due to
the Innami splitting theorem ([In-1], see also [Shi]). We give a direct proof
of smoothness of /, although it is a simplified version of Innami's argument,
and give some elementary characterizations of affine functions, which seem to
be folklore, for completeness.

LEMMA 2.3. Let (M, g) be a complete connected smooth Riemannian mani-
fold. Then the following (l)-(4) are equivalent to each other.

(1) / is an affine function.
(2) / is smooth and its gradient vector field Vf is parallel.
(3) / is smooth and its Hessian D2f vanishes everywhere.
(4) / is smooth and Vf is a Killing vector field with ||V/||^const.

Proof. Recall that the Hessian D2f of / is defined as

(2.1) D*f(X, Y)=g{VxY, Vf)=Xg(Y, Vf)-g(Y, VxVf)

and is a symmetric tensor field on M. In particular, we get for any vector
field X on M

(2.2) D*f(Vf, X)=g(VxVf, V/)= jXgφf, Vf),

(2.3) D*f(X, Y)=-g(Yf VxVf) if YUf.

From these formulas we easily see the equivalence of (2)-(4). Note that Vf
belongs to the null space of D2f if ||V/||==const. (see (2.2)).

Finally, we show the equivalence of (1) and (2)-(4). In fact, it suffices to
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see that any affine function / is smooth. Since / is convex it is (locally)
Lipschitz (see e.g. [Ba]), and therefore continuous and differentiable almost
everywhere. Now to any X^TM we assign a(X):=(d/dt)\t=of(exptX) and
b(X) := f(π(X)), where π : TM-+M denotes the canonical projection. Then the
functions a, b: TM-^R are continuous, since / is continuous and /(exp tX)=
a(X)t+b(X) holds. To see that / is differentiable it suffices to show that
a\TpM is linear for any p<=M, which is clear because this is true for almost
all p and a is continuous. Further note that we have g(Vf, X)=a(X) and / is
of class C1.

Now if V/(/0=0 holds at some point p^M, then / is constant along any
geodesic emanating from p and therefore / is a constant function. Thus we
may assume that V/ vanishes nowhere. Then f~\t) is a complete totally geo-
desic hypersurface of M for any ίe/2, since for any two points of f~\t) any
geodesic line through these points is contained in f~\t). In particular, f~\t) is
a smooth hypersurface of Mand Xp := Vf(p)/\\Vf(p)\\, p^f~\t) defines a smooth
unit normal vector field to f~\ί). Next we set N := f~\0) and let γ(t) :=
expλtXp, p<=N be a unit speed geodesic perpendicular to N. We show that γ
is a minimal geodesic from p to the level f~\f(γ(t))) for any ί>0. In fact,
otherwise we have a unit speed minimal geodesic yx: [0, /]->M from p to
f~\f(γ(t))) with l<t. Note that α(ή(0))^α(Zp) holds, since \\Vf\\Xp is the gradient
vector of /. Therefore, we have /(ri(0)=:α(7Ί(0))/<α(^p)ί=/(r(0), a contradic-
tion. It follows that a(γ(t))=a(Xp), f(0=α(^)"1V/(r(0) hold for any ί^O and
γ is perpendicular to all levels f~\f(γ(t))). By the same argument we see that
exp 1: v(N)-+M is a diffeomorphism. Next let x(s) be any curve in f~\0) with
x(0)=p. Then s -^exp1 ίZ^ ( s ) is orthogonal to Vf everywhere. In fact, if we
set a(t, s):=exp1tXxis) we have d/dt<da/dt, da/ds>=l/2 d/ds<da/dt, da/dί}=0
and <da/dt, da/ds>t=0=0 Therefore <da/dt, da/ds} = 0. It follows that s->
exp^Z^cs) is contained in f(γ(t)). Namely, we have a(Xx(s))=a(Xp) and ||V/|| =
α(=const.) Then f/a is the signed distance function to a smooth hypersur-
face N, and therefore is a smooth function. D

Remark 2.4. (i) Let / be a smooth function on M and t a regular value
of /. Then the second fundamental form S of N :—f~\t) at p^N with respect
to the normal vector Vf(p) is given by

(2.4) S(X, Y)=D*f{X, Y) X, Y<ΞTvΓ\f),

because of S(X, Y)—g(^χY, Vf). Therefore, if / is a nontrivial affine function,
namely if it satisfies one of (i)—(iv) and ||V/|| = α>0, then f~\t), t<=R are
totally geodesic hypersurfaces. Conversely, if ||V/|| = α > 0 and f~\t\ t^R are
totally geodesic hypersurfaces, then D2f vanishes everywhere and / is a non-
trivial affine function.

(ii) Let / be a nontrivial affine function. Then M splits as the Rieman-
nian direct product M=/"1(0)Xi2, where f~\0) carries the induced metric and
R carries the Riemannian metric with <d/dt, d/dt> = a\=\\Vf\\2). This fact is
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the Innami splitting theorem and also follows easily from Lemma 2.3, since Vf
is a Killing vector field (see e.g. [Y-N]).

Next we give examples of / with | |V/||= const, other than affine functions.

Example 2.5 (warped product). Let (N, h — ds%) be a complete Riemannian
manifold and define a Riemannian metric g=ds2

M on M—NxR by

(2.5) ds2

M = d?+ψ\t)ds2

N,

where ψ(t) is a positive smooth function defined on R with 0(0)=1. Then (M, g)
is called a warped product and denoted by M=NxψR. Note that g is complete
(see e.g. [Bi-O]). Now since the canonical projection / : = π2: MxR-^R is a
Riemannian submersion, t>-*(p, t), p^N is a minimal geodesic between f~\0)
and f~\t) for any t<^R. Then / is the signed distance function to N=NX{0\
and therefore a smooth function with | |V/ | |=1.

Finally, we briefly mention the Busemann functions. Let γ: [0, + o o ) ^ M
be a geodesic ray, namely a unit speed geodesic with d(γ(s), γ(t))=t—s for any
t>s>0. Then the Busemann function br corresponding to γ is defined as

br(q):= lim (d(q, γ(t))-t).
ί-+oo

If M is an Hadamard manifold, then it is known that br is a convex function
of class C2 with | |V/| |=1 and these conditions characterize Busemann functions
(see [B-G-S], [Im-H]).

3. Proof of theorems

First we generalize the fact that any smooth function / : Rm->R with
(df/dx1)2+ -" +(df/dxm)2=const, is an affine function, to a complete Riemannian
manifold of nonnegative Ricci curvature. Namely, we have

THEOREM 3.1. Let M be a complete connected Riemannian manifold of non-
negative Ricci curvaure. Then any smooth function f: M-+R with ||V/||Ξconst.
is an affine function.

Proof. If ||V/||ΞΞO, then / is a constant function and we may assume that
| |V/| |ΞΞ1. The result easily follows from the Cheeger-Gromoll splitting theorem
(see [C-G] and also [E-H] for a simple proof). Recall that any trajectory γ of
Vf is a geodesic line which is perpendicular to each level f~ι(f). We fix such
a γ. Now Cheeger-Gromoll showed that M splits as a Riemannian product M—
NxR and at each point of γ, the second factor R corresponds to γ. It follows
that for the curvature tensor R of M we have

(3.1) R(f(t), X)=0 for
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We will show that for any to<=R, N : = f~\t0) is a totally geodesic hypersurface.
Let p&N and γ be the trajectory of 7 / emanating from p, which is a geodesic
line with γ(0)=0 and f(0)=7/(/>). Suppose we have a nonzero principal curva-
ture i of iV at /><=N with respect to the unit normal Vf(p), namely λ is a non-
zero eigenvalue of the shape operator Aμ0) with a unit eigenvector e±f(O).
Here we define the shape operator as g(Af(0)X, F)=—S(X, F). Then we have
an N-Jacobi field Y(t) along ^ which is determined by the initial conditions
Y(0)=e, VY(0)=λe (see e. g. [Bi-Cr], [H-K], [S]). We defined the shape operator
so that yV-Jacobi fields satisfy the initial conditions F ( 0 ) G T P N , VYφ)=AfWY(0).
Note that Y(t) is perpendicular to γ and can not vanish because the normal ex-
ponetial map expx of N is a diffeomorphism (see Proposition 2.1). On the other
hand, we get from (2.1) and the Jacobi equation

(3.2) 0=VW(f)+R(Y(f), f(0)f(0=WF(0.

Therefore VY(t) is parallel along γ and we get VY(t)=λe(t), where eif) denotes
the parallel translation of e along γ. Solving this equation we get Y(t)=
(λt+ϊ)e(t) and therefore we have F(—1/Λ)=O, which is a contradiction. Namely,
all the principal curvatures of N=f~\t0) vanish and N is a totally geodesic
hypersurfaces for any to^R. Then / is an afRne function by Remark 1.4. •

In the following we give alternate proofs of the above theorem pointed out
by the referee.

Alternate proofs given by the referee. We may again assume that | |7/ | | = 1
and show that / is harmonic. To see this note that λ:=Vf(p)/(m—l), p<=M
is equal to the mean curvature of the level f~\f(p)) at p, since Vf(p) belongs
to the null space of the Hessian D2f(p). Now take a hypersurface N of Rm

such that N is totally umbilic at a point p(=N with λ as the mean curvature.
Now if λΦO then N posseses a focal point, as is well known and may be proved
by an argument as in the above proof. It follows from the Heintze-Karcher
comparison theorem ([H-K], § 3.2, [S]) that N also posseses a focal point. This
contradicts Proposition 2.1 and / is harmonic. Now recall the following identity
which holds for any smooth function u on M (see e. g. [S]):

(3.3) -i-Δ||Vu||2=<Vu, VΔw>-Ric (7M, VU)-\\D2U\\2.

Applying it especially to /, for which we have | | 7 / | | Ξ 1 and Af=0, we im-
mediately get D2f=0 because of the assumption on the Ricci curvature.

Further, there is another proof of Af=0 in which the comparison theorem
of Heintze-Karcher is not used either apparently. Suppose again | | 7 / | | = 1 . Then
the formula (3.3) tells that

Take an arbitrary integral curve γ(t) (te/2) of the gradient vector field Vf. It
then follows that
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Meanwhile, we have

because of Δ / = — trace D2f and D2f(Vf, V/)=0. In consequence, we are led to
the differential inequality

which implies that Af(γ(t))^-(m-l)/(t+a) unless Af(γ(t))=0. Since Δ/ is de-
fined entirely on M, it trurns out that Δ / = 0 . D

Remark 3.2. Innami pointed out that his Theorem D and the argument of
§5 of his paper [In-2] also implies that the above / is an affine function.

Next we are concerned with the case where there are smooth functions /
with | |V/| |=1 other than affine functions. For instance, the warped products in
Example 2.5 give such examples. Here we first consider the hyperbolic space
(Hm, go) of constant curvature —1. We show that there are many smooth
functions / with | |V/| |=1 other than affine functions, and give a characteriza-
tion of the Busemann function from this viewpoint. Then we generalize these
facts to the variable curvature case.

PROPOSITION 3.3. (1) Let M—{Hm, g0) be the hyperbolic space of dimension
m and let f be a smooth function f on M with ||V/|| = 1. Then any eigenvalue
λ of the Hessian D2f(p), p^M satisfies \λ\^l. In particular, we get | Δ / | ^
m—1 for the Laplasian Δ/=—trace D2f of f. Further, \Af\=m—l holds every-
where if and only if f is a Busemann function up to the sign.

(2) Conversely, let N be an oriented complete connected smooth hypersurface
of M whose principal curvatures λ satisfy \λ\^l. Then the normal exponential
map exp 1 : v(N)-*M of N is a diffeomorphism and the signed distance function f
to N satisfies | |V/ | |=Ξ1.

Proof. (1) Set N : = f'\s0), so<^R. Let γ be the trajectory of V/ through
p<=N. Now let λ be a principal curvature of N, namely an eigenvalue of the
shape operator Ap of JV with respect to the unit normal Vf{p), and e a unit
eigenvector of Av with the eigenvalue λ. Let Y(t) be the ΛT-Jacobi field along
γ with the initial conditions Y(0)=e, VY(0)=Λe=λe. Solving the Jacobi
equation we get F(ί)=(cosh t+λsinh t)e(i), where e(t) denotes the parallel
translation of e along γ. Note that Y(to)=O occurs for some U if and only if
|Λ |>1. Since the normal exponential map exp1: v(N)—>M is a diffeomorphism
(see Proposition 2.1), we see that any geodesic emanating perpendiculary from
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N is free of focal points. Therefore we have \λ\<l for all the principal cur-
vatures of N. Recalling that Ap=-D2f\TpNxTpN and Vf(p) belongs to the
null space of D2f(p), we see that all eigenvalues λ of the Hessian D2f should
satisfy |Λ|5jl. Then we have \Af\<m—1 because of Δ/=—traced 2 / .

Next we show that D2f^0 (resp. D2f^0) holds if and only if all the prin-
cipal curvatures of f~1(t)f t^R are equal to —1 (resp. 1). This clearly occurs
if and only if | Δ / | = r a — 1 . To see this, let λt (i—1, •••, m—1) be the eigen-
values of Ap, p^N=f~1(s0) with eigenvectors et which form an orthonormal
basis of TPN. Let γ be the trajectory of Vf through p. Then any Λf-Jacobi
field Y(t) along γ, which is perpendicular to γ, may be written as

ΠO=mΣflt(cosh t+λt sinh 0^(0,

where £*(0 denote the parallel translations of et along γ. Note that these Y(t)'s
span Tr(t)f~\f(γ(t))) for any t, and if λ is a principal curvature of f~Xf(γ(t)))
with respect to Vf(γ(t)), then there exists an Λf-Jacobi field Y(t) such that VY(t)
=λY(t). It follows that for at least one of l<ί<m—1 we have Λ=(sinhί-f-
λt cosh /)/(cosh f+Λt sinh t). Now note that (sinh t-{-λx cosh ί)/(cosh t+λt sinh t)<0
(resp. ^0) hold for 2 = 1, •••, m—1 and all te/2 if and only if ^ t = —1 (resp. =1)
hold for z = l, •••, m—1. Then recalling that Vf belongs to the null space of
D2f and Ap = -D2f(p)\TpNxTpN, the last condition is equivalent to D2f^0
(resp. D2f<ί0) everywhere, namely / is convex (resp. concave). This occurs if
and only if / (resp. —/) is a Busemann function (see [B-G-S]). Note also that
this holds if and only if we have KNΞΞ0 because of the Gauss formula.

(2) Conversely, let N be an oriented connected complete hypersurface whose
principal curvatures λ satisfy | A | ^ 1 . Then as we showed above any nontrivial
Λf-Jacobi filed Y{t) along a normal geodesic γ emanating perpendicularly from
N can not vanish. Therefore, the normal exponential map exp 1 : v{N)-+M is a
regular smooth map, and surjective since N is closed. We show that exp1 is
injective. In fact, suppose we have r ^ e x p 1 w^exp^ I G M for some u, v^
v(N)\o(N), uΦv. Set p—v{u), q—v{v)<^N, where v denotes the projection of
the normal bundle. Let γp, γq be the geodesies given by t >-> exp-1- tu, exp1 tv,
respectively, which emanate from p, q, respectively, and are perpendicular to
N. Take a curve c : [0, 1]—* Λ/" joining p to q and consider a homotopy a: [0,1]
χ[0, 1]->M from γp to γq by taking geodesies in Hm joining c(s) to r for S G
[0, 1]. Then since exp1 is regular we may lift curves as: [0, 1] —> M, which
are defined as as(t) : = a(t, s) and join c(s) to q, to a family of curves άs in the
normal bundle v(N) so that αs(O)=0C(S) and άs(l) is a fixed point. However, this
is impossible because ά0, άi are given by t^ίu and t^tv, respectively and can
not end at the same point since uΦv. It follows that exp1 is a diffeomorphism.
Then the remaining assertion follows from Proposition 2.1. D

Remark 3.4. Other typical examples of the above NciH which satisfy the
condition of (2) of the above Proposition are complete simply connected totally
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geodesic hypersurfaces which are isometric to (Hm~\ g0). Then slight C°°-
deformations of Hm~ι give examples of N satisfying the condition of (2). There-
fore, we have a variety of smooth functions / with ||V/||=const. which are
neither affine functions nor Busemann functions.

Now we turn to the variable curvature case.

THEOREM 3.5. Let M be an m-dimensional complete connected Riemannian
manifold whose Ricci curvature satisfies Riccî f ^ — (m—1) everywhere. Let
f: M->R be a smooth function with | |V/ | |=1. Then we get |Δ/ |^ ra—1 for the
Laplacian of f. Furthermore if \Af\=m—1 holds everywhere, then M is iso-
metric to the warped product f~1(0)Xψ R, where f~\0) carries the induced metric
with nonnegative Ricci curvature and φ(t)=e±t. Further f is the Busemann func-
tion corresponding to a line R up to the sign.

Conversely, let N be a complete connected Riemannian manifold of nonnega-
tive Ricci curvature. Let M'.— NXψR be warped product manifold with φ(t)=
e±t. Then the Ricci curvature Ricci^ of M satisfies R i c c i ^ — (m—1) everywhere
and the signed distance function f to N satisfies | |V/| |=1 and \Af\=m—1.

Proof. Suppose that at some point |>eM the absolute value of Af(p) is
greater than m—1. Recall that λ : = Af(p)/(m—1) is the mean curvature of the
hypersurface N := f~ι{f{p)) at p. Let γ be the trajectory of Vf through p,
which is a geodesic perpendicular to N. Firstly we consider the case λ< — l.
Let M\—{Hm, g0) be the hyperbolic space and take a (local) hypersurface TV
through a point j><=M such that N is totally umbilic at p with λ as the mean
curvature. Then the argument of the previous Proposition implies that there
exists a focal point of N along the normal geodesic f emanting from p perpen-
dicularly to N. It follows from a comparison theorem (see [H-K] § 3.2, [S])
that there appears also a focal point of N along γ, which is a contradiction
because the normal exponential map is a diffeomorphism. Considering the geo-
desic reversing the orientation of γ we get a contradiction for the case λ>l,
namely \Af\^m—1.

Next suppose \Af\=m—1 holds. Then checking the equality case of the
Heintze-Karcher theorem, it follows that there exists an orthonormal basis
K h ^ Ί 1 of the orthogonal complement of Vf(p) in TpM(p^f-\0)) such that
Yi(t) : = (cosh t+λ sinh t)βi(t) (i=l, •••, m—Y) are Λf-Jacobi fields along γ, where
N'.^f'1^), λ—±l and et(t) denotes the parallel translation of ex along γ. Then
we see that all the principal curvatures of the levels f~ι(t), t^R with respect
to the unit normal vector Vf are equal to 1 (resp. —1). Let <pt be the flow
generated by Vf. Then since all trajectories t*-+<pt(p), p^N:— f~\0) are normal
geodesies perpendicular to the levels f~\t), Y(t):= Dψt(u), u^TpN, N:=f~\0),
p(=N are Λί-Jacobi fields along t*-*φt(p) with VF(0)=F(0)=w (resp. VY(0)=-Y(0)
= - t t ) and we get further VY(t)=Λvf(φt(p))Y(t)=Y(t) (resp. -Y{t)). Then it
follows that
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and we get g(R(Y(t), Vf)Vf, Y(t))=-\\Y(tψ, namely KM{Y{t\ V/) = - l for the
sectional curvature.

Now we define a smooth map Φ : f~\0)Xψ R-»M by Φ(/>, t) : = >̂«(/0, which
may be easily seen to be a diffeomorphism. We show that Φ is an isometry.
Note that DΦ((p, t))(d/dt)=Vf(Φ(p, t)) and DΦ((p, t))u=Dφt(u)(:=Y(f)) for we
TpN. Then Y(t) is an ΛΓ-Jacobi field along geodesic γ:t^>φt(p) with F(0)—
VF(0) = w and perpendicular to γ. It follows that ||Z>Φ(/>, ί)(3/30ll = l and
g{DΦ{{p, t))(β/df), DΦ(p, f))(tt))=0 for U£ΞTPN. On the other hand, we get for
u, v^TpN

g{DΦ{{p, t))(u), DΦ((py t))(v))=g(Y{t), Z{f))

as above. Then we have

(3.4) Jtg(X{t)' zW=8<yV(t), Z(t))+g(Y(t), VZ(t))

=2g(Y(t), Z(t)) (resp. -2g{Y(t), Z{1)))

and it follows that g(DΦ{(p, t)){u), DΦ((p, i))(v))=g(Y(t), Z(t))=e±ug(u} v), which
shows that Φ is an isometry, if we define ψ(t):— e±t. Finally as for the cur-
vature we recall the following formula (see e. g. [Bi-O]) for a warped product
metric

(3.5) KM((y, 4 ) , (,, ft|))

=ψ>(t){KN(y, z)-ψ'\t)} h(y Az, y Λz)

-ψ(t){a*h(z, z)-2ab h(y, z)+b*h(y, y)}φ"(t),

where {(y, a(β/dt)), (z, b(d/df))\ are orthonormal vectors in T(Pιt)M, p<=N.
Applying (3.5) to the case where ψ(t)=et, α = ύ = 0 and ||3'|| = II^||=β~t we get

KM{(y, 0), (z, 0))=e»{KN(y, z)-e"\e-« ,

Now suppose that the Ricci curvature of M satisfies Ricci^^—(m—1). Then
we get for

, 0), (y, 0))-KM(y, j

The case where 0(O==β~ί may be treated in the same manner. Furthermore,
when ψ(t)=eι (resp. φ(t)=e-1), geodesic rays R+ 31>-> Φ(p, —t) (resp. Φ(p, t))
G M , p&N, are asymptotic to each other and the Busemann functions corre-
sponding these rays are in fact the signed distance functions to N up to the sign.

Now we turn to the last assertion. Firstly, we check that Ricci^^—(m—1).
In fact, for a plane section a of T(Pιt)M with an orthonormal basis {u : =
(y> a(d/df)), v\— (z, b(d/dt))\, we get for the case where φ{S)—eι
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KM(σ)=e2t{KN(y, z)-e2t) {h{y, y)h(z, z)-h\y, z)}

-eu{a2h{z, z)-2ab h(y, z)+b2h{y, y)}

Now for u:= (y, a(d/dt))(=U(Ptt)M, taking an orthonormal basis of T{p<t)M
given by {e1=uf et=(yt, 0), em\, where * = 2 , •••, m—1 and em—(—(ae^βy^y,

WyWe^d/df)), we may easily check that R i c c i ^ —(ra—1). The same computation
also works for the case where ψ(t)=e~ι. Secondly, let / be the signed distance
function to N. We only consider the case where φ(t)—eι. Then the trajectry
γ of Vf through p^N is given by ί •—>(/>, t)(=M=NXψ R, which is a geodesic
perpendicular to the levels f~\t) of /. Note that for U(ETPN, Y:t*->(u, 0 )eT r ( ί ) M
is an /~1(s)-Jacobi field along γ for any s^R. Now we show that VY(t)=Vd/atY(f)
=Y(t). In fact, for any v^TpN we set Z(t):= (v, 0)eT r ( ί ) M. Then from the
definition of the covariant derivative we get

^ j^e2th(u, v)

=e2th(u,v)=g(Y(t),Z(t)).

Since Y(t) is perpendicular to γ, we get VY(t)=Y(t), which implies that all
eigenvalues of D2f restricted to the tangent spaces to f~\t) are equal to —1
and therefore Af=m—1. D

Remark 3.6. From Theorems 3.1 and 3.6 we have the following: Let M
be an m-dimensional connected complete Riemannian manifold whose Ricci cur-
vature satisfies Riccij^—(m—l)c2, cĵ O. Suppose we have a smooth function
/ on M with | | V / | | Ξ 1 . Then we get |Δ/ | ̂ (

Remark 3.7. For the warped product M=NxφR, if the Ricci curvature of
M is nonnegative then φ is a (positive) constant. This follows from the com-
putation of Ricci curvatures of (0, 9/30 by (3.4), or Theorem 3.1.

Remark 3.8. In [K] (see also [T]) it is shown that if a complete Rieman-
nian manifold (M, g) admits a nontrivial solution / without critical points for a
differential equation D2f—fg=0, then (M, g) is isometric to the warped product
NxφR with φ—φ (φ>0). The relation between their/and our / in Theorem
3.5 seems to be f=ef.
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