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NEVANLINNA THEORY FOR MINIMAL SURFACES
OF PARABOLIC TYPE

HIROTAKA FUJIMOTO

§1. Introduction

Consider a minimal surface x=(x,, -, xn): M—R™ in R™. In the previous
papers [97, [107, [11] and [12], the author gave some value-distribution-theoretic
properties of the Gauss map of M in the case where M is complete (cf., [13]).
On the other hand, under some assumptions, E.F. Beckenbach and his colla-
borators showed that the map x itself has many properties which are similar
to the results in Nevanlinna theory for meromorphic functions on C in their
papers [4], [3], [2] and [6]. They developed their theory for ‘meromorphic
minimal surfaces’. Roughly speaking, these are minimal surfaces in R™ with
at worst pole-like singularities which is conformally isomorphic with the complex
plane. The purpose of this paper is to extend some of their results to the case
where M is conformally isomorphic with a Riemann surface of parabolic type.
For brevity, we restrict ourselves to the case of regular minimal surfaces
though our arguments are also available for minimal surfaces with pole-like
singularities.

By definition, a Riemann surface M is of parabolic type if there is a proper
map t: M—[0, +) of class C* such that dd°logr=0 and dd°t=0 on M—M;
for some s>0, where M;:={acM; r(a)<s}. We define the hyperspherical
function by

e 2
|x, c| d'r— sSauslog |x, c|
and the order function for M by T°(r; M):=m%r; o, M), where |x, c¢| denotes
a half of the chordal distance between w~!(x) and w™'(¢) for the stereographic
projection @ of the unit sphere in R™*! onto R™:=R™U{c}. We define also
the counting function and the visibility function by

m'(r; ¢, M ):=%SM log d’z, (ceR™)

r dt
Nrs e M):={ 3 wea(@

H(r; c, M):=S:~dtigmdd° log|x—c|?
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respectively for each ceR™, where v ,_.(a) denotes the multiplicity of zero of
|x—c| at a. Let G: M—P™YC) be the Gauss map of M (cf., [13, §1.2]).
For the pull-back 2 of the (normalized) Fubini-Study metric on P™"(C) we
define the order function of G by

T dt

Te(r) 3=§s ?SM:QG s

and consider the function E(r):=ST(X(A7 :)/t)dt, where X(M,) denotes the Euler

characteristic of M,.
We shall give the first main theorem;

T%r; M)=m(r; ¢, M)+H(r; ¢, M)+N(r; ¢, M),

and the second main theorem which asserts that, for each ¢>0,
SImr; ¢, M)FT oS @+Tr ; M)—E(r)+0(1)
=

for all » except in a set £ with SE(I/t)dt<oo. We give also the defect relation

for minimal surfaces which is similar to that for meromorphic functions. In
the last section, we study complete minimal surfaces in R™ with finite total
curvature, and show that the number two of the second main theorem is
sharp.

§2. Some integral formulas

Let M be an open Riemann surface and consider a nonzero complex-valued
function # on a domain D in M possibly with isolated singularities. We call
u a function with admissible singularities if u is of class C* outside a discrete
subset of D such that, on some neighborhood U of each a=D, we can write

(2.1) lu(z)| =|z—a|u*(z)

with a holomorphic local coordinate z=x+:y on U, ¢,R and a nonnegative
continuous function u* satisfying the condition that, for v:=log u*,

1 a 1 0 1
2.2) IU!ZO(IZ—GI)’ —a%‘:o“z_a)), %l:c’(]z—a])’
dd‘v is locally integrable.

The number ¢, in (2.1) is obviously unique. The mapy,: D — R defined by
vu(a):=a.,(acD) for the number ¢, appearing in (2.1) gives a divisor on D
which we call the divisor of u, where a divisor on D means a map v: D —> R
which vanishes outside a discrete set in D. We mean by a pseudo-metric on
M a conformal metric ds® possibly with isolated singularities which can be
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locally written as ds*=A%|dz|? by using a nonnegative functions A, with admis-
sible singularities, where z is a holomorphic local coordinate. The divisor of
a pseudometric ds® is defined by v4;:=v;, for each local expression ds*=42%|dz|%
Obviously, vy, is globally well-defined on M. For a nonzero meromorphic form
o on M we define the divisor of w by setting v,:=v,, for local expressions
w=f,dz.

We denote by 9, , the space of all C* differential (p, ¢)-forms on M with
compact supports. For a C> (p, g)-form £ on M we can define a (p, g)-current

[2] by [.Q]((,o):SM.Q/\go (pED;_p,1-¢) and, for a locally integrable function u
on M, the (0, 0)-current [u] is defined by "[u](go):gMugo (p9,,,). They are

simply denoted by £ and u respectively if we have no confusion. Moreover,
with each divisor v we can associate the (1, 1)-current [v] defined by [v](p)=
Seenv(@)p(a) (pE9D,,). As usual, we define the differentials of (p, g)-current
T by

IT(P)=(—1)"" " T@p) (€D p1y),

T (p)=(—1)?*1""T (3¢) (PED1_p, -9
and
dT :=(@0+d)T, d°T := YZ;;I(:;—M.

For later use, we give the following Stokes theorem for currents.

(2.3) Let T be a l-current on a Riemann surface M and D a relatively com-
pact domain in M with smooth boundary. If T is equal to a C* one form on
some neighborhood of @D, then

SDdT:gaDT'

To see this, we write T=[5]+7’ with a C~ one form % on M and a
current 77 which vanishes on a neighborhood of dD. We know that (2.3) holds
for T=[%], and we easily have

’— ’ —T —0= ’
| d1'=aT(@=T"dp)=0 7
for every p=9,, with ¢=1 on Supp (T’). These give (2.3).
For a function » with admissible singularities, we can prove the following :

PROPOSITION 2.4. dd°[log|u|*]=[v,]+[dd°log|u|*].

The proof is similar to that of [13, Proposition 4.1.4]. We omit the details.
Consider a relatively compact domain D in M with smooth real analytic
boundary. We say that a meromorphic form @ on D is purely imaginary on
oD if w has a continuous extension to dD satisfying the condition that Re w=0
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and o has no zero or pole. We note here that, by the principle of reflection,
such a meromorphic form can be extended to a meromorphic form on an open

neighborhood of D.

PROPOSITION 2.5. Let D be a relatively compact domain in M with smooth
real analytic boundary and w a meromorphic form on D which is purely imaginary
on 0D. Then,

(2.6) 3 va(a)= —xD).

Proof. Take the double D of D, namely, the welding of the domain D
and the conjugate surface of D along 4D (cf., [1, p. 119]). Then, D is a
compact Riemann surface with %(D)=2¥%(D) and the meromorphic form  is
extended to a meromorphic form & on D satisfying the identity Seesva(@)=
23 .epvo(a). By the well-known theorem for a meromorphic form on a compact
Riemann surface (e.g., see [8, Theorem 17.12]), we have the desired identity
(2.6).

PROPOSITION 2.7. In the same situation as in Proposition 2.5, consider a
pseudo-metric ds® on a neighborhood of D which has no singularities on 0D. Then,
for the nonnegative function A with ds*=A%*|w|? it holds that

D)— ¢ 2 __ ¢ 27__
£«D) Swd logi®= SD[dd log2]— 5 vas(a).

Proof. Since [vgs]=[v:]+[vs], we have
SD[ddc 1ogzzj=gnddv[1ogz=]—gp [m]=§apdc log2*— 33 vas(a)~1D).
by using Proposition 2.4, (2.3) and (2.6). This gives Proposition 2.7.

By using Proposition 2.7, we can give another proof for the following
version of the classical Gauss-Bonnet theorem.

THEOREM 2.8. Let D be a relatively compact domain in M with real analytic
smooth boundary and ds® a pseudo-metric on a neighborhood of D which has no
singularities on 0D. Then,

= 1 1
where &, K and £, denote the geodesic curvature form of the curve 0D, the
Gaussian curvature and the area form of ds® respectively.

Proof. We write ds®*=22%|dz|® in terms of a holomorphic local coordinate
z. Then, the Gaussian curvature is locally given by K:=—(1/1%)Alogi, outside
the singularities of ds? so that KQ,2=—2rdd"logi?.. On the other hand, on
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a sufficiently small neighborhood of each a=dD, if we write ds*=2%|d{|* with
a holomorphic local coordinate { with Re({)=const on @D, the geodesic cur-
vature form is given by £=2rnd°logi (cf., [18, pp. 27~28]).

Consider first the case that D is an open disk in C and vy4;=0. As a holo-
morphic local coordinate { with Re {=const on 0D we take a branch of log(z—
a) locally, where a is the center of D. Since A:=2,|dz/d{|=2,|z—a]|, we have

¢ 9 __ ¢ ¢ a2 ¢ 2
@10) | logZC—SaDd log2§+SaDd log|z—al _SDdd logai+1.

This gives (2.9) for this particular case, because X(D)=1. For the general
domain D we may assume that dD is not connected, because, otherwise, we
may replace D by the domain D’ removed one or two sufficiently small closed
disks from D and add the formulas (2.9) applied for D’ and for the removed
disks. Then, we can choose a meromorphic form @ on D which is purely
imaginary on @éD. In fact, as a solution of Dirichlet problem there is a non-
constant continuous function 4 on D which is harmonic and a constant on each
connected component of dD. It is easily seen that w:=0dh is holomorphic and
purely imaginary on dD. For each a<dD take a holomorphic local coordinate
{ around a such that Re{=const on 0D and |d{|*=|w|?%. We have k=2rxd°logA®
for a function A with ds®*=A%|w|2. The formula (2.9) is a direct result of Pro-
position 2.7.

§3. Sum to product estimates

Let x=(xy, =+, xm): M—R™ be a regular minimal surface in R™. With
each positively oriented isothermal coordinates (u, v) associating a holomorphic
local coordinate z=u-++/—1v, we can regard M as a Riemann surface with
conformal metric, and the functions x;(1</<m) are harmonic on M. We first
note the following:

PROPOSITION 3.1. For each ceR™, he(z):=|x(2)—c| is a function with admis-
shile singularities on M.

Proof. The function h.(z) is obviously of class C* on {eesM; x(a)+c}.
For a point @ with x(a)=c, take a holomorphic local coordinate z=u-++—1lv=
a+ret’ on a neighborhood of a. Since x,’s are harmonic functions in z, we
can expand x(u, v) as

x(u, v)=c+ i‘, r/(d, cosjl+e;sinj@),
=n

where d;, e;&R™, d,#0 or e,+#0. Here, by the assumption of the regularity
of M, we have n=1. Since u, v are isothermal coordinates, we have

(3.2) [Xul=1%ol, (x4, X0)=0
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and so
rlxrlzlxﬁly (xn X@):O,

where x,, x,, x, and x, denote the partial derivatives of x with respect to u,
v, r and 6 respectively. This gives |d,|=]e;| and (d;, ¢,)=0. Then, we can
write

[x(z)—cl*=|z—a|*u*(2),

where u* is a function written as

u¥(z)=\d,|*+ 3! Pj(cos@, sin)r’
=1

with some polynomials P;(X, V). We can easily check that v :=log|u*| satisfies
the condition (2.2), and so A, has an admissible singularity around a.

Take a holomorphic local coordinate {=u-++/—1v and set ds®=A%|d{|%
Then, by (3.2) 2=|x,|=|x,| and the vector-valued functions

(3.3) o :=f;, 0y 1=

give an orthonormal basis of the tangent plane of M at each point of M.

PropoSITION 3.4 ([4]). For each ccR™ it holds that

42| x—c|*—(x—c, e))*—(x—c, e)?)

>0.
[x—c|* -

Alog|x—c|?=

Proof. Since Ax=x,,+x,=0, we have

(| xul®+1 20| x—c|*=2Ax—¢, Xu)*—2Ax—C, X0)*)

—c|2=
Alog|x—c| x—c|®
_ Alxu M x—c|*~(x—¢, e)’—(x—¢, e5)")
N |x—cl* '
On the other hand, if we take vectors e¢; (3=/<m) such that e,, ¢, ---, e, give

an orthonormal basis of R™, then
m
|x—c|®*—(x—c, &)’ —(x—c, e,)’= Z}a(x—c, 2;)*=0,
=
which completes the proof of Proposition 3.4.

Remark 3.5. In the case m=3, we consider the angle @ between the vector
x(a)—c and the normal vector of M at each point a=M. By Proposition 3.4,
we have

A% cos?d

1
4 2 .
dd¢log|x—c| = Tr—alt clzdu/\dv
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By the same calculations as the above, we obtain also

A0+ x| =(x, @)’ —(x, e)") _ 42
A+1x1%? = Atxn

(3.6) Alog(1+|x|*)=

Now, we regard the space R™ as a subspace of R™*!' by identifying a
point (c¢y, -+, cn)ER™ with the point (¢y, --+, ¢m, 0)&R™*. Consider the one
point compactification B™:=R™_{oo} and the streographic projection w: S™—
R™, namely, the map which maps N:=(0, ---, 0, 1) to « and each C(#N)eS™
to the point ¢eR™ such that C, ¢ and N are collinear, where S™ is the unit
sphere in R™*' with center at the origin. For ¢, deR™ we denote a half of
the distance between @ '(¢) and @ (d) by |¢, d|. By elementary calculations,
we have
_ o le—dl
T VIF[cPVI+]d]?

fe, d: (=D

and |c, oo :=1/vV1+]c]|%
We give the following analogue to [13, Proposition 2.5.1].

PROPOSITION 3.7. For each ¢>0 there exists a constant 0, depending only
on € such that, for every ceR™ and 0=0,,

1 1 1
Alog log(d/| x, c|?) 2( I+lel® [x, c*log®@/|x, c|®)

s)A log(1-+-| x|?).

Proof. For 0>e set ¢:=—loglog(d/|x, c|?. By direct calculations, we
have
_ Alog|x—c|*—Alog(l+]|x?)
B log(d/1x, cI?)
(x, xa)  (x—¢, xu))2 (%, Xy)  (Xx—¢, Xy) )2
VAl E.1 AT ol HANA s o E1 M E el
log*(d/1x, cl®)

Ap

We can rewrite this as

— 1 —_ 1 . 2
8= g7, 277~ Togi = o)A 108l =

3 1 1 2 ¢ )
(logtrin e+ Tog/ 12, o) A 1080+ 51+ ool 7o)
where
¢:=Aloglx—c|*+Alog(l+|x|?

+4< (x, xa)  (x—¢, xu))2+4( (x, %) __ (x—¢, %o) \*

I+[x[2 Jx—cl|? I+|x2 Jx—cl?

Take 0,>e such that 1/logd, + 1/log?d,<e. Then, for every 6=0, the first term
is nonnegative and the second term is not less than —e¢Alog(1+]x|%). Choose
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ey, -+, e, as in the proof of Proposition 3.4, and set x; :=(x, ¢;) and ¢, :=(c, e,).
By using (3.3), Proposition 3.4 and (3.6), we obtain
o= A2+ x "+ 27— ) = 2x i+ 2] — €1 X1 — o X))
A+1x)]x—c|?
_A2A 4 x 2= xi— x4t - 22— ¢0))
A+[x]H]x—c]|?
o (I+[x]*) Alog(1+|x|*)

lx—cl?

1

= WWAIOg(1+ I X I 2) .

These give Proposition 3.7.
Take mutually distinct points ¢y, -+, ¢,&R™ and set L :=min,<;|c,, ¢;].

(3.8) For every weR™ it holds that |w, ¢,|=L/2 for all i but at most one.

In fact, if there are two distinct 7 and j such that |w, ¢,|<L/2, then we
have an absurd conclusion L<|c¢,, ¢;|<Z|c,, w|+|w, ¢;|<L.

We can give the following:

PROPOSITION 3.9. Let ¢, -+, ¢q be mutually distinct points in R™. For an
arbitrarily given ¢>0 take some 0,(>e*) with 1/10g%, + 1/logd,<e/q. Then there

is a positive constant C>0 depending only on ¢, -+, ¢4 Such that
(I+x1?° ¢ 1
Al =>CAlog(l 2 .
B9, log(d,/ I3, ¢ 1% =< OB L o tog @/ T, 1%

Proof. By Proposition 3.7, we can find a positive constant C such that

Al g 1
TToo: log(s/ [, ¢,%) — cAlog+ 1219+ B Alogoor o

2(+ 5 ; =) Alog-+117
q
Cc

Alog

SN A+ e %, ¢;1*10g®d/ [ x, ¢;1
1
(Jz?l |x, ¢;121ogdo/ | x, ¢;1?)

For an arbitrarily fixed point ¢, M we change the indices of ¢,’s so that

v

)Alog(1+1x1%).

[ x(@o), €11 < x(ag), €| < -+ < 1x(ay), ¢ql.

Then, for j=2, we have |x, ¢;|=L/2 by (3.8). Since the function h(u):=
u log®@d,/u) in u is increasing on (0, 1], |x, ¢;|% log?(ds/|x, c;|%) (7=2) are
bounded from below by a positive constant depending only on L. Therefore,
we can easily find a positive constant C’ such that
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g 1
P2 [x, ¢;1210g%(Bo/ | %, €,|%)
1 q 1
> >C’ .
= Tx altlogiG 1z, o = Wiz, o T logiGu/ 17, o9

This gives Proposition 3.9.
COROLLARY 3.10. In the same situation as in Proposition 3.9, for each ¢>0

there exists positive constants 0 and C such that

W+l lml? 1
15 log(8/ [, &) = (L1 x[% 351 1%, ¢5]*log¥@/ 1%, ¢,%)”

This is an immediate consequence of Proposition 3.9 and (3.6).

Alog

§4. The first main theorem for minimal surfaces

Let M be an open Riemann surface. By an exhaustion r of M we mean
that = is a continuous map of M into [0, +o0) which is proper, namely, whose
inverse image of every compact set is compact. For an exhaustion = of M we
set M,:={x; o(x)<r} and M, ,.:=M,—M,. We call 7 a parabolic exhaustion of
M if it is an exhaustion of M satisfying the condition that ¢* is of class C*
on M and that dd‘logr=0 on an open neighborhood of M, ,. for some fixed
s20 and dd°c=0. For example, the function z(z):=1|z| (zC) is a parabolic
exhaustion of C, where we may take s=0. If an open Riemann surface M
is of finite type, namely, biholomorphic to a compact Riemann surface M with
finitely many points a,, ---, a, removed, then M has a parabolic exhaustion.
In fact, as a parabolic exhaustion we can take a C* function r on M which
equals 1/|z;] on some neighborhood of each a;, where z, is a holomorphic local
coordinate with z,(a;)=0. It is known that an open Riemann surface M has a
parabolic exhaustion if and only if M is of type Og, or there is no nonconstant
negative subharmonic function on M (cf., [17, Theorem 10.12] and [16]).

Let M be an open Riemann surface on which a fixed parabolic exhaustion
¢ is defined. For brevity, we assume that s>0 and dM, is smooth in the fol-
lowing. We note that, on M, ,..,

rdd°t=1%ddlogr+dr Ad°‘t=dr Nd°t=|07/0z|*(V/—1/2r)dz N\ dZ=0.

Moreover, since logz is harmonic, dr vanishes only on a discrete subset of
M; ... Foreachr>s set C:SaM d®logr®. The constant C is independent of 7,
because "
c 2__ ¢ 2__ ¢ 2
SaMTZd logz SaMrld logz S lerzdd logr?=0 (s<r<rs).

On the other hand,
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cz(z/r)gm dcz':(Z/r)SM ddee>0.

After replacing © by ¢’ for a suitable ¢>0, we assume that C=1 in the
following.
Let v be a divisor on M. We define the counting function of v by

NG, ») :S 3

We give here the following version of famous Jensen’s formula (cf., [13,
Proposition 3.1.3], or [15, p. 128]).

PROPOSITION 4.1. Let u be a function with admissible singularities on M.
Then, for r>s>0,

(42) s 1 H

2 (4 2 14
_—r-SaMTlogmm z'——?gaMsloglu]d ..
The first identity is due to Proposition 2.4. To see the second, we first
use (2.3) to see SM dd‘[loglulzj———sm d°log|ul|?® for the case where oM, are
t 14
smooth and # has no singularity on dM,. Since d logrAd®log|u|*=d log|u|*A
d°logr=d(log|u|®*Ad°logr), we have

2 (e rominr)

=S dlogr/\d°log|u|2:SaM log|u|2d° logr
Ty Ty

TI’TZ

gmgi‘gmddc[loglulzjzg

1

{l

ig 1og|u1d%-ig log|u|dz
¥y Jou,, ry dan,,

in the case where » has no singularities on M,l_rz(sén <r,). For general cases,
take numbers », with »,(:=s)<r,<---<r,:=r such that » has no singularities
on the interior of M, For all s/, " with »,<s’<r'<r,,, we have

iy
Sr' -ﬂgmdd‘[loglulz]:lfgw,f IOglu}dCT—%S

V7 r xllogluld T.

aM

This remains valid for s’=r, and »’=r,,, because both sides of (4.2) are con-
tinuous as functions in s and ». These conclude that
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rit. ¢ P Tt+1»dt . .
Ss t gmdd Hoglul®]= 2‘35 TSMtdd [loglu|]
k-1 9

Il

1

[4 2 C
SMT log|u|d r—z—gmzloglum c

0 Ta 141

N

[ 2 (4
SaMTlogluid 1—?SaMslog|uld T.

Now, we consider a regular minimal surface x=(x,, -+, xn): M—R™ and
assume that the surface M, considered as a Riemann surface with conformal
metric, has a parabolic exhaustion z. We regard M as a surface immersed in
R™. We define the hyperspherical proximity function for M by

d‘r

m“(r;c,M):z%S log ! —dcz-—zg log---1

aum, Tx, cl s Jam, | x, c|

for each ce R™. For the particular case c=o0, we see

2 2
0y « _ 2\1/2 Je 2\1/2 Jc¢
@3 m®(r; oo, M)= - SaMTlog(l—i-lx! Ni2der S gaMslog(l—i—le Ni2der

r dt .
=\ — ¢ >
Ss : SMtdd log(1+ [ x]9=0.

We also define the counting function and the visibility function by
N(r; ¢, M):=N(r, viz_c),

rdt(
H(r; c, M)::Ss~l_SMtl:cicic log|x—c|?]

respectively for each ceR™, and set N(r; oo, M)=H(r; o, M)=0.
For geometric meanings of H(r; ¢, M), see Remark 3.5.
Moreover, we define the hyperspherical affinity of ¢(eR™) by

Ar; ¢, M):=m"r; ¢, M)+N(r; ¢, M\)+H(r; ¢, M)
and the order function of M by
T(r; M):=A(r; oo, M)(=m(r; o, M)).

We can prove the following:

PROPOSITION 4.4. The function T%r; M) is increasing and convex with res-
pect to log v and tends to co as r—oo.

Proof. To see the first assertion, consider the fcnction i with dd®log(l+
|x|*)=hd logr Ad‘logr and observe the identities
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dT%r; M) _ T°(r; M) ¢ 2
T = _SMTdd log(1+ | %]%)

d’T(r; M) _d (rdt w1 .
(dlogr? drg —Samhd 7_7SaM,hd v=0.

o 12

To see the latter, take some f,>s with K::SM‘oddc log(l4+{x|%>0. We then
have

To; Mz ijig dd® log(1+ | x |)=Klog—— —> co (as r—»o0).
to t M‘O 10
Now, we give the first main theorem for minimal surfaces, which was given
by E. F. Beckenbach and T. A. Cootz in [3] for the case where M is conformally

isomorphic with C.
THEOREM 4.5 (cf., [3], [6]). T%r; M)=A(r; ¢, M) for all ccR™.

Proof. Apply Proposition 4.1 to the function u:=1/|x, c| to see

T ; M):S:itfgmddf log(1+] %%

[, ot [ 4] ittt

_2 02 ¢
= SaMrlogluld T ?SaMslogluld T

rdt

+{74L] tdatogix—cp1+ [

=m*r; ¢, M)+H(r; ¢, M)+N(r; ¢, M).

SMz [vizeel]

Thus we obtain Theorem 4.5.

As is stated in the previous section, we identify the extended euclidean
space R™ with the unit sphere S™ in R™** by the stereographic projection and
denote by dV the volume form on R™ induced from the standard volume form
on S™ which is normalized so as the total volume is 1. We can prove the
following :

THEOREM 4.6. It holds that

Tor ; M):Sceﬁmr; c M)dV—l—S __H(r; ¢, M)AV

ce

Proof. To see this, consider the function u(x, ¢):=1/|x, ¢|] of x&M and
ceR™. Then, by Theorem 4.5 we have
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Tr: M)—N@; ¢, M)—H(r: ¢, M)

2 L2 )
—-r-gaewrloglu(x(a), c)ld T_?SaeaMSIOgW(x(a), oldr.

Consider each term of these identities as a function in ¢ and integrate it with

respect to dV. The function G(a):g - u(x(a), ¢)dV in a is a constant because
cER™

Scegmloglx, ¢|dV does not depend on the choice of a vector x. Since the

volume of the total space with respect to dV is 1, we can easily obtain the
desired conclusion by using Fubini’s theorem.

§5. The second main theorem for minimal surfaces

The purpose of this section is to give the second main theorem for minimal
surfaces which is a generalization of the result given by E.F. Beckenbach and
collaborators to the case where minimal surfaces are of parabolic type.

Let x=(xi, -+, xn): M—R™ be a regular minimal surface in R™ and assume
that the surface M considered as a Riemann surface with a conformal metric
has a parabolic exhaustion 7. We consider the Gauss map G: M—P™ }(C) of
M, which is locally written as

G:<3x1 - 0xnm )}

0z 0z

where we denote by (w,:---: w,) homogeneous coordinates on P™ }C). The
(normalized) Fubini-Study metric form on P™ Y(C) is given by dd°log(|w,|*+
|wy |24+ |wn|%). We denote by Q¢ the pull-back of the Fubini-Study metric
form on P™"Y(C) via G, which is locally given by

0x, |2 0%Xm |2
avimaon(| 52 -+ 52
We define the order function of the Gauss map of G by

T dt

TG(T’)IZSSTSMQG,

and the function
oo — dt
E(r):=SsX(M¢)T.
We now state the second main theorem for minimal surfaces.

THEOREM 5.1 (cf., [3], [6]). Let M be a regular minimal surface in R™
which has a parabolic exhaustion t. For mutually distinct points c,, -+, c,cR™

and a positive number ¢ there is a set E. with SE dp/p<+o such that
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5.2) S mir 5 ¢, M)+To()S21+T 5 M)—E()+0(D)
=
for all r&E..
For the proof of Theorem 5.1, we use the following:

PROPOSITION 5.3. Let h be a locally summable nonnegative function on M
and set

Th(r)::S:%ithh«/:lw/\@,

where w:=0dlogr. Then, there is a positive constant C such that
2 c
il < 13
rSaMTloghd t<C logT"(r)+C

for each r except in a set with finite logarithmic measure.

This is proved by minor changes of the proof of [13, Proposition 3.2.47.
By the same argument as in the proof of Proposition 4.4, we can show that
T"(r) is an increasing function in ». Moreover, we have
d*T* 1
e = hd‘r.
(dlogr)? r SaM, d’r
Using the concavity of the logarithm, we get

2 . 2 N 4T
':SBMT loghd T< 10g<7SaMThd T)—log (2W>

On the other hand, as in the proof of [13, Proposition 3.2.47, by the use of [13,
Lemma 3.2.57 we can show that, for each ¢>0

d*T™(r) N
- N7 LTh (1+¢)
(d logr)? =Tn)

for all » except in a set E with SE(I/t)dt<+oo, From these facts, we easily
conclude Proposition 5.3.

Proof of Theorem 5.1. The form w:=dlogr is holomorphic on M—M; and
purely imaginary on each smooth dM,. Consider the functions g, with dx,=
g:w (1<i<m), which are meromorphic on M, ... Set |G| :=(|gi|*++|gn|)"2
Then ds?=2|G|?|@|%([13, § 1.17). Therefore, vi¢+ve=v4s=0 and so v,=—vq.
For a given ¢>0 take some 0>0 such that the inequality in Corollary 3.10
holds, and set h:=(1+4]|x|%¢/T1%=: log(d/|c,, x|?). Consider the function h* such

that dd°logh=h*+v/—1lwA®&. As a consequence of Corollary 3.10 we get
|G |2h?

< (Ch%
A+ 1295 oo 7, ¢, ]F =1
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for some C>0. By the monotonicity of the integral, we have

2 ) 12 .
7S3MT log| G| d°c+ 3} 75 oty SaMT loghdez

log l

oM,
1 2
% ¢ 2\1/2 Jc¢
S——r SBM, logh*d¢t+(2+42¢) rgaMT log(1+ | x|®2d°c+0(1)

for every »>s. On the other hand, by Proposition 4.1 we obtain

T dt
To={ |, [dd10gI GI']

:S:#Smdw[lOglGlZ]“N(% viet)

2 4 2 4
= 75% log| G| der— ?SMT log| G| dc+N(r, v).

Here, we may replace N(r, v,) by —E(r) owing to Proposition 2.5. Since

é r; ¢ M)<§J£S lo !
]=1m Tt =;=1r M, g' ;

I ’ J I

dt+0(1),
we have
q
To(r)+ jgm"(r; ¢ M)
<21+&)T% ; M)+ig logh*der— 3S loghd®t— E(r)+0(1)
= ’ rlam, v Jom, ’
We apply Proposition 5.3 to find some constant C>0 such that
1
_ *C h*,
rSaMTlogh 4= C logT™(r)+0(1)

for all » except in a set E. with SE (1/p)dp<oo. On the other hand, by using
Proposition 4.1, :

v dt 2
h* . et c = c
logT (r)—loggs ; SMtdd 10gh§log<r SaMrlog hd‘t+const )
Since 0(log((2/r)SaMrlog hd‘t))_ﬁ_(Z/r)gaMT log hdz+0(1),
q
Ta(r)+]§m°(7’; ¢,y M)

1 c 2 [4
< 7§3MT log h*d°r— 7gaM, loghd®t+2(148)T%r, M)—E(r)+0(1)

=2(1+e)T(r, M)—E(r)+0(1)
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for all » except in a set with finite logarithmic measure. This gives Theorem 5.1.
Now, we define the defect of ¢ for M by

e emr; ¢, M)
a(c, M)'_IIIRLHfTO(—)—
We note here that the defect for minimal surfaces is defined by an analogy of
that of meromorphic functions in the classical Nevanlinna theory. However, the
geometric meanings are something different. Indeed, it does not always hold
that d(c, M)=1 if c&M.
Moreover, we consider the quantites

To(r) —E(r)
Tr; M)’ Tr; M)~

We have the following defect relation for minimal surfaces:

(=D.

U(M): —hm mf eM): —-llm 1nf

THEOREM 5.4. Let M be a regular minimal surface which have a parabolic
exhaustion. Then, for arbitrarily given distinct points ¢, -, ¢, in R™, it holds
that

310(c,, M)+T(M)<2+&(M).
=1

Proof. Divide each term of (5.2) by T°r; M) and observe the limit as r
and ¢ tend to +oo and O respectively. We then have the desired conclusion.

§6. Complete minimal surfaces with finite total curvature

The purpose of this section is to observe some geometric meanings of (5.2)
for a particular case of complete minimal surfaces with finite total curvature
and to show that the number two of the right hand side of (5.2) is best-possible.
We first note the following:

(6.1) Let M be an open Riemann surface with a parabolic exhaustion. Con-
sider a nonnegative (1, 1)-current 2 on M and set

dt
2 ekt
Tn): —S t SM:Q‘
Then, it holds that
T (r) _S 0
s logr M

We consider a complete minimal surface M in R™ which is of finite type
as an open Riemann surface, namely which is biholomorphic to a compact
Riemann surface M with finitely many points a,, ---, @, removed. As is men-
tioned in §4, if we take a C* function = on M which equals 1/|z;|** on some
neighborhood of each a; for a holomorphic local coordinate z, with z,(a;)=0,
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then r is a parabolic exhaustion of M. Here, the exponent 1/% is added so

that CESaM,dc logr?=1. In what follows, v means such a parabolic exhaustion
of M.

PROPOSITION 6.2. Let M be a complete minimal surface in R™ which is of
finite type as an open Riemann surface. If lim, .T°r; M)/logr<-oo, then the
(normalized) total curvature C(M) of M is finite.

Proof. Taking arbitray mutually distinct points ¢y, -+, ¢;€R™ (¢>1) and
e>0, we apply Theorem 5.1 to see

Te(r)=2(14-)T°(r ; M)—Er)+0(Q1)

for all » except in a set with finite logarithmic measure. By the assumption,
we have
0(y « _
lim L) i ing Lo Ly 2AEOT0s M)—E@W)
- logr T lOgr T 7w logr

which gives the desired conclusion
_ 1 _
C(M)=2;SMKQdSZ_—SMQG>_m
as a result of (6.1).

Now, we restrict ourselves to the study of a complete regular minimal
surface x=(xy, -, xn): M—R™ with flnite total curvature. As is shown in
[7], M is biholomorphic to a compact Riemann surface M with flnitely many
points a,, ---, a; removed, and each form w;:=0x, (1<i<m) is extended to a
meromorphic form &; (cf., [13, Theorem 5.1.3]). Then, we can define the divisor
vas of ds® on M by setting vy, :=min(va,, =, Va,,)-

DEFINITION 6.3. For each end a; we define the multiplicity of M at a, by
I :=—(vas(ar)+1).

PROPOSITION 6.4 ([7, Lemma 2]). Each multiplicity I, is a positive integer.

For the proof, refer to the original paper [7] or [13, Proposition 5.1.8].
We can show also the following:

PROPOSITION 6.5. Let {D,; v=1, 2, -} be a sequence of simply connected
open mneighborhoods of an end a, of M such that they have real analytic smooth
boundary and Ng=D,={a;}. Then,

. 1
Li=lin—{, rar

where k45 denotes the geodesic curvature of 0D,.
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Proof. Taking a holomorphic local coordinate z on a neighb_orhood of a,
with z(a,)=0, we consider discs A,:={z; |z|<d,} such that D,DA, and lim, ..
0,=0. Then, by (2.9) we have

KD, ~A)~ —2176311,,’:- ga Af)z - _ZI;SD,,-A,,KQ“Z ’

the right hand side of which tends to zero as v tends to oo because M has
finite total curvature. Therofore, we get

li _l_g —limJ—S £
o ox a0,F m 21 Jaa,t

It suffices to show that I,:limvm(—l/zn)gad k. By deflnition, we can write

ds*=|z| 2 T1*Vy(z)|dz|? for some positive function v(z). In view of (2.10), we

have
1
2r

which tends to —1I; as vy tends to co.

Sad,,’cds: —(I,+1)S“vd‘ loglz|®*+ Sad,,dc logv(z)+1,

We now prove the following:

THEOREM 6.6. If a complete regular minimal surface M in R™ with finite
total curvature C(M) has k ends with multiplicites I,(1<I<Pk), then

©6.7) COM)=2(M)— lé I

Proof. For each end a, choose a holomorphic local coordinate z, with
zi(a)=0 and set D;:=M—\J%_, A} for a sufficiently small >0, where A::=
{z1; |z:|<0}. By applying (2.9) to the domain D; we obtain

1

—g KQ 2=x(D5>—i§ x=x(55>+i‘,i§ p
2r oy O 2w Jap; i=12m Jady

As 0—0, we have the desired results by the use of Proposition 6.5.

Remark 6.8. For a complete regular minimal surface M in R® with ends
a, -+, a;, it is shown that the multiplicities I; as in Definition 6.3 coincide
with the multiplicities m, appearing in [14, Theorem 1]. The formula (6.7) is
nothing but the result given in [14, §47.

Now, taking ¢g—1 mutually distinct points ¢, -+, ¢,-; in R™ and setting,
cq:=00, we apply (5.2) to show that, for a given ¢>0, there exists a set E.
with finite logarithmic measure such that

(6.9 :ém%r; ¢; M)+Te(r)S(1+6)T(r; M)—E(r)+0(1) (r&£E.).
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First, we shall study the term T°(r; M). For each end a,(1<[/<k) taking
a holomorphic local coordinate z;=te*’ with z;(a;)=0, we have an expression

02 = A, (s

around a;, where n,=ygs(a;)(<—2). Therefore, we have

x=Re(a_, logz)+ 22 ltf(d, cosyj0+e,sing@),
Jzng+

where d,, e;€R™, dy,.1#0 or e,,.;#0. Then, by the argument in the proof of
[7, Lemma 2] we can show that «_, is a real vector. Since n;=—1I,—1 by
Definition 6.3, we can write

A+1x(2) [P 2= 2| ~Tre"®

with a function v satisfying the condition (2.2). Using (4.3), (6.1), (2.3) and
Proposition 2.4, we have
0 .
00

i 7500
oo logr =0 JM~Up(zgs12)15¢)

dd¢log(1+x|?

k
= —lim ES d°log(1+]x %
1zp1=¢

£-0 I=1

= lim 3 glzusaddﬂtloguwxm

=0 I=1

k
- 2 ]1 .
i=1
On the other hand, by (6.1) we have
. Ter) _ . E@ _
ITI-I»E logr —SMQG_ CM), 1712 logr =XM).

Since lim,...m(c; r,, M)/logr=0(1<7<g—1), we can conclude that
k
*C(M)é(l-l-s)lglz—x(M)
and hence, as ¢—0,
~CODZ B 1AM,

which is nothing but one half of (6.7). This shows that the number two of
(5.2) is sharp.
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