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KILLING VECTOR FIELDS ON NON-COMPACT

RIEMANNIAN MANIFOLDS WITH BOUNDARY*

BY SHINSUKE YOROZU

1. Introduction.

The study of Killing vector fields on compact Riemannian manifolds with
boundary had been started by K. Yano [3]. In a previous paper [5], we dis-
cussed non-existence of Killing vector fields with finite global norms on com-
plete Riemannian manifolds (without boundary).

The purpose of the present paper is to discuss non-existence of Killing
vector fields with finite global norms on non-compact Riemannian manifolds
with boundary.

We shall be in C°°-category. Latin indices run from 1 to n + 1 and Greek
ones from 1 to n, and the Einstein summation convention will be used.

2. Riemannian manifold with boundary.

Let <JH be a complete, non-compact, connected and orientable Riemannian
manifold of dimension n + 1 and g (resp. 7) the Riemannian metric (resp. the
Riemannian connection) on JM. We take a non-compact manifold M = 9 M u M
such that M is a noncompact, connected, open submanifold of 3ί and dM—M
" M is an n dimensional, compact, connected submanifold of 31, where M
denotes the closure of M in 31. Then M is a Riemannian manifold with boun-
dary dM, and the Riemannian metric on M is induced from the Riemannian
metric g on 31. M is complete as a metric space with the distance determined
by the induced Riemannian metric on M. For simplicity, hereafter, we denote
by g the induced Riemannian metric on M and by 7 the Riemannian connection
on M.

At each point p of dM, there exists a coordinate neighborhood system
{17; (**)} of p in 3L such that UΓ\M is represented by xn+1^0 and UίλdM is
represented by % n + 1 =0. Such a coordinate neighborhood system is called a
boundary coordinate system. And {UίλdM (xa)} is the induced coordinate
system on dM. If {U (x1)} and {V (y1)} are boundary coordinate systems
satisfying UΓ\VΦ0, then we have that
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(2.1) - g ^ τ r > 0 and —^-=0 on dMίΛUίλV (for any a).

Since the Jacobian of the coordinate transformation of {U (x*)} and {V (y)}
is positive, the Jacobian of the coordinate transformation of {UίλdM; (xa)} and
{VίλdM; (ya)} is positive. Thus dM is orientable.

Let t\ dM —> M be the inclusion. If {U (**)} is a boundary coordinate
system of a point p of 9M in M and {t/' (wα)} is a coordinate system of p
such that U'dUΓλdM, then the inclusion £ may be represented locally by

(2.2) xι = x\ua).

We denote by B the differential of the inclusion c, that is,

(2.3) B = (Bι

a) = (dxι/dua).

Then the induced metric ' g—C gaβ) on dM is given by

(2.4) 'gaβ =

where g=(gιj). We may choose the unit outer normal vector field iV to dM
(cf. [3, 4]). We denote by 'V the Riemannian connection on dM with respect
to the Riemannian metric fg. Then the equations of Gauss and Weingarten is
stated as follows:

(2.5) !t.χc*Y=WlχY)+h{X, Y)-N,

(2.6) Vt.zN=c*(

for any vector fields X and Y on dM, where h denotes the second fundamental
form of dM with respect to N and A is defined by h(X, 7)=''g(AX, Y).

3. Vector field with finite global norm.

Let Λ5(M)(resp. Λs(dM)) be the space of all smooth s-forms on M (resp.
dM). Let d denote the exterior derivative on ΛS(M) (or ΛS(3M)), and δ is
defined by

(3.1) δ=(-l)m*d*

on ΛS(M) (resp. Λs(dM)) where m=sn-\-s + n (resp. sn + n+1) and * denotes
the star operator (cf. [4]).

We denote by < , > the local scalar product on ΛS(M) (or Λs(dM)). The
global scalar product < , > is defined by

(3.2) <ξ,ηy

for any ξ, ^eΛS(M) where Λ5(M) denotes the subspace of ΛS(M) composed of
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forms with compact supports. We have <dξ, η> = €ξ, δη> for any £eΛ5(M)
and any ^ G Λ J + 1 ( M ) . Let LS

2(M) be the completion of Λ5(M) with respect to
the scalar product <_, >. We set || || = < , > 1 / 2

For any f ε Λ W ) , we define tξ^AKdM) and nfeΛ°(3M) by

(3.3) (tξ)(X)=ξ(c*X),

(3.4) nξ=ξ(N)

for any vector field X on dM, where Λ°(dM) denotes the space of all functions
on dM. For any ζ(ΞΛ\dM), we define Cζ by

(3.5) CaX)=ζ(AX)

for any vector field X on dM.
A form ξ^Λs(M) is represented by locally

We set li^ldidxi and Ψ—gι:ιlj where (g1-7) denotes the inverse matrix of (gιj).
For any ξ, η<=/\\M)y we have

(3.6) <£, i

For any feΛXM), we have

(3.7) (dfti^V^-V

(3.8) δξ=-Ψξ%,

(3.9) W£l-VjVtP=R

(3.10) (ίf)« = Sif»,

(3.11) nξ=ξiN
i,

(3.12)

where f ^ g ' 7?; and i?ZJ denotes the components of the Ricci tensor field of 7
(cf. [4]).

3 —
For a vector field X—ζ1^-- on M, a 1-form ? associated with X is defined

by ξ=ξidxt=gtjξ
Jdx\

DEFINITION 3.1. A vector field X on M is called tangential (resp. normal)
to dM if n?=0 (resp. if=0) for the 1-form ξ associated with X.

DEFINITION 3.2. A vector field X on M is called a Killing vector field if
-Zxg^O where X denotes the Lie derivative operator. _

A Killing vector field X (or 1-form £ associated with X) on M satisfies the
following:
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(3.13) 7 , 6 + 7 ^ = 0

and, from this, we have

(3.14) 7 t f
ι = 0 .

DEFINITION 3.3. A vector field X on M is called "with finite global norm"
if ξ(ΞLl(M)Γ\ΛKM) for the 1-form ξ associated with X.

4. Non-existence of Killing vector field with finite global norm.

For each point p of M, we denote by ρ{p) the distance from p to 3M.
Since M has a compact, conneted boundary dM, p is well-defined, p is a locally
Lipschitz function on M. We set

(4.1) B(2k)={p<=M;

for any k>0.
We consider a function μ on R satisfying

( i ) O ^ / ^ l on R,

(ii) /i(0 = l for ί ^ l ,

(iii) μ(0=0 for ί ^ 2 .

Then we define functions u/̂  on M by

(4.2) wk(p) = μ(p(p)/k) k = l, 2, 3, •••

for any point p of M.

LEMMA 4.1. (cf. [1], [5]). There exists a positive number D, depending only
on μ, such that

( i ) \\dwkΛξ\\k2k^

( i i )

for any f e Λ s ( M ) , where \\ξ\\l^k, = <ξf f> B c 2 *) = ί <?,
Jβ(2fe)

We remark that wkξ^As

0(M) for any feLJ(M)Γ\Λ s(M) and wkξ-+ξ(k -* oo)
in the strong sense. For any feLJCMjΠΛXM), we have

(4.3)

(4.4)



430 SHINSUKE YOROZU

PROPOSITION 4.1. For any Killing vector field X on M,

where £R denotes the Ricci transformation on A1(M) defined by (3lζ)i — Rτ

hζhy ζ
is the l-form associated with X and

Proof. We define a 1-from η on M by

By (4.4), we have

Then, by Stokes' theorem, we have

f d(*{w\η))

We have, by (3.8), (3.9) and (3.13),

and

Next, on dM, we have

<N, η> = <d(nξ), tζ> + <C(tξ), tξ>,

since (l£t)NlNJ=0. Thus we have

-€2dwkΛξ,

{<d(nξ),tξ>+<C(tξ),tξ>}*l.
dM

Because dB(2k)=dM\J{pGM; p(p)=2k}, wk=0 on {p^M; p(p)=2k} and wk=
1 on dM. Q. E. D.

PROPOSITION 4.2. For any Killing vector field X (l-form ξ associated with
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X) on M with finite global norm, if lim $up€wk3lξ, wkξ*>Bί2k)<co, then
fcΌO

{<d(nξ),tξ>+<C(tξ),tξ>}*l.
JoM

Proof. By Lemma 4.1, we have

Thus we have

<wk3lξ,

nξ),tξ>+<C(tξ),tξ>}*l

i2 It *=» UΰKZRJ

),tξy+<atξ),tξ>}*i.
JOM

Therefore we have

lim sup< w k&£

a {<</(*£), tf>+<C(tf),tf>}*l. Q.E.D.
oM

THEOREM 4.1. Let 31 be a complete, non-compact, connected and orientable
Riemannian manifold of dimension n + 1. Let M=dMU M be a non-compact
Riemannian manifold such that M is a non-compact, connected, open submanifold
of 3ί and dM~M—M {boundary of M) is an n dimensional, compact, connected
submanifold of 31. The Riemannian metric on M is induced from 31.

( i ) Suppose that lim supCtί/^iRf, wkξ^>Bc2k)^0 for any

and the second fundamental form of dM with respect to the unit outer normal
vector field is non-negative. If every Killing vector field on M with finite global
norm is tangential to dM, then it is a parallel vector field.

(ii) Suppose that lim swρ<twk3lξ, wkξ>BC2k^0 for any ξ^L\{M)Γ\ ί\\M).

If every Killing vector field on M with finite global norm is normal to dM, then
it is a parallel vector field.

Proof. Since the second fundamental form of dM is nonnegative, we have
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dM

Thus, by Proposition 4.2, we have the assersions. Q. E. D.
We have easily the following theorem from above theorem.

THEOREM_4.2. Let M=dMuM be as Theorem 4.1.
( i ) If M is of negative Rica curvature and the second fundamental form

of dM with respect to the unit outer normal vector field is non-negative, then
there is no non-zero Killing vector field on M with finite global norm and tan-
gential to dM.

(ii) If M is of negative Rica curvature, then there is no non-zero Killing
vector field on M with finite global norm and normal to dM.

This theorem is a generalization of the results of K. Yano [3] (cf. [4]).

EXAMPLE 4.1. We set r={x2+y2Jrz2)112 for any point (x, y, z) of Rz and
x—rcos θl9 y—rύnθiCOs θ2, z=r s'mθ1s'mθ2 (that is, (θlf θ2, r) is the spherical
coordinates in Rz). For two positive constant numbers aλ and a2(a1<a2), we
consider a metric ds2 on Rz such that ds2=r2 ((dθ1)

2jrύn2θ1{dθ2)
2)+(dr)2 for

r^au =r-2/3((dθ1)
2+sm2θ1(dθ2)

2)+(dr)2 for r^(a1+a2)/2. Then M=(RS, ds2)
is a complete, non-compact, connected and orientable Riemannian manifold. We
set M={(θi, θ2, r)^3ί\ r^a2}, then M is a non-compact, connected and orien-
table Riemannian manifold with a compact, connected boundary dM— {(θί} θ2, r)
G J ; r—a2}. Then we have

( i ) The volume of M is infinite.
(ii) A vector field X=d/dθ2 on M is a Killing vector field with finite

global norm and tangential to dM.
(iii) <&ξ, f > = o o for the 1-form ξ associated with X.
(iv) The second fundamental form of dM with respect to the unit outer

normal vector field is negative.

EXAMPLE 4.2. Let 3A be a surface of revolution in R% defined by χ—e~u2/2

cos v, y = e~u2/2 s'mv, z—u (—cχ)<w<oo, 0 ^ ^ 2 τ r ) . Then M is a complete, non-
compact, connected and orientable Riemannian manifold with the Riemannian
metric ds2=e-u2(dv)2j

Γ{lJ

Γu
2e-u2) (du)2. For a constant number α o > l , we set

M={(y, w)EJί ; u^a0}. Then M is a noncompact, connected and orientable
Riemannian manifold with a compact, connected boundary dM={(vy u)^3t\
u = a0}. Then we have

(i ) The volume of M is finite.
(ii) The Ricci curvature of M is negative.
(iii) The second fundamental form of dM with respect to the unit outer

normal vector field is negative.
(iv) A vector field X—d/dv on M is a Killing vector field with finite global

norm and tangential to dM.
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EXAMPLE 4.3. Let (θ, r) be the polar coordinates in R2 and *3f=jR2—{(0, 0)}.
We take four constant numbers alf a2, a3, a4 such that 0<αi<α 2<fl3<fl4<l,
and we consider two functions hlf h2: (0, oo) -» R satisfying 0^hi(r)^l (z = l, 2)
for 0 < r and

Λi(r)=l, Λ2(r)=0 for

ΛiW=0, Λ2(r)=l for α 3 ^ r .

Then we define a Riemannian metric ds2 on JK by

+(/ι1(r)r-2(logr)-2+/ι2(r))(6ίr)2.

(Jft, ds2) is a complete, non-compact, connected jind orientable Riemannian mani-
fold. We set M—{(θy r)<=<3ί; r^aλ). Then M is a non-compact, connected
and orientable Riemannian manifold with a compact, connected boundary dM=
{(θ, r)^3l, r—aλ}. Then we have

( i ) The volume of M is infinite.
(ii) A vector field X—d/dθ on M is a Killing vector field with finite global

norm and tangential to dM.
(iii) 0<<&ξ, £><oo for the 1-form ξ associated with X.
(iv) The second fundamental form of dM with respect to the unit outer

normal vector field is positive.
We also have examples of Killing vector fields on M with finite global

norms and normal to dM.
The non-existence of harmonic forms on M is discussed by H. Kitahara and

H. Matsuda [2].
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