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THE DISTRIBUTION OF PICARD DIMENSIONS

Dedicated to Professor Mitsuru Ozawa on the occasion of his 60th birthday
By MITSURU NAKAI AND TOSHIMASA TADA

The purpose of this paper is to show that Picard dimensions of densities on
the punctured unit disk cover all countable cardinal numbers as well as the cardinal
number of continuum.

Before stating our result more precisely we first fix terminologies. We
denote by £ the unit punctured disk 0< |z| <1 which is viewed as an end of the
punctured sphere 0< |z|=oco so that the unit circle |z]=1 is the relative boundary
082 of 2 and the origin z=0 is the ideal boundary 62 of 2. By a density P on
2 we mean a nonnegative locally Hélder continuous function P(z) on 2=21dR2
so that P may or may not have singularity at z=0. With a density P on_.Q we
associate the class PP(2; 0f2) of nonnegative continuous functions » on £ such
that u satisfies the following elliptic equation

2

() 4758—214(2):P(2)u(2)

on £ and vanishes on 0£2. We also denote by PP.,({2;0£) the subclass of
PP(2;02) consisting of functions u with the following normalization

a o~ p—
(2) —Sma—lzTu(z)ldd—Zﬁ.

The Choquet theorem (cf. e.g. Phelps [5]) yields that there exists a bijective
correspondence u<—>p between PP,(2;0%2) and the set of probability measures
¢ on the set ex. PP,(£2;082) of extremal points of the convex set PP,(Q2;0%2)
such that

Sex.PPl(Q;BQ)v dﬁ(v) )

Thus the set ex. PP,(£2; 0Q2) is essential for the class PP,(f2 ; 02), and the cardinal
number #(ex. PP,(2;082)) of the set ex. PP,(2;01) is referred to as the Picard
dimension of a density P at the ideal boundary 62 of £, dim P in notation, i.e.
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(3) dim P=%(ex. PP,(2; 09)).

We are interested in the range dim 9 of the mapping P—dim P from the
totality @ of densities P on £ to the set of cardinal numbers. It is easily seen
(cf. e.g. [3]) that dim P=1 for any density P on £. Since PP,(2;00) is a
subset of the space C(£2) of real valued continuous functions on £ which is
separable, the well known fact #(C(£2))=c¢ implies that dim P<c¢, where ¢ is the
cardinal number of continuum. Therefore we have

(4) 1=dim P=c¢ (i.e. dim 9C[1, ¢])

for every density P on £, where [1, ¢] is the interval consisting of cardinal
numbers m such that 1=m=c. We denote by NV the set of positive integers and
by a the countably infinite cardinal number #N and set &=NU/{q, ¢}. The
primary purpose of this paper is to prove the following result:

THE MAIN THEOREM. There exists a density Py on £ for any cardinal

number m in & such that dim P,=m.

Therefore we have ZCdim 9C[1, ¢] so that dim 9=25 if we assume the
continuum hypothesis Z=[1, ¢]. The proof is divided into two parts: the exist-
ence of canonically associated densities discussed in nos. 1-6, and three examples
of relative harmonic dimensions considered in nos. 8-14. The deduction of the
main theorem from the above two parts is given in no. 7.

§1. Canonically associated densities.

1. A sequence {K,}? of continua K, possibly empty in £ will be referred
to as a K-sequence in Q if K,NK,=@ (n#m), W=2—\UJ? K, is connected, and
{K,} converges to 62: z=0, i.e. there exist only a finite number of K, such
that K,N{e<|z|<1}#@ for every ¢>0. We denote by X(£2) the set of X-
sequences in 2. The relative boundary oW of the region W=02—\U; K, for a
JK-sequence {K,}7 is oW=(02)J( T 0K,). We then consider the class HP(W ; oW)
of nonnegative harmonic functions on W with vanishing boundary values on oW
and the subclass HP, (W ; oW) of HP(W ; 0W) consisting of those functions u with
the normalization (2). Similarly to the Picard dimension we define the relative
harmonic dimension, dim{K,} in notation, of a X-sequence {K,} at 6Q2: z=0 by

(5) dim{K,} =#(ex. HP,(W ; dW)) .

It is easy to see that, as in the case of Picard dimensions, 1=dim{K,}<c for
any X-sequence {K,} in £. We will see in §2 that the range dim K (£2) of the
mapping dim : X(2)— {cardinal numbers} also contains 5.

2. Suppose that each continuum Y, in a X-sequence {Y,} in £ is the
closure of a Jordan region Y, in £ (n=1, 2, ---). Such a X-sequence will be
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referred to as a Y-sequence in £ and we denote by Y(L2) the class of Y-sequences
in 2 so that Y(Q)C K(L2). Consider the region W=02—\J ¥, for a 9-sequence
{Y,} and a density P on £ such that supp. PC\ Uy V,=2—W. We denote by
HY for each u in PP(Q;082) the least nonnegative harmonic function on W
with boundary values u on oW (cf. e.g. Constantinescu-Cornea [17). It is the
lower envelope of the family of superharmonic functions s on W with the lower
limit boundary values of s on 0 being not less than u|oW. Then the function
Tru=u—HY belongs to the class HP(W ; oW) for every u in PP(£2;08), and
u—Tpu defines a mapping Tp: PP(2; 02)—HPW ; 0W). It is easy to see that
the mapping Tp is order preserving (i.e. u;=<u, implies T pu,=T pu,), positively
homogeneous (i.e. T p(Au)=AT p(u) for nonnegative real numbers 1), and additive
(i.e. Tpluy+u)=Tpu,+Tpu,). In general Tp may or may not be injective and
similarly surjective. If the mapping 7T p happens to be bijective, then the density
P is said to be canonically associated with the ¥-sequence {Y,}. If a density P
on £ is canonically associated with a %-sequence {Y,}, then we have

(6) dim P=dim{Y,}.

To prove this we denote by [(u) the left hand side of (2). Then it is easy to
see that u— (27 /(T pu))T pu is a bijective mapping of PP,(2; 02) onto HP,(W; o)
along with Tp. We now prove the following

THEOREM. There always exists a density P on Q canonically associated with
an arbitrarily given Y-sequence {Y,} in 2.

The proof of this assertion will be given in nos. 4-6 after establishing an
auxiliary result in no. 3.

3. We denote by PY% the solution of (1) on the unit disk U: |z]| <1 with
boundary values f on oU, where P is a density on U and f is in C(@U). Give
any Jordan region V with VCU and any positive number ¢. We then have the
following simple but very useful fact (cf. [2]):

PROPOSITION. There exists a density P=Py . on U with supp. PCV and
satisfying the inequality

U 3
(7) sup| PY| = 5=

["1renian

for any f in CU).

For a proof of this we fix a disk X: |z|<r (0<r<1) Wi_th VX, Since the
Poisson kernel P(e*’, z) on oU XU is continuous on oU XX, there exists the
maximum ¢ of P(e'?, z) on oU X X :

c=max P(e*’, z).
oUx X
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Let Y be an analytic Jordan region with YCV and w be the harmonic function
on X—Y with boundary values ¢ on 90X, ¢/2 on 9Y. Taking ¥ enough close to
V we can assume w<e on 0V. Fix an analytic Jordan region Z and a conformal
mapping {=¢(z): Z—¢(Z)={|{| <1} such that YCZ, ZCV, and ¢(Y) is a disk
with center at {=0. Consider the density ¢, and the function v, on &(Z)
defined by

dm?| |2 P (0)= [C]2™+(2m)?

slfm((:): TCP&:P@?”):I , m &)= *W (n

and observe that

1=1, 2, )

0? .
45@1'7,1(@:%(;)%@) (1Z1<D).
If we set
Qu(2)=un(d(2) " (2)1% wrl2)=va(d(2))

the function w,, on Z has boundary values 1 on 0Z and satisfies

aaa_ Wn(2)=Qn(2)wn(2)

on Z. We take a density P, on U with supp.P,CV, Pn=Qn on Z and
Pn<P,..on U (m=1, 2, ---). Since P,,=Q, on Z, the solution u, of

22

4—3% u(z)=Pn(z)u(z)
Z0Z

on X with boundary values ¢ on 0.X satisfies up<cw, on Z. Observe that {wn}
converges to 0 uniformly on Y as m—oo. Then for some positive integer m. we
have u, <e/2 on 4Y so that u, <w on X— Y. Therefore Un,<e on 0V, and
hence on V. Now we set

P=Py =Py , v=Un,.

We denote by g({, z), G(, z) the harmonic Green’s function, P-Green’s func-
tion on U, respectively. We remark that G({, z)=g({, z) and

P(e?’, Z):[_ g‘%g(c’ 2)]§=e”’

for ¢'” in 0U and z in U. If we set

K(et, 2)=| 31T GG D],

then we have 0<K(e'?, z2)<P(e??, z). Since P(e*?, z)<c on _E_?UXX v(z)=c on 0X
we have K(e'?, z)=v(z) on X so that K(e%, z)<e on oU X V. Thus we have for
J in CQU) and z in V
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1Py =5 re)Ke, 240
{1k, 20

e (27 )
= {7171 40. 0
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4. We proceed to the proof of Theorem in no. 2, i.e. the existence of
canonically associated densities. Let {Y,} be any %-sequence on £ and U, be
a slightly larger analytic Jordan region in 2 than Y, containing Y,. We may
assume U,N\U,=@ for n#m. We fix a point z; in 2—\J? U, and denote by
F the set of nonnegative harmonic functions u on W=02—\J? Y, with u(z,)=1.
Then the Harnack principle yields for every nonnegative integer n

b,=sup max h<-co.
F aUp
Using a conformal mapping ¢, of U, to ¢,(U,)={|z| <1} we define a density
P=Py on 2 by

P(C):{ —

where P, is a density on U={|z|<1} which satisfies (7) for V=¢,(Y,), e=
1/n(b,~1). We will show that P is a canonically associated density with {Y,}.

5. First we prove that the mapping T» is injective. Let u;, u, be functions
in PP(2;082) with Tpu,=Tpu,. Then we have u,—u,=H}_,, on W. Assume
that u;%#u,. Then we may assume supy(u,—u,)>0 if necessary by exchanging
indices of u,, u,. Since HY[_,, is quasibounded we have supy H| -, =SupowH, -,
We set viy=u/(ui(z))+1) (=1, 2). Then v, satisfies v,<b, on oU, so that we

have for z in Y,

2T
@)= 5| nu e oS

Then we have Hj._,,=ui—u,<(ui(z;)+ux(2z))+2)/n on 9Y,, and hence the har-
monic function Hy;_,, on W attains its supremum at a point in some 0Y5.
Therefore the function u,—u, in PP(2;08) attains its maximum at the same
point as that of H}_,, so that u,—u, is identically a positive constant. This
contradicts the fact that w,—u,=(u,(z,)+uxz,)+2)/n on Y, for every positive
integer n. Thus u;=u,.

6. Next we prove that Tp is surjective. Let A be any function in HP(W ; oW).
Since T'p is positively homogeneous we may assume that s is in F. We denote
by w the harmonic measure of oW —0of2 considered on W and we set h,=h-+w
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on . Observe that for z in oY,

1 2z i
mg hi(gn'(e?)d

< bp+1
— nlba+1)

Then we have Phir=h, on U,— Y, by the maximum principle. Therefore the
function s on £ defined by s=h, on Q—\J7U,, s=Pj» on U, (n=1,2, ) isa
supersolution of (1) (i.e. superharmonic with respect to (1)) on £ with A=s=<h,
on W. On the other hand % is a subsolution of (1) (i.e. subharmonic with respect
to (1)) on £ if we define h=0 on \U?Y,. Now the lower envelope u of the
family of supersolutions of (1) on £ which dominate 4 on 2 is a solution of (1)
with A<u on £, u<h, on W so that u is in PP(R2;08Q). If weset v=—h+u—HY
on W, v satisfies v=—h+u<—h+h=w=l, v=Z—HY=z—H},=—w=-1. On
the other hand v vanishes on 0WW and therefore v=0, i.e. Tpu=h. This com-
pletes the proof of Theorem in no. 2. O

Pin(z)=

=1=h,(2).

§2. Relative harmonic dimension.

7. In view of (6) and the theorem in no. 2, the proof of the main theorem
is reduced to showing that dim ¥(2) contains Z. In passing we remark that
YT KX (L) implies that dim K(2) contains & along with dim ¢(2). Thus the
proof of the main theorem will be complete if we show the following fact which
may have an independent interest in its own right:

THEOREM. Ther_e exists a Y-sequence (Y.} in Q for any cardinal number m
in & such that dim{Y,}=m.

Therefore we have FCdim Y(@)Cdim X(Q)C[1, ¢] so that dim Y(Q)=
dim X(2)=4F if we assume the continuum hypothesis £=[1, ¢]. The proof will
be given in nos. 8-14 by exhibiting three examples in nos. 9, 12, and 14.

8. Before proceeding to our three examples we remark the following simple
fact (cf. e.g. Constantinescu-Cornea [1]) which plays an important role in verifying
that the examples in nos. 9, 12, and 14 are required ones. Let {U,}T be a
sequence of relatively compact subregion U, in £ such that U,N\U.=@ (n+m)
and {U,} converges to d2: z=0. Consider a region W=2—\U? K, for a
J-sequence {K,} in Q. Set V,=WNU, and V=\U7?V,. Let W, 0,W be the
Martin boundary of W over 602 : z=0, the set of minimal points in éW, respec-
tively and (W—V)? the closure of W—V considered in the Martin compactification
of W. Then

(8) OW—W—=V)tCoW —a, W .
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9. ExaMmPLE 1. First we exhibit an example of a %-sequence {Y,}T with
dim{Y,}=m for any given positive integer m. Fix a sequence {a,}7 in (0, 1)
with a,+:<a, (n=1, 2, ---) and lim a¢,=0. Fix a positive numbers 0,, -+, 0, ;
Ny, vty Pm With 0,429, <—29,0+0,0 (2=0, 1, ---, m), where 6,+27,=0,
—2Nm+1+O0m1=2n. We choose a sequence {b,}T in (0, 1) with a,,,<b,<a,.
Let (see Fig. 1)

Spp=1{b<|z|<an,, largz—0,|<7%,} (¢=1, -, m; n=1,2, ).

Observe that any positive integer & has a unique expression k=(n—1)m-+p with
positive integers n and g with 1=p=m. We set

Yi=S, (k=(n—1m+p).

Then the sequence {Y,}¥={S,,} is clearly a %-sequence. If we choose the
sequence {b,} so as to make the sequence {b,—a,+}T converges to zero enough
rapidly, i.e. satisfying (9), (11), and (14) below then we can show that dim {§n,,}
=m in the following way.

Fig. 1.

10. Fix a sequence {6,}7 in (0, 1) with a,4,4+0,:<ar—0, (n=1, 2, --),
where 0,=0. We set (see Fig. 1)

Unp={ll2z]|—a,| <0n, largz—0,|<279,} (p=1, -, m; n=2,3, )

i
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and U=\J5-,\Usy Un,. Then we have U, ,N\Up=0@ ((n, p)#(k, v)). The first
property which {b,} has to satisfy is

(9) ba<@pi140ne (n=1,2, -+).
We consider subregions W and W, (n=1, 2, ---) of 2 given by

LV:.Q““ Cj @ Sn,u:
n=1 p=1

Wa=W—\J (0<|2|Za,, larg z—0,]=7,}

and denote by g({, 2), g, z) the Green’s functions on W, W,, respectively. Fix
a reference point a of the Martin kernels k(, 2)=g(( 2)/g& a), k. 2)=
g.& 2)/g: a) on W, W,, respectively and a neighbourhood D of a with
DcW—U. Finally we fix a sequence {e,}7 in (0, 1) with

(10) S en<l, TU—e)=+.
n=1 n=1 2

Then the second property which {b,} has to satisfy is
(11 Zn1i(§, 2)—2a(C, 2)=e.g.(, 2)

for any z in D and { in W—U. Assume (11) is valid for every positive integer
n. Then we have
gn+j(C, Z)"gn(c, Z)§0(ngn+](c, z)
so that
{ g1, 2)=ga45C D)=(1—an) g, 2)

g 2)=gC, 2)=(1—an)"g.( 2)

for every positive integer j, where a,=>, ¢,. Therefore Martin kernels £k,
k., satisfy on (IW—U)XD

(12) (I=an)knl 2)=kns i€ D)=(1—an) " ka(C, 2),
13) (1=an)kaC )=k, 2)=(1—an)ka(, 2).

Let oW, and 6,W, be the Martin boundary of W, over 62: z=0 and the set of
minimal points in 0W,, respectively. Then we have 6W,=0,W,=0W,=0,W,=
{p1, --, pn} and we may assume for every positive integer n, g, v with
1=y, v=m
. oo (u=v)
lim k,(p,, 2)= ,
il 0 (u#v)

where I,={0<|z|<1, argz=(0,+27,+0,1—29,+1)/2} and Oms1—279me;=
0,—2%,. Making {—p, in (12) we have
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(l—aﬂ)kn(p/b Z)ékzwj(p,u, Z)é(l—an)—lkn(pﬁy z)

for every positive integer p¢ with 1=<p=<m. Then the following limit exists for
any z in D: Au(z)=limy.ckn(py, 2), and hence {k.(p,, 2)}5-1 converges to a
nonnegative harmonic function A, on W uniformly on every compact subset of
W. On the other hand from (13) it follows that harmonic functions

A= lim k¢, 2), Au(2)=lim k(, 2)
Epp C=py

on W satisfy
<l_an>kn(py; Z)édy(z)éZ;t<2)§(1“an)~lkn(l)yy Z)

on D. By making n—co in the above inequalities we have Aﬂ(z):_/_l,,(z)zfl#(z)
on D, and hence on W. Then every p, defines unique Martin boundary point
g, of W over £2: z=0 such that

lim k,(p,, 2)=1lim &, 2)=k(g,, 2)

oo C-pp
on W. We remark that it may happen ¢,=¢. for some g, v with pg=#v. Let ¢
be any point in W—U)*NoW. Then there exists a sequence {{,}T in W—U
with {,—¢. Since a subsequence {{7}T of {{.} converges to a point p, in 082,
we have ¢g=¢g, so that oW—(W—U)® contains 6W—{g,}7. Therefore by (8)
OW—0,W contains 6W—{g,} 7, and hence we have 0,WC{g.}*. Thus we con-
clude that dim{S,,} <m.

11. Now we give the last property which {b,} has to satisfy. Consider the
harmonic function wu,, on W,_;, with boundary values k,(p,, z) on oW,
(p=1, -, m; n=2, 3, ---). We require {b,} to satisfy

(14) un+1,p(z)§5n

on W—U for every p. Since the nonnegative harmonic function k. (pp, 2)—
Un+1, »(2) vanishes on oW, it is represented by k(p,, 2):

kn+1(pp; Z)—un+1.;z(z):(l'—un+1,;z(a))fl‘?n<pp, z).

Assume (14) is valid for every positive integer n. Then if we set v,,(2)=/k(p,, 2
and

v @=( I (1=urn(@)) kalpy, 2) (=1, -, m; n=2,3, ),
by (10) and (14) we have

[nss, @D =van@) | =( TL A=24u(0)) " 1Enislppy D= hnss, o(@)lenlpy 2

é(i{l(l_ek)>_len§25n
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on W—U. Therefore {v,,}%-; converges to a nonnegative harmonic function v,
in HP(W ; oW) uniformly on every compact subset of W. Since we have

lvn+j,/x_vn/1 [=2(en+ +entj-1)

for every positive integer j, every function v, satisfies v,,—2a,<v,Zv,,+2a,
on W—U. Then v, has the same limit as that of v,, at 2: z=0 along I}:

{+oo (p=v)
0 (u#v)

Thus we have dim{S,,} =m. O

lim v,(z)=
Iry>z-0

12. ExaMPLE 2. Next we exhibit an example of a 9-sequence {Y,}7T with
dim{Y,} =a. Fix a sequence {a,}7 in (0, 1) with a,.;<a, (n=IL, 2, ---) and
lim a,=0. Fix sequences {6,}7, {n,}T of positive numbers 8,, 5, with 0<8,—2,,
0,427, <—27441+0,:.<2r for every positive integer . We choose a sequence
{0237 in (0, 1) with @, <b,<a, (n=1, 2, ). Let

Sap=1{b<l|z|<a,, largz—0,|<n,} (=1, -, n; n=12, ).

Observe that any positive integer % has a unique expression k=n(n—1)/2+pu
with positive integers n and g satisfying n=u. We set (see Fig. 2)

Fig. 2.
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Yk:Sn/z (kzn(n—l)/Z—!-y)

Then the sequence {V,}7=1{S.,} (=1, -+, n; n=1, 2, ) is a Y-sequence. If
we choose the sequence {b,} so as to make the sequence {b,—a,.,}T converges
to zero enough rapidly, i.e. satisfying (15), (16), and (17) below then we can
show that dim{S,,} =a in the similar way as in nos. 10 and 11.

13. Fix a sequence {0,}y in (0, 1) with @, +0,1.<a,—0, (n=1, 2, ---),
where 0,=0. We set (see Fig. 2)

Upp={llzl—a,| <04, largz—0,|<279,} (p=1, -, n—1; n=2, 3, --)

and U=\U3-\UrztU,,. Then we have U,,NUp=@ ((n, p)#(k, v)). The first
property which {b,} has to satisfy is

(15) bn<@ni1t0ne (n=1,2, ).

We consider subregions W and W, (n=1, 2, ---) of 2 given by

W:.-Q'— Ql O Sny)

#=1

Wa=W—\J 0<|z|Sa,, largz—0,]=7,}
e

-#;\1'11+1{O< lz|=a,, largz—0,]=7,}

and denote by g( z), g.( z) the Green’s functions on W, W,, respectively.
Fix a reference point a of the Martin kernels &(, 2)=g({, 2)/g(, a), k., 2)=
g.&, 2)/g. a) on W, W,, respectively and a neighbourhood D of a with
Dcw—U. Finally we fix a sequence {e,}* in (0, 1) with 3P e, <1, TI7(1—e,)
>1/2. Then the second property which {b,} has to satisfy is

(16) gnrill, 2)— g, 2)=engal(C, 2)

for any z in D and { in W—U. Let W, and 0,W, be the Martin boundary
over 02: z=0 and the set of minimal points in oW, respectively. Then we
have oW ,=0,W,=0W,=0,W,={py, ps, -~-; and p.} and we may choose a family
{[,: p=1, 2, --+; and oo} of pairwize disjoint curves I, in W—U converging to
082 : z=0 such that

lim kn(p., 2)=

[’ﬂaz-o

{ +oo (u=v)
0 (p#v)
for every positive integer n. Assume (16) is valid for every n. Then k,(p,, 2)
and k({, z) converge to a same function in HP(W ;dW) uniformly on every

compact subset of W as n—co and {—p,, respectively for every p=1, 2, ---; and
co. Therefore every p, defines unique Martin boundary point ¢, of W over 992 :
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z=0 such that

n—oo

lim % ,(p 2):Ji£n k(& 2)="Fk(gu 2)
~py

on W. We remark that it may happen ¢,=g¢, for some g, v with pg#v. We
denote by 6W and 0,W the Martin boundary of W over 02: z=0 and the set
of minimal points in 6W, respectively. Observe that oW —(W—U)* contains
SW—1{q1, q2, -+ ; and ¢g.}. Then by (8) 6W—4,W contains 0W— {qy, g5, ---; and g..}
and hence 0,WC{q, g5 +-; and ¢.}. Thus we conclude that dim {§n,,}§a.

We give the last property which {b,} has to satisfy. Consider the harmonic
function #,, on W,_; with boundary values k,(p,, z) on oW,-, for n=2, 3, --
and p=1, 2, ---; and oco. We requir {b,} to satisfy

17 un+l»p(z)§5n

on W—U for every p. We set v,,(2)=Fk(p,, z) and

n -1
v =( TL(A=13u(@) kalp, 2) (n=2,3, -5 p=1,2, = and <o),
Assume (17) is valid. Then v,, converges to a function v, in HP(W ; 0W) uni-
formly on every compact subset of W and v, has the same limit as that of
ka(pu 2) at 02 z=0 along I :

. Foo (u=v)
lim v,(z)=
I'ysz-0 0 (‘Llil))
for p, v=1, 2, ---; and co. Thus we have dim {Sput = O

14. EZC_AMPLE 3. Finally we exhibit an example of a %-sequence {Y,}¥
with dim{Y,}=c¢. Fix a sequence {a,}{ in (0, 1) with a,..<a, (n=1, 2, ---) and
lim a,=0. Fix a sequence {7,}7 of positive numbers 7, with

4o+ ;:]12“"177/,><27r.

For every positive integer n we set 7,,=7, and for every positive integer p with
p=2"—1 we set nu=1n,-; if p="r27 for positive odd integer k.. Then we define
a sequence {0, (0=p=2"—1, n=1) in [0, 2x) by induction: ¢,,=0, 6,,== ; and
in the case n=2 we set

671/1:07;—1,;1/2 s
if ¢ is a nonnegative even integer,

1
0n,::—2“(0n-1, @ 2200 1 (u-ni2

'“27]n—1, <,u+1)/2+ 6n-1, (,u+1>/z) »

if ¢ is a positive odd integer, where 0,,=2x, =7, if v=2". We choose a
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sequence {b,}7 in (0, 1) with a,<b,<a, (n=1, 2, ---). Let (see Fig. 3)
Sny:{bn< lz|<a,, |larg z2— 0| <77n/z} O=p=2"—1, nzl).

Observe that any positive integer %2 has a unique expression k=2"-+pu—1 with
positive integer n and nonnegative integer u satisfying p#=2"—1. We set

V=S, (k=2"4p—1).

Then the sequence {Y,}7=1{S,.} 0=p=2"—1, n=1)is a Y-sequence. If we
choose the sequence {b,} so as to make the szquence {b,—a,:;}T converges to
zero enough rapidly, i.e. satisfying (18) and (19) below then we can show that
dim{S,,} =¢ in the similar way as in nos. 10 and 11.

Fig. 3.

Fix a sequence {0,}% in (0, 1) with @, +0,0:<a,—0, (n=1, 2, ---), where
0,=0. We set for every integer n with n=2 and every even integer p with
0<p=27—1

Un,u:’“ [z —an| <dn, |argz—ﬁn/z{ <2ﬂn/z}
and (see Fig. 3)

o —-1-1
U:nL:jz L=j0 Un’zw

v

Then we have U,,NU,=@ ((n, )= (k, v)). The first property which {,} has
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to satisfy is

(18) bp<@ni1t0pen (n=1, 2, ).

We consider subregions W and W, (n=1, 2, ---) of 2 given by

w=0— U US5.,

n=1 p=

n 2k-1
W,=W— k!l #k=j0 0<]zI=a,, largz— 0, S 7}

2RkR-1

oo k
— U U< |z|Zay, largz—04,| S 9wy}
k=n+1 p=0
and denote by g(( 2), ga(, z) the Green’s functions on W, W,, respectively.
Fix a reference point a in W—U of the Martin kernels £, 2)=g( 2)/g(, a),
k(L 2)=g.C 2)/g( a) on W, W,, respectively and let oW, 6,W, be the
Martin boundary of W, over 6Q2: z=0, the set of minimal points in oW,
respectively. If we set 4=1{0, 1}~ then the cardinal number of 4 is ¢ and every
point x in A defines unique minimal point p, in 6,W,=0,W,: we have éW,=
0W,,=0W,=6,W,={p,: x4} and we may choose a family {[,: x4} of
pairwise disjoint curves Iy in W—U converging to 62: z=0 such that
) { +oo (x=y)
lim k,(p,, 2)=
I'z32-0 0 (x;ty)

for every x, y in 4 and positive integer n. Consider the harmonic function u,,
on W,., with boundary values k,(p., z) on oW ,_, for every x in A and integer
n with n=2. Finally we fix a sequence {¢,}T in (0, 1) with X7 e,<1, TIT?(1—ey,)
>1/2. Then the second property which {b,} has to satisfy is

(19) Uns, 2(2)Zeq

on W—U for every x in 4. We set v,,=k(p,, z) and
vae(@=( [T (1—u4el@)) kalps, 2) (x4, nZ2)

Assume (19) is valid for every n. Then {v,.} converges to a function v, in
HP(W ; 0W) uniformly on every compact subset of W and v, has the same limit
as that of k,(p., 2z) at 02: z=0 along [, :

{ +oo (x=y)
0 (x#v)

lim v.(z)=
I"ysz—»o

for every y in /4. Then we have dim{§,,y}gc. Since the dimension of any
Y-sequence is at most ¢, we conclude that dim{S,,.} =c. O
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