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AN ESTIMATE ON THE VOLUME OF METRIC BALLS

BY SHIGERU KODANI

1. Introduction.

Let M be a complete Riemannian manifold of dimension n. We denote by
i{M) the injectivity radius of M, by B(p, r) the metric ball in M of radius r ^
i(M) centered at J&GM and by vol (B(p, r)) the volume of B(p, r). Furthermore
we denote by a(ri) the volume of the round sphere Sn of sectional curvature 1.
M. Berger and J. Kazdan [3] showed that if M is closed then the volume
vol (M) of M satisfies

(1) vol (M)^a(n)(i(M)/π)n,

where the equality holds if and only if M is a round sphere of constant sectional
curvature (π/i{M)f. Later, C. B. Croke [6] showed that if M is closed then
for r<=[0, ι(M)],

(2) Ave vol (B(x, r))^a{n){r/π)n .
XGM

Here the equality holds if and only if r—i{M) and M is a round sphere. Here

Ave f(x), for any function / on M, means — . ., .N \ f(x)dx. But it is believed
XGM VOl ( M ) )M

that for any point J G M and for r e [ 0 , f(

(3) vol (S(ί, r))>a(n)(r/π)n .

Here the equality holds if and only if r=i(M), B(p, i(M))=M and M is a round
sphere. As partial results on this problem, not sharp lower bounds are already
known ([1], [2] for n=2, 3 and [4] for all n). And under some restriction on
the metric form, a sharp one is obtained by C. B. Croke [5]. Especially C. B.
Croke [4] showed the following remarkable inequality,

Here

(5) 7~v~\ H"o~~ >
L na{n) J L2nJ

\πa(n-Y)-γ \
L na{n)
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In this paper, we will improve the Croke's constant under an additional
curvature condition on the metric balls.

2. Result.

Let k be the infimum of the sectional curvature of the metric ball B(p, r)
in a complete Riemannian manifolds M. If the radius r is not greater than the
injectivity radius i(M) of M, then by Myers' theorem (cf. [7]), we see k<ί
(π/r)2, and by maximal diameter theorem (cf. [7]), the equality holds if and
only if r=i(M), M=B(p, i(M)) and ¥ is a round sphere. Our result is the
following.

THEOREM. Let B{p, r) be a metric ball of radius r centered at p in a com-
plete Riemannian manifold M. Let k be the infimum of the sectional curvature
of the metric ball B{p, r). Then, for r<i(M), there exist an increasing function
f: [-co, (τr/r)2]-+[0, 1] such that

/(-oo)=0

and

(6) vol (B(p, r ) ) ^

Before we prove the theorem, we need some definitions. For x^B(p, r),
put

E(x, r)=expχ\B(x, r)Γ\B{p, r)),

and define vo\(E(x, r)) as the euclidiean volume in the tangent space TXM at
x. As a special case of the inequality in theorem A of [6], we get

(7) Ave γo\{B{x,r)Γ\B{p,r))^^^f^fΓΎ Ave

where β(n) is the volume of the standard disk of radius 1 in Euclidiean space
Rn. Evidently,

(8) vol (B(p, r ) ) ^ Ave vol (£(*, r)Γ\B(p, r)).
ΞB(PΌ

Let Mk be an n-dimensional simply connected space form of sectional curvature
k and Bk(qf r) be a metric ball in Mk at q^Mk. Then the following lemma
holds.

LEMMA. For all p^M, q^Mx and

(9) Ave vol (E(x, r ) ) ^ Ave vol (Ek(y, r)).
x(ΞB(p,r ) &Bi-)
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Proof. Fix an isometry Ip : TpB(p, r)-*TqBk(q, r). For x^B(p, r), we put
y=expq°Ip°expp\x) and put s=d(p, x)=dk(qf y), where d (dk, resp.) is the
distance on B(p, r)(Bk(q, r), resp.). Then we get an isometry Ix—τl°Iv°τ

v

x\
TxB(p, r)^>TyBk(q, r), where τ%, is the parallel translation from T X>M to TXM.
For a unit vector v^TxM, let l{v) denote the length of the geodesic segment
γv emanating from x with the velocity vector γ(0)=v and hitting the boundary
of B(p,r)Γ\B(x,r) at γv{l(v)). Similarly for v'=Ix{v)<=TyM, we define γv.a
B(q, r) and l(v').

Let ξxdB(p, r) (ξyaBk{q, r), resp.) be the distance minimizing geodesic
segment from p {q, resp.) to x (y, resp.). Since Ix is isometry, we see

By Toponogov's triangle comparison theorem (cf. [7]), we obtain

d(p, rv(!))^dk(q, γΏ.(t)),

for all 0^ί^min(/(ι;), l(v')). Therefore if ί(v)<r then γυ hits the boundary of
B(p, r), and so,

On the other hand, if l(v)=r then l(v')^r=l{v). Therefore we always find

(10) l(v)^l{vf),

and so,

(11) vol(£(x, r))=ΓCt°f rn~ldrdv=\ l^-dv
JO Jsτι-1 Jen-l ΠJs

^ -^—dv'^voliE^y, r)):=F(r).
JSn~l Π

Evidently, dV/ds(s)=V(s)<0.
By Bishop's inequality (cf. [8]), we have, for O ^ s ^ s ^ r ,

n 9 v vol(5(/>, s)) ^ vol(βΛ(^, s))
(12) — ^'))= vol (Bk(q,s')) '
and by (11), we get

f vol(E(x,r))dx Γf V(s)dsd
Ave vol(E(x, r ^ J i " ^ ^ J o J ^ c p , ^

vo\(B(p,r)) vo\(B(p,r))

vol

L vol (B(p, r)) Jo vol(B(/>, r))
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vol(Bk(g,sW{s)γ" \[voHBk{q,s))Ϋ{s)ds

vol (Bk(q,r)) Jo vo\(Bh(q,r))

— Ave vol (Ek(y, r)). q. e. d.

Proof of Theorem. Put

V τ Ave vol(Ek(y,r)).

We can easily verify that / is strictly increasing and f(π/r)2=l, /(—oo)=0.
By combining (7) with (8) and (9), we get (6). /(0) is calculated as follows:

J Ave voKEoCv, 1))

= Λ / \ 2 [la(n-ϊ)rn-ι2 Γ B(n-l){l-s2)n-l'2dsdr
pinY JO Jr/24

β(n)2

S I fl/2 Ί

rn~ι\ (l-s2y-ί/2dsdr\
0 Jr/2 J

Here we have

Jo Ji/2 n J o

By Fubini's theorem, we have

fl fl/2 fl/2 f2s

\ rn"Λ (l-s2)n'1/2dsdr=\ (l-s2)n"1 / 2\ rn~ιdrds
Jθ Jr/2 JO Jo

=!f" ( 1 _ s )-i/
72 Jo

— (
nJπ/3

" 2n J2,/3O111 " " " 2n

Hence, we get

3n α(n-2) f 1 α(n + l) /2^r/3y+η /2y»
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where we have used the relations

nβ(n)=a(n-ϊ), a(n+2)

and replaced the volume of the spherical cup of radius τr/3 in the unit (n+1)-
sphere by the volume of the hemisphere of (n+l)-dimensional round sphere
with diameter 2π/3. q. e. d.

Remark. Put

Table 1.

n

2
3
4
5
6
7

10
15

tt-*+oo

Ci(n)

.616849

.296296

.120394

.043151

.013989

4.17219X10-3

7.45077X10-5

3.48113X10-8

cs(n)

.1234568

.0740741

.0460905

.0292638

.0188125

.0121933

3.41576x10-^

4. 28182 xlO- 4

c2(n, k)

Fig. 2.



VOLUME OF METRIC BALLS 305

(n+3)

(n+3) /2y»

Then we have c2(n, 0)>c3(n). Now we give the explicit values of Ci(n) and

cz{n) in Table 1. From this table, we can observe that if the sectional curva-

ture k of the metric ball is positive then, for nί^β, our constant c2(n, k) is

better than Croke's constant Cι(n) (See also Fig. 2.).
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