KILLING VECTOR FIELDS ON NON-COMPACT RIEMANNIAN MANIFOLDS WITH BOUNDARY*

By Shinsuke Yorozu

1. Introduction.

The study of Killing vector fields on compact Riemannian manifolds with boundary had been started by K. Yano [3]. In a previous paper [5], we discussed non-existence of Killing vector fields with finite global norms on complete Riemannian manifolds (without boundary).

The purpose of the present paper is to discuss non-existence of Killing vector fields with finite global norms on non-compact Riemannian manifolds with boundary.

We shall be in C^{∞} -category. Latin indices run from 1 to n+1 and Greek ones from 1 to n, and the Einstein summation convention will be used.

2. Riemannian manifold with boundary.

Let $\mathcal M$ be a complete, non-compact, connected and orientable Riemannian manifold of dimension n+1 and g (resp. ∇) the Riemannian metric (resp. the Riemannian connection) on $\mathcal M$. We take a non-compact manifold $\overline{M}=\partial M\cup M$ such that M is a noncompact, connected, open submanifold of $\mathcal M$ and $\partial M=\overline{M}-M$ is an n dimensional, compact, connected submanifold of $\mathcal M$, where \overline{M} denotes the closure of M in $\mathcal M$. Then \overline{M} is a Riemannian manifold with boundary ∂M , and the Riemannian metric on \overline{M} is induced from the Riemannian metric g on $\mathcal M$. \overline{M} is complete as a metric space with the distance determined by the induced Riemannian metric on \overline{M} . For simplicity, hereafter, we denote by g the induced Riemannian metric on \overline{M} and by ∇ the Riemannian connection on \overline{M} .

At each point p of ∂M , there exists a coordinate neighborhood system $\{U\,;\,(x^i)\}$ of p in $\mathcal M$ such that $U\cap \overline M$ is represented by $x^{n+1}{\ge}0$ and $U\cap \partial M$ is represented by $x^{n+1}{=}0$. Such a coordinate neighborhood system is called a boundary coordinate system. And $\{U\cap \partial M\,;\,(x^a)\}$ is the induced coordinate system on ∂M . If $\{U\,;\,(x^i)\}$ and $\{V\,;\,(y^i)\}$ are boundary coordinate systems satisfying $U\cap V\neq\emptyset$, then we have that

^{*)} Dedicated to Professor Isamu Mogi on his 60th birthday. Received October 16, 1981

$$(2.1) \qquad \frac{\partial y^{n+1}}{\partial x^{n+1}} > 0 \quad \text{and} \quad \frac{\partial y^{n+1}}{\partial x^{\alpha}} = 0 \quad \text{on} \quad \partial M \cap U \cap V \quad (\text{for any } \alpha) \, .$$

Since the Jacobian of the coordinate transformation of $\{U; (x^i)\}$ and $\{V; (y^i)\}$ is positive, the Jacobian of the coordinate transformation of $\{U \cap \partial M; (x^{\alpha})\}$ and $\{V \cap \partial M; (y^{\alpha})\}$ is positive. Thus ∂M is orientable.

Let $\ell \colon \partial M \to M$ be the inclusion. If $\{U; (x^i)\}$ is a boundary coordinate system of a point p of ∂M in $\mathcal M$ and $\{U'; (u^\alpha)\}$ is a coordinate system of p such that $U' \subset U \cap \partial M$, then the inclusion ℓ may be represented locally by

$$(2.2) x^{\imath} = x^{\imath}(u^{\alpha}).$$

We denote by B the differential of the inclusion ℓ , that is,

$$(2.3) B = (B_{\alpha}^{i}) = (\partial x^{i}/\partial u^{\alpha}).$$

Then the induced metric $g=(g_{\alpha\beta})$ on ∂M is given by

$$(2.4) 'g_{\alpha\beta} = B_{\alpha}^{i} B_{\beta}^{j} g_{ij},$$

where $g=(g_{ij})$. We may choose the unit outer normal vector field N to ∂M (cf. [3, 4]). We denote by ' ∇ the Riemannian connection on ∂M with respect to the Riemannian metric 'g. Then the equations of Gauss and Weingarten is stated as follows:

$$\nabla_{\iota_*X}\iota_*Y = \iota_*(\nabla_XY) + h(X, Y) \cdot N,$$

$$\nabla_{\iota,x} N = \iota_*(-AX)$$

for any vector fields X and Y on ∂M , where h denotes the second fundamental form of ∂M with respect to N and A is defined by h(X, Y) = 'g(AX, Y).

3. Vector field with finite global norm.

Let $\wedge^s(\overline{M})$ (resp. $\wedge^s(\partial M)$) be the space of all smooth s-forms on \overline{M} (resp. ∂M). Let d denote the exterior derivative on $\wedge^s(\overline{M})$ (or $\wedge^s(\partial M)$), and δ is defined by

$$\delta = (-1)^m * d *$$

on $\wedge^s(\overline{M})$ (resp. $\wedge^s(\partial M)$) where m=sn+s+n (resp. sn+n+1) and * denotes the star operator (cf. [4]).

We denote by \langle , \rangle the local scalar product on $\wedge^s(\overline{M})$ (or $\wedge^s(\partial M)$). The global scalar product \ll , \gg is defined by

(3.2)
$$\ll \xi, \ \eta \gg = \int_{\overline{M}} \langle \xi, \ \eta \rangle^* 1 = \int_{\overline{M}} \xi \wedge {}^* \eta$$

for any ξ , $\eta \in \wedge_0^s(\overline{M})$ where $\wedge_0^s(\overline{M})$ denotes the subspace of $\wedge^s(\overline{M})$ composed of

forms with compact supports. We have $\ll d\xi$, $\eta \gg = \ll \xi$, $\delta \eta \gg$ for any $\xi \in \wedge_0^s(\overline{M})$ and any $\eta \in \wedge_0^{s+1}(\overline{M})$. Let $L_2^s(\overline{M})$ be the completion of $\wedge_0^s(\overline{M})$ with respect to the scalar product \ll , \gg . We set $\|\cdot\| = \ll \cdot$, $\cdot \gg^{1/2}$.

For any $\xi \in \wedge^1(\overline{M})$, we define $t\xi \in \wedge^1(\partial M)$ and $n\xi \in \wedge^0(\partial M)$ by

$$(3.3) (t\xi)(X) = \xi(\iota_*X),$$

$$(3.4) n\xi = \xi(N)$$

for any vector field X on ∂M , where $\wedge^{0}(\partial M)$ denotes the space of all functions on ∂M . For any $\zeta \in \wedge^{1}(\partial M)$, we define $C\zeta$ by

$$(3.5) C\zeta(X) = \zeta(AX)$$

for any vector field X on ∂M .

A form $\xi \in \wedge^s(\overline{M})$ is represented by locally

$$\xi = \frac{1}{s!} \xi_{i_1 \cdots i_s} dx^{i_1} \wedge \cdots \wedge dx^{i_s}.$$

We set $\nabla_i = \nabla_{\partial/\partial x^i}$ and $\nabla^i = g^{ij}\nabla_j$ where (g^{ij}) denotes the inverse matrix of (g_{ij}) . For any ξ , $\eta \in \wedge^s(\overline{M})$, we have

(3.6)
$$\langle \xi, \eta \rangle = \frac{1}{s!} g^{\imath_1 \jmath_1} \cdots g^{\imath_s \jmath_s} \xi_{\imath_1 \cdots \imath_s} \eta_{\jmath_1 \cdots \jmath_s}.$$

For any $\xi \in \wedge^1(\overline{M})$, we have

$$(3.7) (d\xi)_{i,j} = \nabla_i \xi_j - \nabla_j \xi_j,$$

$$\delta \xi = -\nabla^i \xi_i,$$

$$(3.9) \qquad \nabla_i \nabla_i \xi^i - \nabla_i \nabla_i \xi^i = R_{ii} \xi^i \,.$$

$$(3.10) (t\xi)_{\alpha} = B_{\alpha}^{\imath} \xi_{\imath} ,$$

$$(3.11) n\xi = \xi_i N^i,$$

$$(3.12) C(t\xi)_{\alpha} = A_{\alpha}^{\beta} B_{\beta}^{i} \xi_{i},$$

where $\xi^{i} = g^{ij}\xi_{j}$ and R_{ij} denotes the components of the Ricci tensor field of ∇ (cf. [4]).

For a vector field $X=\xi^i\frac{\partial}{\partial x^i}$ on \overline{M} , a 1-form ξ associated with X is defined by $\xi=\xi_i dx^i=g_{ij}\xi^j dx^i$.

DEFINITION 3.1. A vector field X on \overline{M} is called *tangential* (resp. *normal*) to ∂M if $n\xi=0$ (resp. $t\xi=0$) for the 1-form ξ associated with X.

DEFINITION 3.2. A vector field X on \overline{M} is called a *Killing vector field if* $\mathcal{L}_{X}g=0$ where \mathcal{L} denotes the Lie derivative operator.

A Killing vector field X (or 1-form ξ associated with X) on \overline{M} satisfies the following:

$$(3.13) \qquad \qquad \nabla_i \hat{\xi}_j + \nabla_j \hat{\xi}_i = 0$$

and, from this, we have

$$\nabla_i \xi^i = 0.$$

DEFINITION 3.3. A vector field X on \overline{M} is called "with finite global norm" if $\xi \in L^1_2(\overline{M}) \cap \wedge^1(\overline{M})$ for the 1-form ξ associated with X.

4. Non-existence of Killing vector field with finite global norm.

For each point p of \overline{M} , we denote by $\rho(p)$ the distance from p to ∂M . Since \overline{M} has a compact, connected boundary ∂M , ρ is well-defined. ρ is a locally Lipschitz function on \overline{M} . We set

$$(4.1) B(2k) = \{ p \in \overline{M} ; \rho(p) \leq 2k \}$$

for any k > 0.

We consider a function μ on R satisfying

(i)
$$0 \leq \mu \leq 1$$
 on R ,

(ii)
$$\mu(t)=1$$
 for $t \leq 1$,

(iii)
$$\mu(t)=0$$
 for $t \ge 2$.

Then we define functions w_k on \overline{M} by

(4.2)
$$w_k(p) = \mu(\rho(p)/k)$$
 $k=1, 2, 3, \cdots$

for any point p of \overline{M} .

LEMMA 4.1. (cf. [1], [5]). There exists a positive number D, depending only on μ , such that

$$\|dw_k \wedge \xi\|_{B(2k)}^2 \leq \frac{(n+1)D}{k^2} \|\xi\|_{B(2k)}^2,$$

(ii)
$$\|dw_k \wedge *\xi\|_{\dot{B}(2k)}^2 \leq \frac{(n+1)D}{b^2} \|\xi\|_{\dot{B}(2k)}^2$$

for any
$$\xi \in \wedge^s(\overline{M})$$
, where $\|\xi\|_{B(2k)}^{\circ} = \langle\!\langle \xi, \xi \rangle\!\rangle_{B(2k)} = \int_{B(2k)} \langle\!\langle \xi, \xi \rangle\!\rangle^* 1$.

We remark that $w_k \xi \in \wedge_0^s(\overline{M})$ for any $\xi \in L_2^s(\overline{M}) \cap \wedge^s(\overline{M})$ and $w_k \xi \to \xi(k \to \infty)$ in the strong sense. For any $\xi \in L_2^1(\overline{M}) \cap \wedge^1(\overline{M})$, we have

$$(4.3) d(w_k^2 \xi) = w_k^2 d\xi + 2w_k dw_k \wedge \xi,$$

(4.4)
$$\delta(w_k^2 \xi) = w_k^2 \delta \xi - (2w_k dw_k \wedge \xi).$$

PROPOSITION 4.1. For any Killing vector field X on \overline{M} ,

$$\begin{split} & \ll w_k \mathcal{R} \xi, \ w_k \xi \gg_{B^{(2k)}} \\ & = 2 \| w_k \nabla \xi \|_{B^{(2k)}}^2 + \ll 2 w_k d w_k \wedge \xi, \ \nabla \xi \gg_{B^{(2k)}} \\ & + \int_{\partial M} \{ \langle d(n\xi), \ t\xi \rangle + \langle C(t\xi), \ t\xi \rangle \} *1 \ , \end{split}$$

where \mathcal{R} denotes the Ricci transformation on $\wedge^1(\overline{M})$ defined by $(\mathcal{R}\xi)_i = R_i^h \xi_h$, ξ is the 1-form associated with X and $(\nabla \xi)_{ij} = \nabla_i \xi_j$.

Proof. We define a 1-from η on \overline{M} by

$$\eta = (\nabla_j \xi_i) \xi^j dx^i$$
.

By (4.4), we have

$$d(*(w_k^2\eta)) = -*\delta(w_k^2\eta)$$

= *(-w_k^2\delta\eta + *(2w_k d w_k \land *\eta)).

Then, by Stokes' theorem, we have

$$\int_{B(2\,k)} d({}^*\!(w_k^2\eta)) \!= \! \int_{\partial B(2\,k)} \! \langle N, \, w_k^2\eta \rangle^* \! 1 \,. \label{eq:delta_bound}$$

We have, by (3.8), (3.9) and (3.13),

$$-\delta n = \langle \Re \xi, \xi \rangle - 2 \langle \nabla \xi, \nabla \xi \rangle$$

and

*
$$(2w_k dw_k \wedge *\eta) = -\langle 2w_k dw_k \wedge \xi, \nabla \xi \rangle$$
.

Next, on ∂M , we have

$$\langle N, \eta \rangle = \langle d(n\xi), t\xi \rangle + \langle C(t\xi), t\xi \rangle$$
,

since $(\nabla_i \xi_i) N^i N^j = 0$. Thus we have

$$\begin{split} & \ll w \, {}_k \mathcal{R} \xi, \, w \, {}_k \xi \gg_{B(2k)} - 2 \ll w \, {}_k \nabla \xi, \, w \, {}_k \nabla \xi \gg_{B(2k)} \\ & - \ll 2 d w \, {}_k \wedge \xi, \, w \, {}_k \nabla \xi \gg_{B(2k)} \\ &= \! \int_{\partial B(2k)} \! w_k^2 \{ \! \langle d(n\xi), \, t\xi \rangle \! + \! \langle C(t\xi), \, t\xi \rangle \} \! \! ^* \! 1 \\ &= \! \int_{2M} \{ \! \langle d(n\xi), \, t\xi \rangle \! \! + \! \langle C(t\xi), \, t\xi \rangle \} \! \! ^* \! 1 \, . \end{split}$$

Because $\partial B(2k) = \partial M \cup \{ p \in \overline{M} ; \rho(p) = 2k \}$, $w_k = 0$ on $\{ p \in \overline{M} ; \rho(p) = 2k \}$ and $w_k = 1$ on ∂M . Q. E. D.

Proposition 4.2. For any Killing vector field X (1-form ξ associated with

X) on \overline{M} with finite global norm, if $\limsup_{k \to \infty} \langle w_k \Re \xi, w_k \xi \rangle_{B(2k)} \langle \infty$, then

$$\limsup_{k\to\infty} \langle w_k \mathcal{R}\xi, w_k \xi \rangle_{B(2k)}$$

$$\geq \|\nabla\xi\|^2 + \int_{\partial M} \{\langle d(n\xi), \, t\xi\rangle + \langle C(t\xi), \, t\xi\rangle\} *1 \; .$$

Proof. By Lemma 4.1, we have

$$| \ll 2d w_k \wedge \xi, w_k \nabla \xi \gg_{B(2k)} | \leq ||w_k \nabla \xi||_{B(2k)}^2 + \frac{(n+1)D}{b^2} ||\xi||_{B(2k)}^2.$$

Thus we have

Therefore we have

$$\limsup_{k\to\infty} \langle w_k \mathcal{R}\xi, w_k \xi \rangle_{B(2k)}$$

$$\geq \|\nabla \xi\|^2 + \int_{\partial M} \{\langle d(n\xi), t\xi \rangle + \langle C(t\xi), t\xi \rangle\} *1.$$
 Q. E. D.

Theorem 4.1. Let \mathcal{M} be a complete, non-compact, connected and orientable Riemannian manifold of dimension n+1. Let $\overline{M}=\partial M \cup M$ be a non-compact Riemannian manifold such that M is a non-compact, connected, open submanifold of \mathcal{M} and $\partial M=\overline{M}-M$ (boundary of \overline{M}) is an n dimensional, compact, connected submanifold of \mathcal{M} . The Riemannian metric on \overline{M} is induced from \mathcal{M} .

- (i) Suppose that $\limsup_{k\to\infty} \langle w_k \mathcal{R}\xi, w_k \xi \rangle_{B(2k)} \leq 0$ for any $\xi \in L^1_2(\overline{M}) \cap \wedge^1(\overline{M})$ and the second fundamental form of ∂M with respect to the unit outer normal vector field is non-negative. If every Killing vector field on \overline{M} with finite global norm is tangential to ∂M , then it is a parallel vector field.
- (ii) Suppose that $\limsup_{k\to\infty} \ll w_k \Re \xi$, $w_k \xi \gg_{B(2k)} \leq 0$ for any $\xi \in L^1_2(\overline{M}) \cap \wedge^1(\overline{M})$. If every Killing vector field on \overline{M} with finite global norm is normal to ∂M , then it is a parallel vector field.

Proof. Since the second fundamental form of ∂M is nonnegative, we have

$$\int_{\partial M} \langle C(t\xi), t\xi \rangle^* 1 \ge 0$$
.

Thus, by Proposition 4.2, we have the assersions.

Q. E. D.

We have easily the following theorem from above theorem.

THEOREM 4.2. Let $\overline{M} = \partial M \cup M$ be as Theorem 4.1.

- (i) If \overline{M} is of negative Ricci curvature and the second fundamental form of ∂M with respect to the unit outer normal vector field is non-negative, then there is no non-zero Killing vector field on \overline{M} with finite global norm and tangential to ∂M .
- (ii) If \overline{M} is of negative Ricci curvature, then there is no non-zero Killing vector field on \overline{M} with finite global norm and normal to ∂M .

This theorem is a generalization of the results of K. Yano [3] (cf. [4]).

Example 4.1. We set $r=(x^2+y^2+z^2)^{1/2}$ for any point (x, y, z) of \mathbf{R}^3 and $x=r\cos\theta_1,\ y=r\sin\theta_1\cos\theta_2,\ z=r\sin\theta_1\sin\theta_2$ (that is, (θ_1,θ_2,r) is the spherical coordinates in \mathbf{R}^3). For two positive constant numbers a_1 and $a_2(a_1< a_2)$, we consider a metric ds^2 on \mathbf{R}^3 such that $ds^2=r^2((d\theta_1)^2+\sin^2\theta_1(d\theta_2)^2)+(dr)^2$ for $r\leq a_1,\ =r^{-2/3}((d\theta_1)^2+\sin^2\theta_1(d\theta_2)^2)+(dr)^2$ for $r\geq (a_1+a_2)/2$. Then $\mathcal{M}=(\mathbf{R}^3,\ ds^2)$ is a complete, non-compact, connected and orientable Riemannian manifold. We set $\overline{M}=\{(\theta_1,\ \theta_2,\ r)\in\mathcal{M}\ ;\ r\geq a_2\}$, then \overline{M} is a non-compact, connected and orientable Riemannian manifold with a compact, connected boundary $\partial M=\{(\theta_1,\ \theta_2,\ r)\in\mathcal{M}\ ;\ r=a_2\}$. Then we have

- (i) The volume of \overline{M} is infinite.
- (ii) A vector field $X=\partial/\partial\theta_2$ on \overline{M} is a Killing vector field with finite global norm and tangential to ∂M .
 - (iii) $\langle \Re \xi, \xi \rangle = \infty$ for the 1-form ξ associated with X.
- (iv) The second fundamental form of ∂M with respect to the unit outer normal vector field is negative.

EXAMPLE 4.2. Let \mathcal{M} be a surface of revolution in \mathbb{R}^3 defined by $x=e^{-u^2/2}\cos v$, $y=e^{-u^2/2}\sin v$, z=u $(-\infty < u < \infty, 0 \le v \le 2\pi)$. Then \mathcal{M} is a complete, noncompact, connected and orientable Riemannian manifold with the Riemannian metric $ds^2=e^{-u^2}(dv)^2+(1+u^2e^{-u^2})(du)^2$. For a constant number $a_0>1$, we set $\overline{M}=\{(v,u)\in\mathcal{M};\ u\ge a_0\}$. Then \overline{M} is a noncompact, connected and orientable Riemannian manifold with a compact, connected boundary $\partial M=\{(v,u)\in\mathcal{M};\ u=a_0\}$. Then we have

- (i) The volume of \overline{M} is finite.
- (ii) The Ricci curvature of \overline{M} is negative.
- (iii) The second fundamental form of ∂M with respect to the unit outer normal vector field is negative.
- (iv) A vector field $X=\partial/\partial v$ on \overline{M} is a Killing vector field with finite global norm and tangential to ∂M .

EXAMPLE 4.3. Let (θ, r) be the polar coordinates in \mathbb{R}^2 and $\mathcal{M} = \mathbb{R}^2 - \{(0, 0)\}$. We take four constant numbers a_1 , a_2 , a_3 , a_4 such that $0 < a_1 < a_2 < a_3 < a_4 < 1$, and we consider two functions h_1 , h_2 : $(0, \infty) \to \mathbb{R}$ satisfying $0 \le h_i(r) \le 1$ (i=1, 2) for 0 < r and

$$h_1(r)=1, h_2(r)=0$$
 for $0 < r \le a_2$,
 $h_1(r)=0, h_2(r)=1$ for $a_3 \le r$.

Then we define a Riemannian metric ds^2 on \mathcal{M} by

$$ds^{2} = (h_{1}(r)(\log r)^{-2} + h_{2}(r)r^{-4/3})(d\theta)^{2} + (h_{1}(r)r^{-2}(\log r)^{-2} + h_{2}(r))(dr)^{2}.$$

 (\mathcal{M}, ds^2) is a complete, non-compact, connected and orientable Riemannian manifold. We set $\overline{M} = \{(\theta, r) \in \mathcal{M}; r \geq a_1\}$. Then \overline{M} is a non-compact, connected and orientable Riemannian manifold with a compact, connected boundary $\partial M = \{(\theta, r) \in \mathcal{M}, r = a_1\}$. Then we have

- (i) The volume of \overline{M} is infinite.
- (ii) A vector field $X=\partial/\partial\theta$ on \overline{M} is a Killing vector field with finite global norm and tangential to ∂M .
 - (iii) $0 < \ll \Re \xi, \xi \gg < \infty$ for the 1-form ξ associated with X.
- (iv) The second fundamental form of ∂M with respect to the unit outer normal vector field is positive.

We also have examples of Killing vector fields on \overline{M} with finite global norms and normal to ∂M .

The non-existence of harmonic forms on \overline{M} is discussed by H. Kitahara and H. Matsuda [2].

REFERENCES

- [1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 313-362.
- [2] H. KITAHARA AND H. MATSUDA, Non-existence of non-trivial harmonic forms on a complete riemannian manifold with boundary, preprint.
- [3] K. Yano, Harmonic and Killing vector fields in compact orientable Riemannian spaces with boundary, Ann. of Math. 69 (1959), 588-597.
- [4] K. YANO, Integral Formulas in Riemannian Geometry, Marcel Dekker, INC, New York, 1970.
- [5] S. YOROZU, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc, 84 (1982), 115-120.

DEPARTMENT OF MATHEMATICS COLLEGE OF LIBERAL ARTS KANAZAWA UNIVERSITY KANAZAWA 920, JAPAN