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GROWTH OF A COMPOSITE FUNCTION
OF ENTIRE FUNCTIONS

By KivosHI NIINO AND NOBUYUKI SUITA

§1. Introduction.

Let f(z) and g(z) be entire functions. Then we have the well-known in-
equality

10 log M(r, f(g)<log M(M(r, g), f).
And it follows from Clunie [2] that if g(0)=0, then for »=0
2) log M(r, f(g)=log M(c(p)M(pr, g), f),

where 0<p<1 and c(p)=(1—p)*/4p. Furthermore, these inequalities (1) and (2)
are best possible. We next wish to have similar estimations of T(r, f(g)). As an
immediate consequence of (1) and well-known inequalities T'(r, f)<log*M(r, f)
=3T(Q2r, f), we have

©) T(r, (g)=3T2M(r, ), f).

The inequality (3), however, is not sharp.
The main purpose of this paper is to give an upper estimation of T(r, f(g))

and prove the following :

THEOREM 1. Let f(2) and g(z) be entire functions. If M(r, g)>((2+¢)/e)|g(0)]
for any ¢>0, then we have

©)) T(r, eN=1+e)T(M(r, g), 1) .
In particular, 1f g(0)=0, then

(%) T(r, eN=T(M(r, g), 1)
for all v>0.

Since T(r, f(z®)=T(@™, f(z)) for any meromorphic function f(z), Theorem 1
is best possible. In the above example g(z) is a polynomial. However, we shall
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prove that

THEOREM 2. Let f(z) be a transcendental entire function of ovder zero and
g(2) a transcendental entire function of lower order zero. Suppose that for any
0<0o<1 there are two numbers a>1 and r,>1 such that

(6) ——-——Y;EZ:’ j]:)) >0g?

holds for all r>v,. Then we have

® i S g, 5

It is clear that there exist entire functions satisfying (6). For instance, it
follows from a result of Clunie [1] that there is an entire function f(z) satisfying
T(r, f)~(log r)? (r—co) with a constant 8>1 and so f(z) satisfles (6) with a sui-
table number a>1.

We shall now give some lower estimations of T(r, f(g)). Firstly, for certain
classes of entire functions, we shall show the following theorem, which we can
deduce from cos wA-theorem (cf. Kjellberg [4], [5]) and the argument of the
proof of Theorem 2:

THEOREM 3. Let f(z) be a transcendental entire funciion of order zero satis-
fying (6) and g(z) a transcendental entire function of lower order A (2<1/2).
Then we have

lirglﬂiup%%%l)f—) =(cos TA)*.

In general we shall prove

THEOREM 4. Let f(z) and g(z) be transcendental entire functions, K (>0) an
arbitrary number and B(r) unbounded, strictly increasing, continuous function of
r(>0) satisfying
) Br)zr and log p(r)=o(T(¢'r, g))  (r—o0),

where & 1s a constant satisfying 0<&’ <1. Then there is an unbounded increasing
sequence {r,} such that

T(r, f(g)+O0)=N(r,, 0, f(g)

N(B(r.), 0, 1)
log B(r,)—0(1)

When g(z) is of finite order, from a result of Valiron [7] and Edrei-Fuchs
[3] and the argument of the proof of Theorem 4 we can deduce

gK( —0W)  (—o0)
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THEOREM 5. Let f(z) be a transcendental entire function, g(z) a trans-
cendental entire function of flnite order, ¢ a constant satisfying 0<c<1 and «a a
positive number. Then we have for all r=R,,

T(r, fgh+O0M)=N(r, 0, (g)

N(M((cr) 4, g), 0, f)
=(log (1/ C))( log M((cr)V/ @+, g)—0(1)

-—0(1)) (r—o0).

§2. Proof of Theorem 1.

Let u(z) be the harmonic function in the disk {|z| <7} which has the boun-
dary values log*|f(g(re*?))| on the circumference {|z|=r}. We define u*(z) by

uXz)=u(z) in {|z| <7}
=log*| f(g(2)| in {r=|zf<oo}.

Then it is clear that u*(z) is a subharmonic function in {|z|<co}. Let v(w) be
the harmonic function in the disk {|w]|<M(r, g)} with the boundary values
log*| AM(r, g)e*?)| on {|w|=M(r, g)}. We denote by D, the component of the
set {z; g(z)=w, |w| <M(r, g)}, which contains the origin. Then we have {|z]| <r}
CD,. Further v(g(z)) is harmonic in D, and v(g(z))=log*|f(g(z))|=u*(z) on the
boundary of D,. Hence it follows from the maximum principle that u*(z)<v(g(2))
in D,. In particular we have

@0 u*(0)=v(g(0)).

By Gauss’ mean value theorem we have

2.2) u*(0)=u(0)= —21752"10;? | Ag(ret®))| d6=T(r, £(g)),

(2.3) v(O)=L 2/TIOgJ'I(f(]V[(T, Qe dp=T(M(r, g), ).
21 Jo

Hence, if g(0)=0, (5) follows from (2.1), (2.2) and (2.3). If g(0)+#0 and M(», g)>
((2+¢)/e)| g(0)], then it follows from Harnack’s inequality that

VOIS 4B EEBL 0 <1+9000),

which, together with (2.1), proves (4).

Thus the proof of Theorem 1 is complete.
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§3. Proof of Theorem 2.

In the first place we shall prove the following:

LEMMA 1. Let g(z) and f(z) be two entire functions. Suppose that |g(z)|
>R>|g(0)| on the circumference {|z|=r} for some r>0. Then we have

R—15(0)]
R+1g(0)

Proof. Let u(z) be the harmonic function in the disk {|z| <7} which has
boundary values log*|f(g(re??))| on the circumference {|z|=r}. Let v(w) be the
harmonic function in the disk {|w|<R} which has the boundary values
log*™| f(Re*)| on {|w|=R}. We define v*(w) by

T(r, fg)= T(R, f)

v¥w)=v(w) in {Jw|<R},
=log*| fw)| in {Jw|=R}.

Then we deduce that v*(w) is subharmonic in {jw]<co} and so v*(g(z)) is sub-
harmonic in {]z|<oo}. Since |g(z)| >R for |z|=r, it follows from the definitions
of u(z) and v*(w) that v*(g(z))=log*| f(g(z))|=u(z) on the circumference {|z|=r}.
Hence by virtue of the maximum principle we have u(z)=v*(g(z)) in {|z|=r}
and in paticular

3.1 1(0)=v*(g(0)) .
Since R>|g(0)|, by Harnack’s inequality we obtain
% _ R—1g(0)]
(3.2) v*(g(0))= U(g(O))Z————*R_l_Ig(O)I v(0).

On the other hand by Gauss’ mean value theorem we have

w(0)=T(r, f(g)) and v(O)=T(R, 1),
which, together with (3.1) and (3.2), proves our Lemma.

We are now ready to prove our Theorem 2. We deduce from Theorem 1
that

(3.3) lin;lﬁiupﬁ%%%‘f))f) <1.

Since g(z) is of lower order zero, it follows from a result of Kjellberg [5] that
there is an increasing, unbounded, positive sequence {r,} such that

lgllfl_in log|g(z)|~log M(r,, g)  (n—00).
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Hence for any ¢>0 we have
|8(2)| >M(r,, g)'¢  for |z|=ra, ra>7,.

We may assume that M(r,, g)'*>|g(0)| and (6) is valid for r=M(r,, g). Hence
our Lemma 1 and (6) yield

M(ra, )" —15(0)]
M(ra, g)'=*+15(0)

o My, @ °—1g(0)]
M(ra, g)'+1g0)]

T(M(rs, &', f)

T(ra, f(8)=

=(1—¢)

T(M(rs, 8), 1)

and consequently

. T(r, f(&) e T(ra, Q) «
RERTM, 9, 73 2 T M 2, ) SO

Since ¢ is arbitrary, (7) follows from this and (3.3).
Thus the proof of Theorem 2 is complete.

§4. Proof of Theorem 4.

We first need the following lemma, which we can deduce from the proof of
Lemma 1 in Clunie [2] (cf. [4, Lemma 2]):

LEMMA 2. Let g(z) be a transcendental entire function, K a positiwe number
and a(r) and B(r) two unbounded, strictly increasing, continuous functions satis-
fying

alr)izr, Brzr and
4.1
log B(pa(r)=o(T(¢r, g))  (r—o0),

where 7 and & are constants satisfying p>1 and 0<E<1. Let ¢ satisfy E<c=1.
Then there are a positive number R, and an unbounded increasing sequence {r,},2,
with ri>R, and r,—co (v—o0) such that for v=1 and for all v in r,=r=a(r,)
and all w satisfying B(RO)=R,=|w|=pr) we have

n(er, w, g)>K.
We also need the following well-known inequalities :

LEMMA 3. Let f(z) be a meromorphic function and ¢ a constant satisfying
0<c<1. Then there are two positwe constants r, and R, such that for all r=R,

n(cr, 0, f)log (1/c)=N(r, 0, f)=n(r, 0, f)logr—logr,)

Now we shall prove Theorem 4. Choose two constants » and £ such that
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7>1, 0<E<1 and §’=&/7. Then (8) yields
log B(yr)=log Br/E)=0(T(¢r, g))  (r—o0),

which shows that (4.1) is true with a(»)=r. Hence Lemma 2 implies that there
is an unbounded increasing sequence {r,} such that for all w satisfying R,<|w|
<B(r,) we have

4.2) n(cr,, w, g)>K/log(1/c).

Let {w,} be the zeros of f(z). Then taking Lemma 3 and (4.2) into account we
have

N(r,, 0, fg)=nlcr,, 0, f(g)log(1/c)
= Zﬂ) n(cr,, w,, g)log(1/c)

gK(n(‘B(rv)r 0: f)—n(Rly 0) f))

N(B(r.), 0, /)

>
=K< log A(r,)—log 7,

—n(Rs, 0, 1)).

Using this and Nevanlinna’s first main theorem, we obtain Theorem 4.
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