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§0. Introduction. For non-negative integers g and k (2g+&—1^2), let
N(g, k) be the maximum of the orders of the automorphism groups of compact
bordered Riemann surfaces of genus g having k boundary components. Oikawa
[9] proved that every automorphism group of a compact bordered Riemann
surface is isomorphic to a subgroup of the automorphism group of a compact
Riemann surface of the same genus and that N(g, k) is equal to the maximum
of the order of the automorphisms groups of k -times punctured compact Riemann
surfaces of genus g. Hurwitz [3] proved that N(g, 0)^84(^—1). For infinitely
many values of g, N{g, 0) were determined by [1, 6, 7, 8]. But, for infinitely
many g, N(g, 0) are not known. For every g^0, N(g, 1), N(g, 2) and N(g, 3)
were determined by the author [4], for every k^0, M0, k), N(l, k), N(2, k) and
7V(3, k) were determined by [2, 9, 11, 12] and for many other special pairs of g
and k, N{g, k) were determined by Ouchi [10]. In this paper we shall deter-
mine Λf(4, k) for every &Ξ>0. Wiman [14] showed the equations of all the
compact Riemann surfaces of genus 4 which have non-trivial automorphism
groups and proved that 7V(4, 0) = 120. To determine Λf(4, k), we shall study sub-
groups of groups which Wiman showed.

The author wishes to represent his thanks to Professor Accola who showed
Wiman's paper [13, 14] and gave some advice to him and to Mr. Nakagawa
who read the manuscript of this paper and pointed out many errors.

§1. Lemmas: Let 5 be a compact Riemann surface of genus 4 and let G
be a group of automorphisms of S. S/G has the conformal structure induced
by the conformal structure of 5 such that the natural projection π of 5 onto
S/G is holomorphic. Then, there are at most finite number of points Ply •••, Pt

on S/G over which π is ramified with multiplicities vu •••, vt (^-^2), respectively.
Then Riemann-Hurwitz's relation shows
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where TV is the order of G and g is the genus of S/G. Note that if g=0,
then ί ^ 3 and that π~\P) consists of N/vj points if P=Pj ( / = 1 , •••, ί) and TV
points otherwise. We call such a group G a (g vλ, •••, vt) group. For simpli-
city's sake we shall denote (0; vλ, •••, vt) by (vh •••, vt).

Using these notations we have a sequence of Lemmas.

LEMMA 1. For any point P on S/G, all the points of π~ι(P) have the same
Weierstrass gap sequences.

Proof. For any two points Qly Q2 of π~\P), there is an element of G, i.e.,
an automorphism of S, which maps Qλ to Q2.

LEMMA 2. Assume g—0. Let

k = mN+ Σ SjiN/vj),

where m is a non-negative integer and Sj—0 or 1 (/ — I, •••, t). Then, N(A, k)<^N.

Proof. Choose m points Pt+1, •••, P ί + m on S/G— {Plf •••, P J arbitrarily.
Delete the set of points π~1(PJ), (j=t+l, •••, ί + m ) and the set of points π~λ(P3),
if ε ; = l (7=1, •••, 0 from 5. Then we have a &-times punctured Riemann
surface of genus 4 such that G is a group of automorphisms of it. Thus

LEMMA 3. (Hurwitz [3]). Assume i) g^l and G is not a (1 2) group, or
ii) t^.6. Then, N<12, especially N^5 provided if N is prime.

LEMMA 4. N cannot be divided by any prime number greater than 5.

Proof. Assume N is divisible by a prime number Nf^Ί. Using Sylow's
theorem we may assume N—N'. By Lemma 3, we have g=0. By Lemma 1,
vλ— -" =vt=N and t^3. Using Riemann-Hurwitz's relation, we have

Hence, JV=(ί+6)/(ί—2) which is a contradiction.
For any point Q of π~1{P3) (; = 1, •••, t), there is an element φ of G which

fixes Q and generate a cyclic group <^> of order v3. Thus we have:

L E M M A 5. There is a cyclic subgroup of G of order vd- ( / = 1 , •••, 0

But the order of a cyclic group is restricted from above such as:

LEMMA 6. (Wiman [13], Kato [4]). // G is a cyclic group, then JV^lδ.

The next lemma is a well known property of hyperelliptic surface.
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LEMxMA 7. Assume S is the hyperelliptic surface defined by

— a2) ••• (x—a10).

Then, every automorphism of S induces a linear transformation of the x-sphere
which maps the set {au •••, a10} onto itself. Hence, A^40.

In the following two Lemmas we shall show properties of cyclic trigonal
surface of genus 4.

LEMMA 8. (Kato [5]). Assume S is defined by

y;' = (x — a1)(x--a2) ••• (x — aβ).

Then, every automorphism of S induces a linear transformation of the x-sphere
which maps the set {au a2, •••, a6} onto itself. Hence, N^72.

LEMMA 9. (Kato [5]). Assume S is defined by

Then, the number of Weierstrass points whose gap sequences are {1, 2, 4, 5} is 6, 9,
or 12. // there are 12 such Weierstrass points, then N is a multiple of 36, i.e.,
N=36 or 72.

§ 2. Models. In this section we shall list up Riemann surfaces which are
used to determine JV(4, k) and show some properties of those surfaces.

Let Sj (/=1, •••, 19) be the Riemann surfaces of genus 4 defined by the
equations as follows, throughout these equations a, β and γ are mutually distinct
complex numbers which are neither 0 nor 1:

S2 :y* = x(x*-l),

5 4 :y2=x10-l,

Sδ :y2 = x(x8-l),

S6 :y2=x»-l,

SΊ : 3 / 3 = x 6 - l ,

58 :y5=x3-l,

59 :/=x(x2-l),
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Sn: y*=x\x-l){x-a)\x-β)\x-γγ,

123

S1Ί: y5 = x(x — l)(x — a),

We shall show the automorphism group Aut S ; of
following Properties 1-9.

, 9) in the

Property 1. Choose as basis of holomorphic differentials on Sλ such as
θ^dx/y, θ^xdx/y\ Θ3=x(x-l)dx/y* and θA=x\x-l)dx/y\ Then we
have a canonical embedding of Sx into P\θ) with projective coordinates
(0i, 02, 03, 04) Embed J?3(#) into P\X) such as

X,

Xs

X*

X.)

V V
2 t η

η ψ ψ

-t

where Ύ]~e2~i/δ. Then Ps(θ) is mapped onto the hyperplane X1+X2

J

ΓX3-
JrXi

J

ΓX5

=0 in PA(X) and the image of Si is mapped onto the intersection of the hyper-
plane and two hypersurfaces,

xι+xι+xι+xι+xι=o.
This is known as Bring's curve [14] and its automorphism group is of order 120
which is a (2, 4, 5) group. Let ψ3 (/=1, 2) be the automorphisms of P 4(Z)
defined by

φί: (Xίy X2, Xs, Xi, Xf>) -—> (^2, Xi, Xs, X*, Xδ),

φ2: (Xl9 Xt, Xι, X,, X6) > (Xlt jf8, X*, X,, X.)

Let φij (j=l, 2) be the automorphisms of Si corresponding to φjm Then,
A S < 0 u , φ12> and φn—φnoφi2 is of order 5.
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Property 2. Let φ21, φ22 and φ,_% be the automorphisms of 5 2 defined by

<52i: (x, y) — > (eπil2/x, e"'2y/xη,

(4=7*-

Then the orders of 02 i, 022 and 023 are 2, 3, 12, respectively and (φ21, φ22) is a
(2, 3, 12) group of order 72. By Lemma 8 we have AutS 2=<0 2 1, 022>.

Property 3. Let φ31> φS2 and ^ 3 3 be the automorphisms of S3 defined by

Φsi' (x, y) —>(i/χ, -y),

Then, the order of φsl, φ32 and φ3S are 2, 4 and β, respectively, and <031, ^

is a (2, 4, 6) group of order 72. Since N(4, 0)=120, AutS 8=<^ 8i, ̂ 3 2>.

Property 4. Let 041, ^ 4 2 and ^ 4 3 be the automorphisms of S4 defined by

Φ^Λx, y)—*(\lx, eπί/2y/x5),

φ4S = φiloφ42-

Then, the orders of φ41, φ42 and φ^ are 2, 4 and 10, respectively. Since S4 is
hyperelliptic, by Lemma 6 we have AutS4=<04i, ^42> which is a (2, 4, 10) group
of order 40.

Property 5. Let φ5U φ^ and φ5Z be the automorphisms of Sδ defined by

ΦBI : (x, y) — > (eπί/i/x, eδπί/8y/x5),

052 : U , 3 0 — > ( 1 / * , e'Wy/x*),

Then the orders of 051, φδ2, φ^ are 2, 4 and 16, respectively and by Lemma 6

5=<^5i, φ52) which is a (2, 4, 16) group of order 32.

Property 6. Let φ61 be the automorphism of 5 6 defined by

φβi'Λx, y)-^(e2πί/9x, -y).

Then, by Lemma 6 we have Aut 56=<^6 1> which is a (2, 9, 18) group of order 18.
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Property 7. Let φn, φ72 and φ7Z be the automorphisms of S7 defined by

φn : (*, 3/) — > (eπi/3/x, eπί/3y/x2),

Φ^'Ax, y)—>(esi/*χ, y),

Then, the orders of φΊ1, φ72 and φ73 are 2, 6, 6, respectively, and <φn, φ72) is a
(2, 6, 6) group of order 36. Assume the order of Aut S7 is 72. By Lemma 7,
the cubic group is a subgroup of Aut S7. But in this case <φ71, φ72} induces a
dihedral group of the x-sphere. It is a contradiction. Hence, AutS 7=<0 7 1, 072>.

Property 8. Let φ8ί be the automorphism of S8 defined by

φsi' U, y)—>(e2πιrόx, e27ΐι/5y).

By Lemma 7 we have AutS 8 = <081> which is a (3, 5, 15) group of order 15.

Property 9. Let φ9l be the automorphism of S9 defined by

ΦBI'ΛX, y)—>(~~x, eπι/βy).

We have Aut S9=(φ91} which is a (4, 6, 12) group of order 12. In fact, points
over x=0, 1, —1 are Weierstrass points whose gap sequences are {1, 2, 3, 7}.
Hence, meromorphic functions of order 3 on S9 are linear fractions in y. As a
covering of the ^-sphere, S9 has 12 branch points over y12=A/27. Hence, auto-
morphisms are possibly induced from y-*l/y, y-+eπi/Gy and these compositions.
However, the gap sequences of the three points over y—0 are {1, 2, 3, 7} and
those over y — co are {1, 2, 3, 5}. Hence, an automorphism induced from y->l/y
does not exist.

§3. Estimate of TV(4, k). To determine N(4, k), we have to consider the
possibility of (g, vίf •••, vt) group. However, giving an estimate of N(4, k) from
below, we shall not need to consider groups of small order.

PROPOSITION (10). iV(4, &)^10 for all k.

Proof. The group (φB

72, φ73) is a (2, 2, 3, 6) group of order 12. Since every
even number can be represented as 12ra+6ε1+βε2+4ε3+2ε4 by a suitable
non-negative integer m and ε ; = 0 or 1 (/=1, •••, 4), by Lemma 2 we have
iV(4, fc)^12 if k=0 (mod 2). iφ^φ^y is a (5, 10, 10) group of order 10. Hence,
by Lemma 2, if 6 = 0 , 1 , 2 , 3 , 4 (mod 10), then N(4, 6)^10. <φl2, φ\zy is a
(2, 2, 5, 5) group of order 10. Hence, again by Lemma 2, if k=0, 2, 4 (mod 5),
then iV(4, 6)^10. Therefore, we have Λ̂ (4, 6)^10 for all k.

Thus, it is not necessary to consider groups of order less than or equal to
10. We shall list up possible groups of order more than 10.
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Making the following table we are assuming Lemmas 3, 4 and 6.

Possible order Possible group

144 (2, 3, 8)

120 (2, 4, 5)

108 (2, 3, 9)

90 (2, 3, 10)

72 (2, 3, 12), (2, 4, 6), (3, 3, 4)

60 (2, 3, 15), (2, 5, 5)

54 (2, 3, 18)

48 (2, 4, 8)

45 (3, 3, 5)

40 (2, 4, 10)

36 (2, 4, 12), (2, 6, 6), (3, 3, 6), (3, 4, 4), (2, 2, 2, 3)

32 (2, 4, 16)

30 (2, 5, 10)

27 (3, 3, 9)

24 (2, 6, 12), (2, 8, 8), (3, 3, 12), (3, 4, 6), (4, 4, 4), (2, 2, 2, 4)

20 (2, 10, 10), (4, 4, 5), (2, 2, 2, 5)

18 (2, 9, 18), (3, 6, 6), (2, 2, 2, 6), (2, 2, 3, 3)

16 (2, 16, 16), (4, 4, 8), (2, 2, 2, 8)

15 (3, 5, 15), (5, 5, 5)

12 (3, 12, 12), (4, 6, 12), (6, 6, 6), (2, 2, 3, 6), (2, 2, 4, 4),

(2, 3, 3, 3), (2, 2, 2, 2, 2), (1 2)

It is known that N(4, 0)^120 [4]. Hence, iV(4, £)^120 for all &. It is also
known that an automorphism group of order 108 or 90 does not exist [14]. We
shall give an alternative proof of this facts.

PROPOSITION (120). A (2, 3, r) group does not exist for r^8, 9 or 10. Hence,
if k=0} 24 (mod 30), then Λr(4, £) = 120.

Proof. Assume r—%. Since the total weights of Weierstrass points on 5 is
60, by Lemma 1, we have

for some nonnegative integers aly a2, α3 and α4. But it is impossible.
Assume r = 9 . By Lemmas 3 and 5, S is defined by

y» = x*(x-l)μ , 3 M μ, λ+μ.

Hence, it is conformally equivalent to SG which is hyperelliptic. Hence, the
order of Aut S is 18.

Assume r=10. As is the case of r = 8 , there are 30 Weierstrass points of
weight 2. On the other hand, by Lemmas 3 and 5, S is conformally equivalent
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to S4 or 5i3. But S4 is hyperelliptic and S13 has a Weierstrass point of weight
4 at (x, y)=(0, 0). Contradiction.

Using Lemma 1 and Property 1, we can prove that if k~0, 24 (mod 30),
then N(4, fc)=120.

PROPOSITION (72). // ^ Ξ O (mod 6) and JV(4, /?)= 1̂20, fΛen JV(4, ̂ )=72.

Proof. Using Lemma 2 and Properties 1, 2 and 3, we can prove this Pro-
position. As a fact, there is no (3, 3, 4) group. It is proved by Wiman [14].
But we shall give an alternative proof. Assume there is a (3, 3, 4) group and
Vi=v2=3, Vz—L Then, by Lemma 1 and the fact that the total weights of
Weierstrass points is 60, all the points of π~1(P3) are Weierstrass points of weight
2 and all the points of one of the sets π~1(Pί) and π~\P2), say π~1(P1), are
Weierstrass points of weight 1. The possibilities of gap sequences of Weierstrass
points of weight 2 are {1, 2, 4, 5} and {1, 2, 3, 6}. Since there are 18 points in
π~1(Pz), the gap sequences of these points are {1, 2, 3, 6}, (cf. Kato [5, Theorem
1]). Assume a is an automorphism of S which fixes a point Q of π~1(P3) and
/ is a meromorphic function on 5 which has a pole of order 4 at Q and is
holomorphic elsewhere. Then, (/+/°α:+/°α 2 +/°α: 3 ) 1 / 4 is a single valued mero-
morphic function on S/<α>, whose order is 1. Hence, S/{a) is the sphere.
Therefore, 5 is conformally equivalent to 51 0 or Sn. But 51 0 has a Weierstrass
point of weight 3 at (x, y)=(0, 0) and Sn has a Weierstrass point of weight β
at (x, y)=(0, 0). Both of them contradict our assumption.

PROPOSITION (60). A (2, 3, 15) group does not exist. For each k, N(4, k)Φ60.

Proof. Assume a subgroup of Aut 5 is a (2, 3, 15) group. By Lemma 5,
Aut 5 has an element of order 15. Hence, 5 is conformally equivalent to S8.
But the order of Aut Ss is 15. This is a contradiction. Assume k is an integer
such that N(4, A)=60. Then, by Lemma 2

for a nonnegative integer m and εj=0 or 1 (/=1, 2, 3). Thus, &ΞΞ0 (mod β).
But for such a k, N(4, k)>Ί2 by Proposition (72).

PROPOSITION (54). A (2, 3, 18) group does not exist.

Proof. Assume a subgroup of Aut S is a (2, 3, 18) group. Then, there is
an automorphism of S of order 18. Hence, S is conformally equivalent to S6.
But the order of Aut SG is 18. This is a contradiction.

PROPOSITION (48). A (2, 4, 8) group does not exist.

Proof. Assume a subgroup of Aut 5 is a (2, 4, 8) group. Then, there is an
automorphism of S of order 8 and S is conformally equivalent to S12. Since S12
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is hyperelliptic, by Lemma 7 we have a contradiction.

PROPOSITION (45). A (3, 3, 5) group does not exist.

Proof. Assume a subgroup of Aut S is a (3, 3, 5) group. Then, there is an
automorphism of 5 of order 5 and 5 is conformally equivalent to S1Ί, S18 or S19.
Assume S17 admits a (3, 3, 5) group G and P is the point of S17/G which cor-
responds to a fixed point of an automorphism of order 5. Then, π~1(P) consists
of 9 points and the points corresponding to x=0, 1, a and oo are in π~\P).
However, the gap sequences of these points are {1, 2, 3, 7} for x=0, 1, a and
{1, 2, 4, 7} for x = oo. This is a contradiction. Since S18 is hyperelliptic, the
order of Aut S18 is 40. Assume vS19 admits a (3, 3, 5) group. There is an auto-
morphism of 5 1 9 whose order is 2. Hence, the order of Aut S19 is a multiple of
90. This contradicts Proposition (120).

PROPOSITION (40). // k = 0, 4 (mod 10) and 7V(4, 6)^120, 72, then N{A, fc)==40.

Proof. Observe Property 4 and Lemma 2.

PROPOSITION (36). If k = 9 or 21 (mod 36), then Λ'(4, k)=36. A (2, 4, 12)
group does not exist.

Proof. <0i8, φS2} is a (3, 4, 4) group. Therefore, if k=0, 9, 12, 21, or 30
(mod36), then 7V(4, k)^36. But if k=0, 12, 18, 30 (mod36), then 7V(4, &)^72.
By virtue of Proposition (72) it is not necessary to consider the possibility of
cases (2, 6, 6), (3, 3, 6) and (2, 2, 2, 3) groups.

Assume S admits a (2, 4, 12) group. Then, there is an automorphism of 5
of order 12. Hence, 5 is defined by either

or

The former is conformally equivalent to S2 and the latter is to S9. On S2 there
are exactly 6 Weierstrass points whose gap sequences are {1, 2, 4, 7}. Let
Qi, ••*, QG be these points. Then,

"π-1({π(Q1), •••, ττ((?6)})=6,

by Lemma 1. However, it is impossible because 6 cannot be represent as
367?2+(36/2)ε1+(36/4)ε2+(36/12)ε3 for a nonnegative integer m and ε,=0 or 1
(/=1, 2, 3). Hence, S2 does not admit a (2, 4, 12) group. On S9 there are 3
Weierstrass points whose gap sequences are {1, 2, 4, 7}. Hence they should be
fixed points of automorphisms of order 12. For nonnegative integers mh m2 and
?n3, 367Wi+(36/2)m2+(36/4)m8 is divisible by 9. On the other hand the total
weight of Weierstrass points except for the above 3 points is 48 which cannot
be divided by 9. Hence, by Lemma 1 S9 does not admit a (2, 4, 12) group.
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PROPOSITION (32). // &=0, 2 (mod8) and N(4, k)Φl20, 72, 40, then Λf(4, k)
=32.

Proof. Observe Property 5 and Lemma 2.

PROPOSITION (30). A (2, 5, 10) group does not exist.

Proof. Assume S admits a (2, 5, 10) group. Then, there is an automorphism
of S of order 10. Hence, 5 is conformally equivalent to 5 4 or S13. On S4 there
are exactly 10 hyperelliptic Weierstrass points. By Lemma 1, S4 does not admit
a (2, 5, 10) group. On Su the gap sequence corresponding to x=0 is {1, 2, 4, 7}
and that to x—1 is {1, 2, 3, 6}. Both of these points are fixed points of an
automorphism of order 10. Hence, by Lemma 1 Sia does not admit a (2, 5, 10)
group.

PROPOSITION (27). A (3, 3, 9) group does not exist.

Proof. Assume S admits a (3, 3, 9) group. Then S has an automorphism
of order 9. Hence, S is conformally equivalent to S6. But the order of Aut S<5

is 18. This is a contradiction.

PROPOSITION (24). // k~2, 4 (mod 12) and N(4, k)Φi0, 32, then N(4, k)--24.
None of the following groups exists: (2, 8, 8), (3, 3, 12) and (3, 4, 6) groups. It
is not necessary to consider (4, 4, 4) and (2, 2, 2, 4) groups.

Proof. <02i, φh} is a (2, 6, 12) group. Hence, by Lemma 2, if k=Q, 2, 4,
or 6, then JV(4, /?)^24. By Lemma 2 and Proposition (72), it is not necessary
to consider (4, 4, 4) and (2, 2, 2, 4) groups. Assume S admits a (2, 8, 8) group.
Then S has an automorphism of order 8 and S is conformally equivalent to S12.
Since 5 1 2 is hyperelliptic, by Lemma 1 we have a contradiction. Assume S
admits a (3, 3, 12) group. Since S has an automorphism of order 12, S is con-
formally equivalent to S2 or S9. Observing Weierstrass points whose gap
sequences are {1, 2, 4, 7}, by a similar argument as Proposition (36), we have a
contradiction. Assume S admits a (3, 4, 6) group. Then, S is conformally
equivalent to Su, S15 or S16. S14 is conformally equivalent to the surface
defined by

Hence, Su has 6 Weierstrass points whose gap sequences are {1, 2, 4, 7}. At
least 2 of those points are fixed points of an automorphism of order 6. There-
fore, by Lemma 1 5 is not conformally equivalent to 514. Assume 5 is confor-
mally equivalent to S15. Let φ be an automorphism of S15 defined by

Φ: (x, y) — > (x, eπi/*y).

Then, φ has exactly 3 fixed points. On the other hand, there exist 4 points on
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S15 which are fixed by automorphisms of order 6. This is a contradiction.
Assume S is conformally equivalent to 516. 51 6 is conformally equivalent to the
surface defined by

yό = x(x2-l)(x2-a)2.

Hence, by Lemma 9 there exist at least 6 Weierstrass points whose gap sequences
are {1, 2, 4, 5}. Especially the fixed points of automorphisms of order 6 are
among those points. There are exactly 4 such points. Hence, by Lemma 1 and
Lemma 9 the 8 fixed points of automorphisms of order 3 also have the gap
sequence {1, 2, 4, 5}. Therefore, again by Lemma 9, the order of Aut 51 6 is 36
or 72. Since the order of (3, 4, 6) group is 24, the order of Aut S16 is 72.
Hence, S is conformally equivalent to S3. Observing a (2, 4, 6) group, i. e.,
Aut SΆ} there, are 12 Weierstrass points of weight 2 which are the fixed points
of order 6 and there are either 18 Weierstrass points of weight 2 which are the
fixed points of order 4 or 36 Weierstrass points of weight 1 which are the fixed
points of order 2 (as a fact, the latter case does occur). But both the cases
contradict Lemma 1.

PROPOSITION (20). // k=2, 5, 9, 12 (mod20) and N(4, k)Φ72, 36, 32, 24, then

Λτ(4, fc)=20.

Proof. <042, 043> is a (2, 10, 10) group and <042, φ\zy is a (4, 4, 5) group.
Hence, by Lemma 2, we have this proposition.

PROPOSITION (18). // k = 0 (mod 3) or k = l, 2 (mod 9) and N(A, β)=120, 72,
40, 36, 32, 24, 20, then iV(4, &) = 18. It is not necessary to consider (2, 2, 2, 6) groups.

Proof. <06i> is a (2, 9, 18) group, (φ2

Ί3, φ12) is a (3, 3, 6) group and
(φh> 0?2°0?3, (072°07i)2> is a (2, 2, 3, 3) group. Apply Lemma 2.

PROPOSITION (16). / / 6 = 1,4,6 (mod 16) and N(4, k)Φl20, 72, 40, 36, 24,

20, 18, then N(4, k) = 16. It is not necessary to consider (2, 2, 2, 8) groups.

Proof. <̂ 53> is a (2, 16, 16) group and (φ52, φϊs) is a (4, 4, 8) group. Apply
Lemma 2.

PROPOSITION (15). If k = l, 4, 5, 8 (mod 15) and N(4, k)Φ40, 32, 24, 20, 18, 16,
then N(4, 6)=15. It is not necessary to consider (5, 5, 5) groups.

Proof. <08i> is a (3, 5, 15) group. Apply Lemma 2.

PROPOSITION (12). If k = 1,3, 5 (mod 12) or k~0 (mod2) and N(4, k)Φl2Q,
72, 40, 32, 24, 20, 18, 16, 15, then N(4, k)=12. It is not necessary to consider
(6, 6, 6), (2, 2, 4, 4), (2, 3, 3, 3) and (2, 2, 2, 2, 2)
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Proof. <023> is a (3, 12, 12) group and <φ91) is a (4, 6, 12) group. Apply
Lemma 2.

Summing up these Propositions we have:

THEOREM :

7V(4, £)=120, if k=0, 24 (mod 30),

72, z/ 6 Ξ O (mod 6) and N(4, k)Φl20,

40, 2/ k=0, 4 (mod 10) and N(4, k)Φl20, 72,

36, 2/ &Ξ9, 21 (mod 36),

32, if k=0, 2 (modδ) and M4, fc)*120, 72, 40,

24, if k=2,4 (mod 12) and N(4, k)Φ40,32,

20, if k=2, 5, 9, 12 (mod20) and N(4, k)Φ72, 36, 32, 24,

18, if k=0 (mod 3) or k = l, 2 (mod 9) and N(4, k)Φl20,

72, 40, 36, 32, 24, 20,

16, if £ = 1, 4, 6 (mod 16) and ΛΓ(4, k)Φl2Q, 72, 40, 36, 24,

20,18,

15, if k = l, 4, 5, 8 (mod 15) and N{4, k)Φ40, 32, 24, 20,

18, 16,

12, if k = l, 3, 5 (mod 12) or k~0 (mod 2) and ΛΓ(4, fc)

=£120, 72, 40, 32, 24, 20, 18, 16, 15

10, otherwise.
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