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CURVATURE INVARIANTS OF CΛ-MANIFOLDS

BY KUNIO SAKAMOTO AND YOSHIYA TAKEMURA

§ 0. Introduction.

In [2], S. Bochner defined a certain curvature tensor as a complex analogy
of Weyl conformal curvature tensor without geometrical interpretation. At
present this tensor is called Bochner curvature tensor. Recently Webster [9],
[11] gave this geometrical interpretation as a pseudoconformal invariant on a
Ci?-manifold. Indeed Bochner curvature tensor is the 4th curvature invariant
given in Chern-Moser's paper [4] (cf. Tanaka [7]). In this paper we shall also
derive Bochner curvature tensor from our argument of Ci?-structure.

In [6] we studied almost contact structures standing on the viewpoint of
pseudoconformal geometry and gave the change of canonical connections associ-
ated with almost contact structures belonging to the same Ci?-structure. The
point under our discussion is the fact that almost contact structures belonging
to a Ci?-structure play the same role as Riemannian structures belonging to a
conformal structure and canonical connections correspond to Riemannian connec-
tions. Like the conformal change of Riemannian connections, a gradient vector
appears in the change of canonical connections. Therefore we compute the
difference of their curvature tensors and eliminate the gradient vector. Then we
get a curvature invariant.

In § 1 we recall definitions and results given in [6]. § 2 is devoted to the
study of curvatures of canonical connections. We in § 3 obtain the curvature
invariant of the pseudo-conformal geometry.

The authors wish to express their hearty thanks to Professor S. Ishihara for
his constant encouragement and valuable suggestions.

§ 1. Preliminaries.

Let J be a connected orientable C°°-manifold of dimension 2 n + l ( n ^ l ) and
(£), J) a pair of a hyperdistribution 3) and a complex structure / on £). The
pair (3), J) is called a CR-structure if the following two conditions hold:

(c.i) zjχ,m-zχ,

(C.2) ZJX, JYl-lX, Yl-ΛZX, JYl+ZJX, O =
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for every X, Y<=Γ{3)) where Γ{3>) denotes the set of all vector fields contained
in 3). Let θ be a local 1-form annihilating the hyperdistribution 3). If the
restriction of the 2-form dθ to 3) is nondegenerate, then the Cff-structure (3), J)
is called to be nondegenerate. In the sequel (3)} J) will be a nondegenerate
Ci?-structure.

Now let the manifold 3i admit a C7?-structure (3), J). An almost contact
structure (φ, ξ, θ) is a triplet of (1, 1) tensor field φ, a vector field ξ and an
1-form θ satisfying

(1.1) θ(ξ)=h Φ2=-i+θΘξ,

which imply

φξ=O, θ°φ=0 and rank φ=2n.

If the 1-form θ annihilates S) and the restriction of φ to 3) coincides with J,
then we say that the almost contact structure (φ, ξ, θ) belongs to the CR-
structure (3), J). Define ω by

(1.2) ω=-2dθ.

Then ω satisfies

(1.3) ω(JX, JY)=ω{X, Y)

for every X, Y^Γ{3)) because of the condition (C.I). Moreover define g
->R by

(1.4) g{X, Y)=

which is called Levi metric and satisfies the equations

(1.5) g(X, Y)=g(Y,X),

(1.6) g(JX,JY)=g(X, Y).

From a given almost contact structure belonging to (3), J) we can always
make an almost contact structure belonging to the same (3), J) and satisfying
the following condition

(*) K,
(cf. [6]). This condition (*) is equivalent to

(1.7) Xςθ=0

or

ω(X,ξ)=0,

where Xξ denotes the Lie differentiation with respect to ξ. Such an almost
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contact structure will be denoted by (φ, ξ, θ)* and we shall restrict our attention
to the family of almost contact structures with condition (*) which belong to the
Ci?-structure (3), ]). We proved in [6]

LEMMA 1.1. // (φ, ζ, θ)* and (φ\ <f, θ')* belong to (£D, /), then they are
related by

(1.8) θ^εe^θ, ξ'=εe-2v (ξ-2Q), φ'=φ-

where e = ± l , μ is a C°°-function, P<^Γ(Φ) is defined by g(P, X)=dμ(X) for
and Q=JP.

Next we shall explain canonical connections associated to almost contact
structures with condition (*) and their change. Before mentioning the existence
of canonical connections, we prepare the notations. For (φ, ξ, θ)* belonging to
(£D, J) there always exists a linear connection F such that Fφ=0, Fξ=0 and
F # = 0 . Let D denote the induced connection on the hyperdistribution £D. Then
D satisfies DJ=0. Since the equation FΘ=Q implies that the parallel displace-
ment with respect to V preserves <D, the torsion tensor field T of V satisfies

(1.9) T(X, Y)=T3)(Xf Y)-ω(X, Y)ξ,

(1.10) T^X, Y)=VχY-VγX-lX, YΛs>

for every X, Y^Γ(^D) where [X, Y~]® denotes the ̂ -component of [Z, F ] and
we note that T^X, Y) is the ̂ -component of T(X, Y). Let F be a tensor field
of type (1, 1) defined by

(1.11) FX=T(ξ,X),

Then from the definition of the torsion tensor field T we see that

(1.12) FξX=FX+lξ, X ] , I E Γ ( ^ ) ) .

Tanaka [7] proved (cf. [6])

LEMMA 1.2. Let (φ, ξ, θ)* be an almost contact structure satisfying the con-
dition (*) and belonging to (£D, J). Then there exists uniquely a linear connection
V such that Fφ=0, Fξ=O, FΘ=Q, Dg=0, 7 ^ = 0 and F=-l/2φX^φ.

The linear connection stated in the above lemma is called a canonical con-
nection associated with (φ, ξ, θ)*. To conclude this section we give the following
(cf. [6])

LEMMA 1.3. Let (φ, ξ, θ)* and (φ'f £', θ')* be two almost contact structures
which belong to the CR-structure (£>, J). Let F and Fr be canonical connections
associated with (φ, ξ, φ)* and (φ/', ζ', θ')* respectively. Define the difference H
between F and F' by
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H{X, Y)=VXΎ-VXY, X, YeΓ(7\5K).

Then we have

(1.13) H(X, Y)=p(X)Y+p(Y)X-g(X, Y)P+q{X)JY+q{Y)JX-gUX, Y)Q >

(1.14) H(ξ, X)=ΓjXP+FxQ-2q(X)P+2p(X)Q+2g(P, P)]X, X, Y

where p=dμ and q= — p°φ.

Remark. We have g(P, X)=p(X) and g(Q, X)=q(X) for every

§ 2. Curvatures of canonical connections.

Let (φ, ξ, θ)* be an almost contact structure satisfying (*) and belonging to
(W, / ) . Let V be the canonical connection associated with (φ, ξ, θ)* and R be
the curvature tensor field of V defined by

R(X, Y)Z=VxVγZ-VγVxZ-Vιχ,γlZ

for X, Y, Z£ΞΓ(TM). Since F£=0, we have

(2.1) R(X, Y)ξ=0, X,

The property VxΓ{£))c:Γ{3)) implies that

(2.2) R(X, Y)£DdW, X,

Moreover from Pφ=0 we have

(2.3) R(X, Y)φ=φR(X} Y), X,

If we put R(X, Y, Z, W)=g(R(X, Y)Z, W) for X, Ye^TM and Z, W^S), then we
have the equation

(2.4) R(X, Y, Z, W)=-R(X, Y, W, Z).

Next we give first and second Bianchi identities. In general first Bianchi
identity is the formula (cf. [5])

®{R(X, Y)Z}^&{T{T{X, Y), Z)+(PχT)(Y, Z)},

where X, Y, ZSΞTM and © denotes the cyclic sum with respect to X, Y and Z.
If X, Y, Z^Γ(3)\ then we have

, Y)ξ, Z)-Vx{ω{Y, Z)ξ)+ω(PxY, Z)ξ+ω{Y, VxZ)ξ]

because of (1.9) and T$=0. Thus we obtain

(2.5) ®{R(X, Y)Z}=-&{ω(X, Y)FZ)
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for every X, Y, Z<B£). Putting X—ξ and letting Y, Z<ΞΓ{£)) in the general
Bianchi identity, we have

ξ, Y)Z+R(Y, Z)ξ+R(Z, ξ)Y

)} z)+nπz, a γ)+(pξτχγ, z)+(pYτχz,

, Z)ξ+ω(FZ, Y)ξ-Pγ(FZ)+FPγZ+Fz(FY)-FPzY,

where we have used (1.11). Therefore we get

(2.6) R(ξ, Y)Z-R{ξ} Z)Y=-(FYF)Z+(FZF)Y

for Y, Z<Ξ£>. Since the general second Bianchi identity is

&{(FXR)(Y, Z)}=-&{R{T{X, Y), Z)}, X, Y} Z<=T3t,

we have immediately

(2.7) ®{(PZR)(Y, Z)} =<5{ω{X, Y)R(ξ, Z)}, X} Y, Z<E<D.

Furthermore if we put X=ξ and Y, Z^S) in the general second Bianchi identity,
then

(2.8) (FξR)(Y, Z)-(FγR)(ξ, Z)+(FzR)(ξ, Y)=-R(FY, Z)+R(FZ, Y),

Y, ZELS).

We shall prove the following formula

(2.9) R(X, Y, Z} W)-R{Z, W, X, Y)=ω{X, Z)g{FY, W)-ω(Y, Z)g(FX, W)

+ω(y, W)g{FX, Z)-ω(X, W)g{FY, Z)

where X, Y, Z, W(Ξ£>. If we put

R(X, Y, Z, W)=R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W),

then we have

R(X, Y, Z, W)-R(Y, Z, W, X)~R{Z, W, X, Y)+R(W, X, Y, Z)

=2{R{Y, Z} X, W)-R(X, W, Y, Z)}

because of (2.4). Since the equation (2.5) shows

R{Xy Y, Z, W)=-{ω{X, Y)g(FZy W)+ω(Y, Z)g(FX, W)+ω(Z, X)g{FY, W)},

we obtain

R(Y, Z, X, W)-R(X, W, Y, Z)=ω{Y, X)g(FZ, W)-ω(Z, X)g{FY, W)

+ω(Z, W)g(FY, X)-ω(Y, W)g{FZy X),
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where we have used the fact that F is symmetric with respect to the Levi
metric g. Therefore (2.9) has been proved. From (2.6) we have

R(ξ, Y, Z, W)-R{ξ, Z, Y, W)=-g((FYF)Z, W)+g((PzF)Y, W),

in which we permute the letters Y, Z and W cyclically and subtract one from
the sum of the other two. Noting that VXF is symmetric with respect to g, we
obtain

(2.10) R(ξ, Y, Z, W)=g(Y, (VZF)W-{VWF)Z)

for every Y, Z,W<B3).

For later use we need the following formula

(2.11) R(JX, JY)Z-R(X, Y)Z

=g(JX, Z)FY-g(JY, Z)FX+g{X, Z)FJY-g(Y, Z)FJX

+f(X, Z)JY-f(Y, Z)JX+f{JX, Z)Y-fUY, Z)X

where X, Y, Z<B3) and we have defined / by

f(X,Y)=g(FX,Y), X

This formula can be proved by using equations (1.6), (2.3) and (2.9). In.fact'Jwe
see that

R(JX, JY, Z, W)

= R(Z, W, JX, JY)+ω(JX, Z)g(FJY, W)-ω(JY, Z)g{FJX, W)

+ω(JY, W)g(FJX, Z)-ω(JX, W)g(FJY, Z)

= R(Z, W, X, Y)+g(X, Z)g(FJY, W)-g(Y, Z)g(FJX, W)

+g{Y, W)f{JX, Z)-g(X, W)f{JY, Z)

= R(X, Y, Z, W)+ω(Z, X)g(FW, Y)-ω(W, X)g(FZ, Y)

+ω(W, Y)g(FZ, X)-ω(Z, Y)g(FW, X)+g(X, Z)g(FJY, W)

-g(Y, Z)g(FJX, W)+g(Y, W)f(JX, Z)-g(X, W)f(JY, Z)

= R(X, Y, Z, W)+g(JX, Z)g(FY, W)-g(JY, Z)g{FX, W)

+g(X, Z)g(FJY, W)-g{Y, Z)g{FJX, W)+f(X, Z)g{JY, W)

-AY, z)g{jx, W)+f(jx, Z)g(Y, W)-AJY, z)g(X, W).

Remark. If F=0, then R(JX, JY)=R{X, Y) holds for every X, Y<=g). The
condition F=0 is equivalent to that the almost contact structure (φ, ξ, θ)* is
normal (for the definition, see [1]).
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Next we turn to the study of the Ricci tensor field. We shall define two
kinds of Ricci tensors. In general Ricci tensor field s is defined by

(2.12) s(X, r e t r a c e of (V->R(V, X)Y),

where X, YΪΞTM. We define another Ricci tensor field k by

(2.13) k(X, Ϊ O = y trace (φR(X, φY)), X, Y^T3ί.

The tensor field s is symmetric when restricted to 3), because we have for
X, Y^3)

s(X, Y)-s(Y, X)=trace (V-+<&{R(V, X)Y}),

where we may take 3) as range of V and hence from (2.5)

s(X, Y)-s{Y, X)=-trace (V-+<&{ω(V, X)FY})

= -ω(X, Y) trace F = 0 ,

which proves

(2.14) s(X, Y)=s(Y, X), X, Y*=w.

The tensor field k does not always coincide with s. Indeed we have

(2.15) k(X, Y)=s(X, Y)-(n-ϊ)fUX, Y) > X> Y^®>

Thus we see that when the almost contact structure (φ, ξ, θ)* is normal k
coincides with 5 on 3). The equation (2.15) can be shown as following;

s(X, Y)=trace {V-+-JR(V, X)JY) (FG^))

-trace (V-*JR(X, JY)V+JR(JY, V)X

+ω(V, X)FY+ω(X, JY)JFV+ω(JY, V)JFX)

=2k(X, 7)+trace (V-*JR(JY, V)X),

where we have used the equation (2.5) and the fact that F anticommutes with
/, and using (2.11) we have

trace (V-+JR(JY, V)X)

=trace UV->JR(JY, JV)X)

-trace (V->R(JY, JV)X)

-trace {V-+R{Y, V)X+g(JY, X)FV-g{JV, X)FY+g{Y} X)FJV

-g{V, X)FJY+f(Y, X)JV-f(V, X)JY+fUY, X)V-f(JV, X)Y)

= -s(Y, X)+2(n-l)f(JX, Y),
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which implies (2.15). From equations (2.14) and (2.15) we obtain

(2.16) k(X, Y)=k(Y, X), X, Y^S).

The defining equation (2.13) of k shows the following property

(2.17) k(JX, JY)=k(X, Y), X, 7 G ^ .

It follows that we have

(2.18) sUX> JY)=s(X, Y)-2(n-l)fUX, Y), X>

It is easy to show

(2.19) s(X,ξ)=0,

Furthermore by making use of (2.6) we obtain

(2.20) s(f, Z)

where the range of V is S).
We introduce two notations for use in the subsequent section. First define

by

(2.21) g(SX, Y)=s(X, Y), X,

Secondly define p by

(2.22) p=trace S,

which is a smooth function on 3i and will be called scalar curvature.

§ 3. An invariant of pseudo-conf ormal geometry.

Let (φ, ξ, θ)* and (φ'} ζ', θ')* be two almost contact structures belonging to
the same Cff-structure (0, J). Let V and V be canonical connections associated
with (φ, ξ, θ)* and (φ', ξ', θ')* respectively. Then the difference tensor H
between V and V is given in Lemma 1.3. Thus we may calculate the difference
R'{X, Y)Z-R(Xy Y)Z{X, Y, Z^2)\ We shall introduce suitable 2-forms into
the resulting long equation and rewrite it comfortably. This is the first lemma
in the present section. Next using this lemma we shall calculate k'— k and
εe2μρ'—ρ, from which the above introduced 2-forms will be solved. In this way,
the difference R'(X, Y)Z—R{X, Y)Z will be an equation consisting of only k, k'',
p and pr. Finally by transposing the terms with dashes and without dashes to
right and left sides respectively, we shall find an invariant of the change (1.8),
that is an invariant of the pseudoconformal geometry. This argument is analogous
to that of conformal geometry (cf. [12], [13]).

To begin with we prove
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(3.1) R'(X, Y)Z-R{X, Y)Z

=(FXH)(Y, Z)-(FrH)(X, Z)

+H(X, H(Y, Z))-H(X, H(X, Z))-ω{X, Y)H{ξ, Z)

for every X, Y, Z<=Γ(3)). Since

F'xF'rZ=F'x(FrZ+H(Y, Z))

=FxFrZ+H(X, FyZ)+(FxH)(Y, Z)+H(FXY, Z)

+H{Y,FXZ)+H{X,H{Y,Z)),

we have

R'{X, Y)Z=R(X, Y)Z+{FXH){Y, Z)-(FYH)(X, Z)+H(FXY-FYX, Z)

-H(£X, Ylw+ω(X, Y)ξ, Z)+H{X, H{Y, Z))-H{Y, H(X, Z)).

Taking (1.10) and 7 ^ = 0 into account, we get (3.1). The first two terms of the
equation (3.1) is given by

(3.2) (FxHXY, Z)-(FrH)(X, Z)

= -(FyP)(Z)X+(Fxp)(Z)Y-(FYq)(Z)JX+(Fxq)(Z)JY

-g(Y, Z)FxP+g(X, Z)FγP-g(JY, Z)FxQ+g(JX, Z)FrQ

+ {(Fxq)(Y)-(Fγq)(X)}JZ+p(ξ)ω(X, Y)Z,

which is calculated as follows: Using (1.13) we immediately have

(FXH){Y, Z)={Fxp){Y)Z+{Fxp){Z)Y-g{Y, Z)FXP

+(Fxq)(Y)JZ+(Fxq)(Z)JY-g(JY, Z)FXQ.

Note that

(3.3) (Fxp)(Y)-(Frp)(X)=p(ξ)w(X, Y)

holds for every X, Y<sΓ(3)). Then we may easily show (3.2). The second two
tirms of the equation (3.1) is given by

(3.4) H(X, H(Y, Z))-H(Y, H(X, Z))

= {p(Y)p(Z)-q(Y)q(Z)-p(P)g(Y, Z)}X

- {p(X)p(Z)-q(X)q(Z)-p(P)g(X, Z)} Y

+ {qmp(Z)+p(Y)q(Z)-p(P)g(JY, Z)}JX

- {q{X)p{Z) + p{X)q{Z)-p(P)q(JX, Z)} JY
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+ {p(X)g(Y, Z)-p(Y)g(X, Z)+q(X)g{JY, Z)-q{Y)g(JX, Z)

+2q(Z)g(JX, Y)}P

-{q(X)g(Y, Z)-q{Y)g{X, Z)+p(Y)g(JX, Z)-p(X)g(JY, Z)

+2p{Z)g{JX, Y)} Q

for every X, Y, Z(sΓ(2)). We have only to substitute (1.13) into the left hand
side of (3.4). The calculation is long but routine and hence we omit the proof.
Therefore we see that the equation (3.1) becomes

(3.5) R'(X, Y)Z-R(X, Y)Z

= - {{FYp)(Z)-p( Y)p(Z)+q( Y)q(Z) + p(P)g( Y, Z)} X

+ {(Fxp)(Z)-p(X)p(Z)+q(X)q(Z)+p(P)g(X, Z)} Y

- {{VYq){Z)-q{Y)p{Z)-p{Y)q(Z)+p(P)g{JY, Z)}JX

+ {{Vxq){Z)-q{X)p{Z)-p{X)q{Z)+p{P)g{JX, Z)} JY

-g(Y, Z){FxP-p(X)P+q(X)Q}+g(X, Z){FγP-p(Y)P+q{Y)Q}

-gUY, Z){FxQ-q(X)P-p(X)Q}+gUX, Z){FyQ-q(Y)P-p(Y)Q}

+ {(Fxq)(Y)-(Fyq)(X)}JZ+g(JX, Y){FJZP+FzQ+2p(P)JZ-p(ξ)Z},

where we have used (1.14).
Now we put

(3.6) a(Y, Z)=(Frp)(Z)-p(Y)p(Z)+q(Y)q(Z)+jP(P)g(Y, Z)+jP(ξ)g(JY, Z)

for Y, Z<^3) and so we see that αeΓ(S*®3)*). Also we define γ(ΞΓ(3)*®3)*) by

(3.7) γ(Y, Z)=(FYq)(Z)-q(Y)p(Z)-p(Y)q(Z)+\p(P)g(JY, Z)-jP(ξ)g(Y, Z).

Then they are related as

(3.8) a(Y,Z)=γ(Y,JZ).

The 1-form p is a differential of the function μ, but the canonical connection V
has a torsion and so we have the equation (3.3). To require that the bilinear
form a is symmetric, we need the last term in the definition. Thus

(3.9) a(Y, Z)=a(Z, Y).

Furthermore define A, CeΓ(£)*(g)^) by

(3.10) ^ ^
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(3.11) CY=FrQ-q{Y)P-ρ(Y)Q+jP(P)JY-γp(ξ)Y.

Then we have

(3.12) g(AY, Z)=a(Y, Z), g(CY, Z)=γ(Y, Z).

and from (3.8)

(3.13) JA=C.

Substituting equations (3.6), (3.7), (3.10) and (3.11) into (3.5), we obtain

LEMMA 3.1. Let 'C denote the transpose of the linear transformation C of 3),
i.e., g('CY, Z)=g(Y, CZ). Then

(3.14) R'(X, Y)Z-R(X, Y)Z

= -a(Y, Z)X-Ya{X, Z)Y-γ(Y, Z)JX+γ{X, Z)JY-g{Y, Z)AX+g{X, Z)AY

-g{JY, Z)CX+g(JX, Z)CY+{γ{X, Y)-γ(Y, X)}JZ+g(JX, Y)(CZ-'CZ).

Proof. The straightforward computation shows

R\X, Y)Z-R(X, Y)Z

=(the right hand side of (3.14) except the last term)

+g(JX, Y){FjZP+PzQ+P(P)JZ-p(ξ)Z}.

Thus it suffices to prove

g(FjzP+PzQ+P(P)JZ-p(ξ)Z, W)=g(CZ-tCZ, W)

for every W^Γ(W). In virtue of (3.3) and (3.11) we have

(L. H. S. of the above equation)

~P(P)g(JZf W)-^p{ξ)g{Z, W)

, W)-γ{W, Z)=g(CZ, W)-g('CZ, W). Q. E. D

Next we shall compute k'(Y, Z)—k(Y, Z) (Y, Z^S)). Before contracting the
equation (3.14), we consider the symmetric part of γ. The bilinear form a is
symmetric. However we can not expect γ to be skewsymmetric. This is caused
by the following equation;

(3.15) γ(Y, z)+γ(z, Y)=-f\γ, z)+f(Y, z).
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Since we have (cf. [6])

f'(X, Y)~f{X, Y)=(VJzpXY)-<yxq)(y)+2p(X)q(

the bilinear form a satisfies

α(/r, Z)+a{Y, JZ)=f'{Y, Z)-f(Y, Z),

which implies (3.15). It is clear that (3.15) is equivalent with

(3.16) a(JY, JZ)-a(Y, Z)=f'{JY, Z)-f(JY, Z).

Well we compute s'(Y, Z)—s(Y, Z). From (3.14) we see that

s'(Y, Z)-s(Y, Z)

=trace(Z— a{Y, Z)X+a(X, Z)Y-γ{Y, Z)JX+γ{X, Z)JY

-g(Y, Z)AX+g(X, Z)AY~g{JYy Z)CX+g(JX, Z)CY

+ {γ(X, Y)-r(Y, X)}JZ+g(JX, YXCZ-'CZ))

= -(2n+l)α(r, Z)+2rUY, Z)+γ{JZ, Y)-g{Y, Z) trace A-g(JY, Z) trace C.

Noting the fact that trace F— trace F'=0, we obtain trace C=0 by virtue of the
equation (3.15), and moreover substituting

γUY, Z)=-a(Z, Y)-f'UY, Z)+f(JY, Z)

into R. H.S. of the above equation, we have

(3.17) s'(Y, Z)-s(Y, Z)=-2(n+2)α(r, Z)-3f\JY, Z)

+3/(/r, Z)-g{Y, Z) trace A .

Therefore by the equation (2.15) we get

LEMMA 3.2. The difference k\Y, Z)-k{Y, Z) is given by

(3.18) k\Y, Z)-k(Y, Z)=-(n+2){a(Y, Z)+a(JY, JZ)}-g(Y, Z) trace A

for arbitrary Y, Z^S).

Using the equation (3.17) we have

A)IW,

where I& denotes the identity transformation of 3). Taking trace of both sides
we obtain

LEMMA 3.3. The difference ee2μp'—p is given as
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(3.19) εe2rp'-p=-4(n + ϊ) trace A.

Lets

(3.20)

and

(3.21)

define /

KX,

nι(X,

and

Y)=

Y)~

m by

1
2(72 + 2)

respectively, where X, F G ^ ) and we note that / (resp. m) is symmetric (resp.
skewsymmetric). Clearly / and m satisfy

(3.22) KJX, JY)=KX, Y), m{JX, JY)=m(X, Y)

and

(3.23) m(X, Y)=l(JX, Y)

Moreover we need the following definitions. Define L and M by g{LX, Y)—
l(X, Y) and g(MX, Y)=m(X, Y) for every X, Y^S) respectively. Then they
satisfy '1 = 1, 'M^-M, LJ=JL=M and MJ=JM.

Under these notations we solve a, γ, A and C.

LEMMA 3.4. The bilinear form a on 3) is given by

(3.24) a(Y, Z)=V(Y, Z)-l(Y, Z)-j{f'(JY, Z)-f{JY, Z)},

so that we have

(3.25) A=εe2rL'-L-~\(εe2rF'J-FJ),

and the bilinear form y is given by

(3.26) y(Y, Z)=m\Y, Z)-m(Y, Z)-~{f\Y, Z)-f{Y, Z)}9

so that we have

(3.27) C=εe2^M'f-M-\-{ee^F''-F).

Proof. It suffices to prove the equation (3.24) from which the others are
trivially derived. From the defining equation (3.20), we have

l'{Y, Z)-KY, Z) = - 2 ( n

X

+ 2 ) {k'(Y, Z)-k{Y, Z)}
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in which we substitute equations (3.18) and (3.19). Then we have

l\Y, Z)-l{Y, Z) = ±{a(Y, Z)+a(JY, JZ)}.

Combining this equation with (3.16), we obtain (3.24). Q. E. D.

Finally we state

THEOREM 3.5. Let define Bo, B^ΓiW**®®) by

(3.28) Bo(X, Y)Z=R(X, Y)Z+l(Y, Z)X-l(X, Z)Y+m(Y, Z)JX-m{X, Z)JY

+g{Y, Z)LX-g(X, Z)LY+g{JY, Z)MX-g{JX, Z)MY

-2{m{X, Y)JZ+g{JX, Y)MZ),

(3.29) B,{X, Y)Z= ~ {R(JX, JY)Z-R(X, Y)Z).

Then B—BQJΓB1 is invariant under the change (1.8), i.e., B~B' holds.

Proof. Substitute the equations (3.24)^(3.27) into (3.14). Then it is easy to
see that B=B'. Q. E. D.

Remark. When the almost contact structure (φ, ξ, θ)* is normal, Bo is
Bochner curvature tensor and Bλ vanishes. We also note that if n = l, then Bo,
Bλ and hence B vanish identically.

We summarize the identities satisfied by B. Let B(X, Y)Z=B0(X, Y)Z+
BX(X, Y)Z and so B(X, 7)eΓ(^?*®^) for every X, Y^Γ(g)). The followings
are clear:

(3.30) B(X, Y)=-B(Y, X) and

(3.31) g(B(X, Y)Z, W)=-g(B(X, Y)W, Z).

The straightforward calculation shows <&B0(X, Y)Z=&R(X, Y)Z and BB^X, Y)Z
=&g(X, JY)FZ. It follows from (2.5) that

(3.32) <&B(X, Y)Z=0.

In general a tensor satisfying the equation (3.30)^(3.32) always satisfies (cf. the
proof of (2.9))

(3.33) g(B(X, Y)Z, W)=g(B(Z, W)X, Y).

It is easy to show
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(3.34) B(JX, JY)=B(X, Y) and

(3.25) B(X, Y)J=JB(X, Y).

Since we have

trace(Z-*£0(Z, Y)Z)

= s(F, Z)+2{n+2)l(Y, Z)+g(Y, Z) trace L

=s(Y,Z)-k(Y,Z)

and

trace(X-+B1(X, Y)Z)=-(n-l)f(JY, Z)

the equation (2.15) implies

(3.26) tmce(X^B(X, Y)Z)=0.
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