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UNIQUENESS OF FACTORIZATION OF
CERTAIN ENTIRE FUNCTIONS

BY KAZUNARI SAWADA

Introduction. For a meremorphic function F(z) in the plane (|z|<+o0),
the representation :

Fla=f g=/(g®)

is called a factorization of F(z), where / and g are meromorphic functions (g
is entire, if / is transcendental). And then / is called left-factor and g is
called right-factor of F. F is called to be prime, if, for every factorization, we
can always deduce that either / or g is linear. We state that two factoriza-
tions :

F)=fifoo - ofn
—g1°82° * °&n

are equivalent, if n=m and there exist linear functions 7, (1<j<n— 1) such that

f1=g1°T1, fJ:TJ-l—l"gJ"’TJ 2=1=n—-1),
and
fn:Tn-l_lc'gn-

An entire function F is called uniquely factorizable, if all the factorizations into
non-linear prime entire functions are equivalent to each other.
Urabe [8] proved the following

THEOREM A. F(2)=(z+h(e?))-(z+Q(e?))is uniquely faciorizable, where his
a non-constant entire function, h(e®) is of finite order and Q s a non-constant
polynomial.

We have many functions which are uniquely factorizable as its corollaries.
Still there are several functions whose unique factorizablity cannot be proved
by Theorem A. For example,

1
e? )’

F(z)=(z+e*+(z+sin (—1z))

F’(z)=(z+e’)°(2+
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=(z+e')°(z+ ez_;-z)

and so on.
In this paper we shall prove the following

THEOREM. Let Rjw) (j=1, 2) be non-constant rational functions having at
most two poles at w=0 and w—oco. Then
F(2)=(z+R1(e?))-(z+Ry(e?)
is uniquely factorizable.

As an easy application of this theorem we have immediately that above
functions are uniquely factorizable.

§ 1. Some lemmas. We shall use the following symbols :

Mp(r)=M(r, F)IMS( | F(2)]

o(F)=lim sup l?gl—(l)ogg]gf ®)

for an entire function F. And we shall use Nevanlinna’s notations such as
T(r, F),m(r, F) and N(r, a, F).

LEMMA 1 (Urabe [8]). Let J(b)={F(2)=cz-H(z);H(z) is an entire periodic
fnnction with period b (#+0) and c¢ is a non-zero constant}. And let Fe J(b) and
F(2)=f(g(2)with non-linear entire functions f and g, then fe]JO') for some
b’+#0 and g=J(b). Further b'=c,-b, if g(z)=cy z+H,(2).

LEMMA 2 (Urabe [8]). Let
F(2)=(z+ H.(2))(z+ Hy(2))

where H,, H, (Fconstant) are periodic entire functions with period 2ri and p(Hy)
< +oo and H, is of exponential type. And let F(z)=f(g(z)with non-linear entire
functions f and g. Then g is of exponential type.

We recall that g is of exponential type, if p(g)<1 and

lim sup log ]1/1"(7) <+ oo

T o400

LEMMA 3 (Urabe [8]). Let H(z) (Sconstant) be a periodic entire function
with period 2mi and of exponential type. Then there exist a rational function
R(w) with at most two poles at w=0 and w— oo such that H(z)=R(e?).

LEMMA 4 (Ogawa [4]). Let h(w) be single-valued and regular in 0<|w| <oco.
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// h(e®) is of finite order, then h(w) is of order zero around w=0 and w=oco.

In general, if h(w) is regnlar in 0<|w|<co, there exist two entire fnnctions
hijw) (=1, 2) such that

1
h(w)=hi@)+h =)
The above lemma 4 suggests p(h;)=0for j=1, 2.

LEMMA 5. Let F(z) be the same function in the theorem. And let F(z)=
f(g(2)) with an entire function [ and g(z)=z+@Q(e*), where Q(w) is a rational
Sunction with at most two poles at w=0, oo. Then p(f)< +oo.

Proof. By Pdlya’s result,
Mr(zM(d-Mi(5))  (rzrd)

for some positive constant d. And by the form of F, there exists a positive
constant K such that

Me@)se” "
for any r=r,. Further for any £>0, there exist 7,(>0) and some natural
number ¢ such that

eclz-r—eéM‘(_g_)éecﬂnwz

for r=r,.
Therefore, there exists R, (>0) such that
/ K \¢K/c
< e,
M (R)<exp [(e 7 J
for R=zR,. It means that p()< +oo. g.e.d.

§3. Proof of theorem. By the assumption of theorem,
F(2)=z+4Rq(e*)+R,[e**F2V].

Here the function R,(e?)+R,[e**F2¢¢»]is a periodic function with period 2.
By lemma 1, if

F(2)=1(g(2)) )
with non-linear entire functions / and g, then
f@=cr-z+H\(2), g@)=csz+Hy(2)

where H,, H, are periodic with period 2zc.Z, 2m respectively. Substituting these
into (1), we have ¢;-¢c,=1 and hence
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fles2)=cic0z+Hy(co 2)=2+ Hi(c;2)
and

gt Hi2)

belong to J(2z7). Therefore, without loss of generality, we may assume that
f@=z+H(2)
{ 8(2)=2z+Hy(2)

where H, (j=1,2) are periodic entire functions with period 2zi. Further, in
general, a periodic entire function with period 2m is represented as h(e®) with
some regular function A(w) in 0< w|<+o. Hence

{ f@)=z+h.(e)
g(z)=z+hy(e?)

@

where hj(w) are regular in 0<|w|<4+o (=1, 2).

Since p(R,(e?))=1<4 o and R,(e?) is of exponential type, g must be of ex-
ponential type by lemma 2. And then h, must be a rational function by lemma
3. By (1) and (2), we have

ho(e?)+hi[e*- e D] =Ry(e?)+ Ry [e*- MV ].
Now we put w=e?. Then
ho(w)— Ry (w)=—h,[w-e"]+R,[w eFe*], 3

This gives a key of our proof of this theorem. By the above investigation,
we assume that

. 1 1
Rjw)y=(ay, w¥r+ - -’rao])-f‘(a-;]'*w—-*- +a—M/'W)
=R,;*w)+R,”(w) (=1,2),

ha(w)= (b, W™+ - +b.,2)+(b_12-—;~+ o b Tulm_Z)
=h*(w)+h,"(w).
Similarly we write
hy(w)=hy* () + hy~(w),

where in this case both h,*(w) and h,”(1/w)are entire functions. By lemma 5,
o(f—2)=p(f)<+co. And by lemma 4, p(hs*)=p(hs~(1/w)=0.

In the following we shall prove that A; must be a rational function. Now
we assume that h,* is a transcendental function. Then we will show that
tt,"A/2 as follows. As noted above, p(h,*)=0, and hence by cos zp—theorem,
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for any &(>0), there exists an unbounded sequence of positive real numbers
{rxz} such that

mn1+(7’n)th1+(7’-n)l_e (n:L 29 b .)3 (4)
where my, +(r) is the minimum modulus of A,*, that is,
IIJ},iBr At (w)].
Here assuming n,<N., we consider the following equation :
R*(w)=2znti (R, t+0). )

As is well-known, the set of roots of equation (5) tend to w—oo as [¢t|—
and possesses 2N, lines :

1 i 1 .
argw_-N—zArg<-(—1N—:)+ ‘—%—Zﬂr (=, 0,1, -, Nb—1; ast—>+o0)
1 i 1 . .
argw—N;Arg(zN—:—)+M-(2]+l)n (=0, 1, =, Nj—1; as t——c0)
as asymptotic lines. If n,>0, then (because of n,<N,), among these 2V, lines,
we have a line, say /, on which

Re[b,,*e™]>0  (z=r-et?cl).
And there exists a subset (continuity) {w(#)}of roots of (5) such that
R,*(w()=2rit

and further {w(®)} possesses the line [ as asymptotic line. Therefore by R,(w(®))
=R,*(w(®)+o0(),

[eBewt» | ] (as t — + oo, Or as t— —oo) 6)
and further, there exists some constant L(>0) such that
Iehz(w(t)) >eL-|w<t)|n2 as |l‘| — 40 @

by the assumption of {w()}. Here, consider a sequence {t,} of real numbers
such that

lw(ts) em ¢’ =r,.
Then by (3), (4), (6), (7) and maximum modulus principle, we have
My +(lw(ty) | e 0w ™) = <0(Jw )| %) (n=1, 2, - ®)

for some constant K. Since h,* is assumed to be transcendental, this leads us
to a contradiction. Hence n,=N,. Now let us note that, even if n,=0, the
above inequality (8) can be shown to be valid without using the special line /
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and hence we get to the same conclusion.

Similarly, if h,” is transcendental, then we can prove m,=M,.

Since 4, is non-constant, n,>0 or ra,>0. Without loss of generality, we
may assume 7;>0.

Let, for a sufficiently small >0 (|b,,7/2>9),

0,={z=r-¢'’; Re(b,*-e'"2")>d},
0,={z=r-¢%; Re(bnzz-e”‘z")<—5} .

By hy(w)=b,,% w2 (14+0(1)(|w|—+o0), it is noted that the function h,*(we">*?)
is bounded in O,N{|w|>R,} and h, (we™*) is bounded in O;N{|w|>R,}
By (3),

M(r, R \[weR™]—hy(w)+ Ro(w) R hi[wer2 ]\ | ©)]

Also we have

|wehe<wd | >p. KT (we0,, |lwl=r>R,) (10)
and
|we W | Lp.g= K7™ (we0,, |lwl=r>R,)

for some positive constant K.
Now assuming that A,* is transcendental, we use (4) with e=1/2. Then
there exists {r,} such that

m(ra, hi)ZMra, h*)'e.

Then we can find an unbounded sequence {{,} of real numbers such that
lw-em™ | =y, for some w (w0, and \w =t,). In this case,

[h(w-et2) | Zm(r,, h*)+0(1)
=ZM(ry, h*)'V? an

On the other hand, for any natural number N, there exists R,=R,(N)such
that

MR, h,*)>R?¥  (for R=R,)
because of transcendency of h,*. Therefore (11) becomes
| ha(w- ) Z ()2
Now by (10), r,>t,-e¥'¢»"2, Hence (noting (9)), we have the inequality
Cotp Mgt NitanNo Ni2. g/ N Ky (n=n,)

for some constants ¢ and ¢’ (>0). This contradicts n.= N, and the arbitrariness
of N. And hence A,* must be a polynomial.
We can prove that A,"(1/w) must be a polynomial in the similar way.
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Hence we deduce that h, is a rational function, as is to be proved.
Finally we prove that both sides of (3) are constants. Putting h,(w)— R,(w)
—G(w) and assuming that G(w) is a non-constant rational function, then we have

G(w)=—h,[weF 6]+ R, [weRe ],
Furthermore let us substitute w by e?, then
G(e?)=— h,[e*Fecen+GeD] L R [o#+RaceD] 12)
Assuming that R,(w)+G(w)zconstant, then we can easily show that
T(r, Gle?)=0{T(r, e**F2cD)},
T(r, G(e?))=0{T (r, e*+Rece+GeD)}

as r—+oo, By Borel’s unicity theorem [3], (12) is immpossible, because that
hy(u) and R,(w) are rational functions in w whose coefficients are constants.
Next if R,(w)+G(w)=constant, say ¢, then

hl[ez+R2(ez)+G(e2):|=h1[ez+c:| .

Hence (12) is immpossible in the similar way.
Therefore G(w) is a constant, say K.

Then by (3),
hy(w)=Ry(w)+K
13)
hifw-e™®]=R [w-ef»]—K,
Hence
hyfw-eX P =R ,[w-eF™]—K,
Let x be w e¥ eF¢ then we have
hi(x)=R(e ¥ -x)—K. (14)
By (2), (13) and (14),
{ f@=z—K+R(e* %)
g(z)=K+z+Ry(e?).
Then
{ f-T(w)=w+R,(e*)
T-teg(z)=z+R,(e?)
with z=T(w)=w+K. This completes the proof of our theorem. q.e.d.
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