N. SUITA KODAI MATH. J. 7 (1894), 73-75

ON SUBADDITIVITY OF ANALYTIC CAPACITY FOR TWO CONTINUA

Dedicated to Professor Mitsuru Ozawa on his 60th birthday

By Nobuyuki Suita

1. Introduction. Let K be a compact set in the complex plane C and let $\Omega(K)$ be the connected component of C-K containing the point at infinity. The analytic capacity $\gamma(K)$ of K is defined by

$$\gamma(K) = \sup_{\|f\| \leq 1} |f'(\infty)|.$$

Here f(z) is a holomorphic function in $\mathcal{Q}(K)$ whose expansion at the point at infinity is given by

$$f(z) = f'(\infty)/z + a_2/z^2 + \cdots$$

and ||f|| denotes the supnorm of f.

The following problem was first raised by Vituškin [6]. For two disjoint compact sets K_1 and K_2 , is there an absolute constant M such that the following semiadditivity holds

(1)
$$\gamma(K_1 \cup K_2) \leq M(\gamma(K_1) + \gamma(K_2)) ?$$

We can find this problem and partial answers in many articles and books [1, 2, 3, 6, 7]. It was shown by Mel'nikov [3] that if K_1 and K_2 are separated by an analytic curve c, then there exists a constant M(c) depending on c for which (1) holds. This shows that the constant M possibly depends on positions of two sets.

In the present paper we shall establish the following subadditive inequality

(2)
$$\gamma(K_1 \cup K_2) \leq \gamma(K_1) + \gamma(K_2)$$

for arbitrary disjoint continua K_1 and K_2 . To prove (2) we shall solve an auxiliary extremal problem.

2. Extremal problem. Let Ω be a doubly connected domain containing the point at infinity. We suppose that its boundary components are continua K_1 and

Received March 22, 1983

NOBUYUKI SUITA

 $K_{\rm 2}.$ Let ${\mathcal F}$ be the family of univalent functions ϕ defined on ${\mathcal Q}$ with a normalization

(3)
$$\phi(z) = z + a_1/z + \cdots \quad \text{at } \infty.$$

We denote by $\phi(K_j)$ the boundary component of the image domain $\phi(\Omega)$ under ϕ which corresponds to K_j (j=1, 2). Our problem is to minimize Cap $\phi(K_1)$ +Cap $\phi(K_2)$ within \mathcal{F} , Cap $\phi(K_j)$ being logarithmic capacity of $\phi(K_j)$. We prove

THEOREM1. The minimum of the quantity $\operatorname{Cap} \phi(K_1) + \operatorname{Cap} \phi(K_2)$ is attained by the conformal mapping ϕ_0 which maps Ω onto a parallel slit domain Δ whose boundary lies on a straight line.

Proof. Since capacity is invariant under rigid motions, we consider the same problem within a slightly larger class $\tilde{\mathcal{F}}$ of univalent functions ϕ whose expansion admits

(4)
$$\phi(z) = e^{i\theta} z + a_0 + a_1/z + \cdots \quad \text{at } \infty.$$

There exists a unique radial slit disc mapping $\psi(z)$ in $\tilde{\mathcal{F}}$ such that $\psi(K_1)$ is a disc $|w| \leq r$, say and $\psi(K_2)$ is a line segment $a \leq w \leq b$ (a > r). Then Cap $\phi(K_1) = r$ and we know that r is equal to the minimum of Cap $\phi(K_1)$. For these facts see Sario and Oikawa ([5], pp. 148-158). By an elementary mapping $S_r(w) = r(w/r + r/w)$, $\psi(K_1)$ is mapped onto a line segment [-2r, 2r] with the same capacity r. Then $\psi(K_2)$ is mapped onto a new segment [a', b']. We show that Cap[a', b'] = (b'-a')/4 is the minimum of Cap $\phi(K_2)$ within $\tilde{\mathcal{F}}$. In fact by a parallel displacement, [a', b'] is moved onto [-2r', 2r'], r' = (b'-a')/4. The conformal mapping $S_{r'}^{-1}$ maps the last domain onto another radial slit disc, K_2 corresponding to the disc $|w| \leq r'$. Hence r' is the minimum of Cap $\phi(K_2)$. Thus r+r' is the desired minimum within $\tilde{\mathcal{F}}$. $S_r \circ \phi$ is clearly an extremal function. It is easy to see that by composition of elementary mappings an extremal function ϕ_0 can be constructed in \mathcal{F} as stated in the theorem, which completes the proof.

Remark. The uniqueness of the extremal function in \mathcal{F} is deduced from that of a radial slit disc mapping. Indeed the radial slit disc mapping ψ with $\lim_{z\to\infty} \phi(z)/z=1$ is a unique extremal mapping minimizing radii within the family of univalent functions ϕ satisfying $\lim_{z\to\infty} \phi(z)/z=1$ and that $\phi(K_1)$ is a disc centered at the origin. It is not difficult to derive the uniqueness directly by means of the method of extremal metrics.

3. Subadditivity. We prove

THEOREM 2. If K_1 and K_2 are mutually disjoint continua, then the inequality (2) holds.

74

Proof. If $\Omega(K_j) \subset \Omega(K_k)$ $(j \neq k)$, the inequality is trivial. Otherwise $\Omega(K_1 \cup K_2)$ forms a doubly connected domain. For simplicity's sake we write K_1 , K_2 for its boundary components which have the same analytic capacities as the original continua. Let ϕ_0 be the extremal mapping for this domain in Theorem 1. Pommerenke showed that for a compact set on a straight line its analytic capacity is equal to a quater of its total length [4]. Since the analytic capacity is invariant under a conformal mapping with the normalization (4), we have

$$\gamma(K_1 \cup K_2) = \gamma(\phi_0(K_1)) + \gamma(\phi_0(K_2)).$$

Since the analytic capacity is equal to the capacity for a continuum [7], we obtain the assertion from the minimum property in Theorem 1.

References

- [1] BRANNAN, D. A. AND J. C. CLUNIE, Aspect of contemporary complex analysis, Academic Press (1980).
- [2] GARNETT, J., Analytic capacity and measure, Springer Lecture Notes in Math. 297 Springer-Verlag (1972).
- [3] MEL'NIKOV, M.S., Estimate of the Cauchy integral along an analytic curve, Math. Sbornik 71 (1966), 503-515 (Russian), Amer. Math. Soc. Translation ser. 2, 80 (1969), 243-256.
- [4] POMMERENKE, C., Über die analytische Kapatitat, Arch. der Math. 11 (1960), 270-277.
- [5] SARIO, L. AND K. OIKAWA, Capacity functions, Springer-Verlag (1969).
- [6] VITUŠKIN, A.G., The analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), 141-199 (Russian), Russian Math. surveys 22 (1967), 139-200.
- [7] ZALCMAN, L., Analytic capacity and rational approximation, Springer Lecture Notes in Math. 50, Springer-Verlag (1968).

Department of Mathematics Tokyo Institute of Technology