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KILLING VECTOR FIELDS ON NON-COMPACT
RIEMANNIAN MANIFOLDS WITH BOUNDARY*

By SHINSUKE YOROZU

1. Introduction.

The study of Killing vector fields on compact Riemannian manifolds with
boundary had been started by K. Yano [3]. In a previous paper [5], we dis-
cussed non-existence of Killing vector fields with finite global norms on com-
plete Riemannian manifolds (without boundary).

The purpose of the present paper is to discuss non-existence of Killing
vector fields with finite global norms on non-compact Riemannian manifolds
with boundary.

We shall be in C~-category. Latin indices run from 1 to n-+1 and Greek
ones from 1 to n, and the Einstein summation convention will be used.

2. Riemannian manifold with boundary.

Let # be a complete, non-compact, connected and orientable Riemannian
manifold of dimension n-+1 and g (resp. V) the Riemannian metric (resp. the
Riemannian connection) on .#%. We take a non-compact manifold M=0MuU M
such that M is a noncompact, connected, open submanifold of # and aM=M
—M is an n dimensional, compact, connected submanifold of H, where M
denotes the closure of M in #. Then M is a Riemannian manifold with boun-
dary oM, and the Riemannian metric on M is induced from the Riemannian
metric g on #. M is complete as a metric space with the distance determined
by the induced Riemannian metric on M. For simplicity, hereafter, we denote
by g the induced Riemannian metric on M and by V the Riemannian connection
on M.

At each point p of OM, there exists a coordinate neighborhood system
{U; (x} of p in M such that UNM is represented by x"*'=0 and UNoM is
represented by x"*'=0. Such a coordinate neighborhood system is called a
boundary coordinate system. And {UNoM; (x%)} is the induced coordinate
system on oM. If {U; (x%} and {V; (y*)} are boundary coordinate systems
satisfying UNV #0, then we have that
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n+1 n+1
-g%— >0 and -aayxa
Since the Jacobian of the coordinate transformation of {U; (x%)} and {V; (y")}
is positive, the Jacobian of the coordinate transformation of {UNoM; (x*)} and
{VNoM; (y*)} is positive. Thus oM is orientable.

Let ¢: 0M — M be the inclusion. If {U; (x¥)} is a boundary coordinate
system of a point p of oM in M and {U’; (u%)} is a coordinate system of p
such that U’'CUNOM, then the inclusion ¢ may be represented locally by

2.1) =0 on dMNUNV (for any «).

(2.2) =xYu*).

We denote by B the differential of the inclusion ¢, that is,
(2.3) B=(B%)=(0x*/0u®).

Then the induced metric ‘g=("g.s) on oM is given by
(2.4) 'gas=BuB}g;,

where g=(g,;). We may choose the unit outer normal vector field N to dM
(cf. [3, 4]). We denote by ’‘V the Riemannian connection on dM with respect
to the Riemannian metric ‘g. Then the equations of Gauss and Weingarten is
stated as follows:

(2.5) VextsV ="V Y )+ (X, V)N,
(2.6) VexN=tx(—AX)

for any vector fields X and Y on 0M, where h denotes the second fundamental
form of 0M with respect to N and A is defined by A(X, Y)="g(4AX, Y).

3. Vector field with finite global norm.

Let AS(M) (resp. A*(0M)) be the space of all smooth s-forms on M (resp.
oM). Let d denote the exterior derivative on AS(M) (or A%OM)), and § is
defined by

@.D 0=(—1)"*dx*

on AS(M) (resp. N*(0M)) where m=sn-+s+n (resp. sn+n+1) and = denotes
the star operator (cf. [4]).

We denote by <, > the local scalar product on AS(M) (or AS(OM)). The
global scalar product < , > is defined by

(3.2) <&, >7>>=SM<5, 7¥1= Sﬂé‘A*r}

for any &, ne AY(M) where A§(M) denotes the subspace of A*(M) composed of
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forms with compact supports. We have < d§, n»=<§, dp> for any Ec AY(M)
and any pe A" (M). Let L§(M) be the completion of A{(M) with respect to

the scalar product <, > Weset |[-[=<-, - >V

For any £ AYM), we define tE€ AYOM) and nEe A°(OM) by
(3.3 (tENX)=E(ex X)) ,
(3.4) nE=£&(N)

for any vector field X on oM, where A°0M) denotes the space of all functions
on oM. For any {e A 0M), we define C{ by

3.5) CUX)=C(AX)

for any vector field X on oM.
A form & A%(M) is represented by locally
1
E:“S—!_Ezlmzsdxh/\“'/\dxls-

We set V,=Vy,021 8_{1(.1 Vi=g"V, where (g*’) denotes the inverse matrix of (g,;).
For any &, e A*(M), we have

1
(3.6) G = g g g -

For any €= AYM), we have

(3.7 (d8)i,=Vi§;—Ve,
(3.8) 06=—V'¢,,

(3.9) V.VE =V V& =R;E,
(3.10) (t§)a=Bi&,,
(3.11) n§=&;N*,
(3.12) C(té)o=ASBjE,,

where &*=g¥¢, and R,, denotes the components of the Ricci tensor field of ¥
(cf. [4]).
For a vector field X:E’—a%; on M, a l-form & associated with X is defined

by §=&idx*=g,;67dx"

DEFINITION 3.1. A vector field X on M is called tangential (resp. normal)
to oM if nE=0 (resp. t£=0) for the 1-form & associated with X.

DEFINITION 3.2. A vector field X on M is called a Killing vector field if
L yg=0 where £ denotes the Lie derivative operator.

A Killing vector field X (or 1-form & associated with X) on M satisfies the

following :
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(3.13) Vi€;+V,6,=0
and, from this, we have
(3.14) V.6'=0.

DEFINITION 33. A vector field X on M is called “with fimte global norm”
if ée L{MINNAYM) for the 1-form & associated with X.

4. Non-existence of Killing vector field with finite global norm.

For_ each point p of M, we denote by o(p) the distance from p to oM.
Since M has a compact, conneted boundary oM, p is well-defined. p is a locally
Lipschitz function on M. We set

(4.1) B2k)={peM; p(p)=2k}
for any %£>0.

We consider a function g on R satisfying
(i) 0=px<1 on R,
(ii) pt)=1  for =1,
(iii) p)=0 for t=2.

Then we define functions w, on M by
(4.2) wi(p)=plo(p)/ k)  k=1,2,3, -
for any point p of M.

LEMMA 4.1. (cf. [1], [5]). There exists a positive number D, depending only
on p, such that

(n—i—l

(i) ldwe NE|Beam = — €l 3ezer »

(i) ||dwm*5n3<2k>_—(”—+—l-r 1l 3cn

for any &€ NN, where |§lban=<&, £ sun=|, & O

We remark that w,&e A$(M) for any é LYM)NA(M) and w,& — E(k — o)
in the strong sense. For any &= LYM)NAYM), we have

4.3) d(wib)=widé+2wdw i NE,
4.9) (wib)=wioé —* (2w rdw e N*E) .
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PROPOSITION 4.1. For any Killing vector field X on M,
LwrRE, WP pew
=2l wVEl|Bew + 2w rdw A&, VED e
+{, Kdne), 1+ccag), 1,

where R denotes the Ricci transformation on NNM) defined by (RE);=R,"&, &
is the 1-form associated with X and (N&);,=V.&,.

Proof. We define a 1-from 7 on M by

=V, )&dx".
By (4.4), we have

d((win))=—*6(win)
=H—widp+*Qwdw i A*7)) .

Then, by Stokes’ theorem, we have
[0, 4=

We have, by (3.8), (3.9) and (3.13),

N, wip)>*l.
)

aB2k

and
*Rwrdw g N¥p)=—Lwdw, NE, V&) .

Next, on oM, we have
<N, 7> =Ld(né), t&>+<C({E), 15>,
since (V;§,)N*N’=0. Thus we have
LWrRE, Wil pam—2K W NE, wWiVED pew

—<L2dw i NE, WNED pew

=, RO, +<CD), )71
dB(2k)

=(, dme), +<can), 1.

Because 0B(2k)=0M\U{peM; p(p)=2k}, w,=0 on {peM; p(p)=2k} and w,=
1 on oM. Q.E.D.

PROPOSITION 4.2. For any Killing vector field X (1-form & associated with
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X) on M with fimte global norm, if lirkn sup<Lw p RE, W€ piary <00, then

lirr,: supLw i RE, WY pen

Z IVl Kd(no), 0 +<C), 1111
Proof. By Lemma 4.1, we have

[€2dw i NE, WiNED paw | EllwiVE|dewn+ 53— €l Bcen
Thus we have
LwpRE, Wik>pew

22wVl bow— (10 bt <”+1>D

JlBen)

+,, Kdms), +ccus), 1911

1)
=l VElban— "L ielgen

+{., Kdmd), 1 +<cag), 1.
Therefore we have

liHEEUP<< WrRE, Wil pan

2Vl (d(ng), 18>+, 180}41. Q.E.D.

THEOREM 4.1. Let M be a complete, non-compact, connected and orientable
Riemannian manifold of dimension n+1. Let M=0M\UM be a non-compact
Riemannian manifold such that M is a non-compact, connected, open submanifold
of M and OM=M—M (boundary of M) 1s an n dimensional, compact, connected
submanifold of M. The Riemannian metric on M is induced from M.

(1) Suppose that lim sup<wiRE, wié>pew=0 for any e LM)NAYM)

and the second fundamental form of OM with respect to the unit outer normal
vector field is non-negative. If every Killing vector field on M with finite global
norm 18 tangential to OM, then it 1s a parallel vector field.

(ii) Suppose that ling_)sollp«wkﬂf, WD pen=0 for any &< Lé(M-)f'\ /\I(M)-

If every Killing vector field on M with finite global norm is normal to OM, then
it 1is a parallel vector field.

Proof. Since the second fundamental form of dM is nonnegative, we have
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%
[, cua, w1z

Thus, by Proposition 4.2, we have the assersions. Q.E.D.
We have easily the following theorem from above theorem.

THEOREM 4.2. Let M=0MUM be as Theorem 4.1.

(i) If M is of negative Riccr curvature and the second fundamental form
of OM with vespect to the umt outer normal vector field 1s non-negative, then
there 1s no non-zero Killing vector field on M with finite global norm and tan-
gential to oM.

(i) If M 1s of negative Ricci curvature, then there is no non-zero Killing

vector field on M with fimte global norm and normal to oM.
This theorem is a generalization of the results of K. Yano [3] (cf. [4]).

ExXAMPLE 4.1. We set r=(x*+y*+z*"* for any point (x, y, z) of R*® and
x=rcos #,, y=rsinf, cos @,, z=r sin b, sin 4, (that is, (8,, 6,, ) is the spherical
coordinates in R®). For two positive constant numbers a, and a,(a;<a,), we
consider a metric ds* on R?® such that ds*=#2((d6,)*+sin%0,(df,)*+(dr)* for
r<a,, =r ?%(d0,?+sin%6,(d0,))+(dr)? for r=(a,+a,)/2. Then HM=(R? ds?)
is a complete, non-compact, connected and orientable Riemannian manifold. We
set M=1{(8,, 0,, ¥)EM; r=a,}, then M is a non-compact, connected and orien-
table Riemannian manifold with a compact, connected boundary dM={(6,, 8,, r)
eEM; r=a,. Then we have

(i) The volume of M is infinite.

(ii) A vector field X=0/00, on M is a Killing vector field with finite
global norm and tangential to oM.

(ili) <« RE, &> =co for the 1-form & associated with X.

(iv) The second fundamental form of 0M with respect to the unit outer
normal vector field is negative.

EXAMPLE 4.2. Let < be a surface of revolution in R® defined by x=e **?2
cosv, y=e¢ **/2sinv, z=u (—co<u<co, 0<v=2x). Then . is a complete, non-
compact, connected and orientable Riemannian manifold with the Riemannian
metric ds*=e **(dv)2+(1+u?e *®) (du)®. For a constant number a,>1, we set
M={w, u)eM; u=a,). Then M is a noncompact, connected and orientable
Riemannian manifold with a compact, connected boundary oM={(v, u)eHM;
u=ae. Then we have

(i) The volume of M is finite.

(ii) The Ricci curvature of M is negative.

(iii) The second fundamental form of M with respect to the unit outer
normal vector field is negative.

(iv) A vector field X=9/dv on M is a Killing vector field with finite global
norm and tangential to oM.
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ExAMPLE 4.3. Let (6, ») be the polar coordinates in R? and %= R>*— {(0, 0)}.
We take four constant numbers a,, a, as, a, such that 0<a,<a,<a;<a,<1,
and we consider two functions A, h.: (0, co) —» R satisfying 0=h;(»)<1 (:=1, 2)
for 0<r and

hi(¥)=1, hy(r)=0 for 0<r=a,,
h,(r)=0, hy(r)=1 for a;=r.
Then we define a Riemannian metric ds® on <M by
ds?=(hy(r)(log ) 2+ ho(r)r**)(d 4)*
+(hy(r)r~2(log r) 2+ ha(r))(dr)®.

(M, ds?) is a complete, non-compact, connected and orientable Riemannian mani-
fold. We set M={(#, r)eH; r=a,}. Then M is a non-compact, connected
and orientable Riemannian manifold with a compact, connected boundary oM=
{8, »eM, r=a,}. Then we have

(i) The volume of M is infinite.

(ii) A vector field X=0/00 on M is a Killing vector field with finite global
norm and tangential to oM.

(iii) 0< <K RE, E> <oco for the 1-form & associated with X.

(iv) The second fundamental form of M with respect to the unit outer
normal vector field is positive.

We also have examples of Killing vector fields on M with finite global
norms and normal to oM.

The non-existence of harmonic forms on M is discussed by H. Kitahara and

H. Matsuda [2].
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