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Abstract

The critical exponents of conservative Fuchsian groups are bounded from below

by 1=2. It is proved in this note that this result is sharp by giving a sequence of

conservative Fuchsian groups whose critical exponents converge to 1=2. The proof is

carried out by estimating the isoperimetric constants of hyperbolic surfaces associated

with the Fuchsian groups.

§1. Statement of results

A Fuchsian group G is a discrete group of orientation-preserving isometric
automorphisms of the hyperbolic plane ðH2; rÞ, which is further assumed to be
torsion-free throughout this note. It acts on H2 properly discontinuously and
freely. The unit disk B2 HC with a conformal metric 2jdzj=ð1� jzj2Þ is a model
of the hyperbolic plane and G acts on B2 as a group of Möbius transformations.
The boundary S1 of the model B2 is located at infinity of the hyperbolic plane
and the action of G extends to S1.

The critical exponent of a Fuchsian group G is defined by

dðGÞ ¼ inf sb 0

�����
X
g AG

expð�srð0; gð0ÞÞÞ < y

( )
:

This is an index which measures distribution of the orbit Gð0Þ and which is closely
related to geometric structure of the associated hyperbolic surface NG :¼ H2=G.
For details, see a survey article [6] and a textbook [8].

A limit point x A S1 of a Fuchsian group G is a point of accumulation of the
orbit Gð0ÞHB2. The set of all limit points is called the limit set of G and is
denoted by LðGÞ. A limit point x A LðGÞ is called a conical limit point if Gð0Þ
accumulates to x within a bounded distance of the geodesic ray from 0 towards x.
The conical limit set LCðGÞ is the set of all conical limit points. A limit point
x A LðGÞ is called a horocyclic limit point if Gð0Þ accumulates to x within some
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horoball tangent to S1 at x. The horocyclic limit set LHðGÞ is the set of all
horocyclic limit points.

The critical exponent can be estimated from below by the Hausdor¤
dimension (denoted by dim) of those limit sets. A fundamental result in this
principle is an estimate by the conical limit set: dðGÞb dim LCðGÞ. (Actually
the equality holds for every non-elementary Fuchsian group G.) Another
estimate by the horocyclic limit set is obtained similarly through elementary
hyperbolic geometric observation [8, Theorem 2.1.1]. Indeed, x belongs to LHðGÞ
if and only if there exists some constant k > 0 such that x is contained in

I ðkÞg ¼ fx A S1 j jx� jgð0Þj�1
gð0Þj < kð1� jgð0ÞjÞ1=2g

for infinitely many elements g A G. Since the diameter of I
ðkÞ
g is comparable with

expð�rð0; gð0ÞÞ=2Þ, a standard argument on the Hausdor¤ measure yields the
following claim.

Proposition 1. If LHðGÞ has positive 1-dimensional Hausdor¤ measure, then
dðGÞb 1=2. More generally,

dðGÞb dim LHðGÞ
2

is satisfied.

The action of a Fuchsian group G on S1 divides it into two parts up to
null sets with respect to the 1-dimensional Hausdor¤ measure: the conservative
part and the dissipative part. The latter part is characterized as the maximal
measurable subset where a fundamental set for G can be chosen. According to
Pommerenke [9] and Sullivan [13], the conservative part is coincident with the
horocyclic limit set LHðGÞ up to null sets.

Definition. A Fuchsian group G is called conservative if the horo-
spherical limit set LHðGÞ is equal to S1 almost everywhere with respect to the
1-dimensional Hausdor¤ measure on S1.

Proposition 1 in particular implies dðGÞb 1=2 for every conservative
Fuchsian group G. The purpose of this note is to show that this estimate is
sharp in the following sense.

Theorem 2. There exists a sequence of conservative Fuchsian groups fGngyn¼1

such that their critical exponents dðGnÞðb 1=2Þ converge to 1=2 as n ! y.

§2. Normal covering planer surfaces

A sequence of conservative Fuchsian groups as in Theorem 2 is given by
normal subgroups Gn of Fuchsian groups ĜGn of cofinite area, which are defined as
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follows. For each positive integer n A N, choose a cocompact Fuchsian group Gn

having a property that the injectivity radius at the origin 0 A B2 is greater than n,
in other words, the hyperbolic ball Bð0; nÞHB2 with center 0 and radius n
is mapped injectively under the covering projection B2 ! NGn

. Remark that
genera of such compact surfaces NGn

should increase to infinity as n ! y to meet
this property. Let Rn ¼ B2 � Gnð0Þ be a planer surface obtained from B2 by
removing the orbit of the origin. Let R̂Rn ¼ Rn=Gn be the quotient surface, which
is coincident with a once-punctured Riemann surface obtained from NGn

. Then,
by uniformization theorem, Rn and R̂Rn are represented by Fuchsian groups Gn

and ĜGn, respectively. Since the covering Rn ! R̂Rn is normal, Gn is a normal
subgroup of ĜGn.

Conservativity of these particular Gn can be seen from [10, Example 1] and
[12, Theorem 4.4]. More generally, the following claim is proved in [5, Theorem
5.1] and [7, Theorem 6].

Proposition 3. Let G be a non-trivial normal subgroup of a Fuchsian
group ĜG. Then LCðĜGÞHLHðGÞ. In particular, if ĜG is of cofinite area, then G is
conservative.

In what follows, it is proved that the critical exponents dðGnÞ converge to
1=2. Here we remark the following, though they are not directly related to the
proof. By construction, the Fuchsian group Gn is non-elementary and contains a
parabolic element. In this case, a strict inequality dðGnÞ > 1=2 is always satisfied.
See [6, Lemma 30] and [8, Lemma 3.5.4]. Another remark goes to an upper
bound of dðGnÞ. The above construction of a normal subgroup Gn appeared in
[12], where Patterson proved a strict inequality dðGnÞ < 1 by an argument using a
spectral method as in the next section.

§3. Isoperimetric constants

The critical exponent dðGÞ is related to the infimum of the Rayleigh quotient

l0ðGÞ ¼ inf

Ð
NG

j‘f j2Ð
NG

j f j2

����� f A Cy
0 ðNGÞ

( )
:

This quantity is also called the bottom of spectra because l0ðGÞ is equal to the
infimum of the set of eigenvalues with respect to the Laplace-Beltrami operator
on the hyperbolic surface NG. Then the following equation between dðGÞ and
l0ðGÞ is satisfied, which is due to Elstrodt, Patterson and Sullivan [14]. See also
[6, Theorem 17].

Proposition 4. Every Fuchsian group G satisfies

l0ðGÞ ¼
1=4 ðdðGÞa 1=2Þ
dðGÞð1� dðGÞÞ ðdðGÞb 1=2Þ:

�
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Proposition 4 implies that, in order that dðGÞ is estimated from above, which
is necessary for our main theorem, l0ðGÞ must be estimated from below. This
will be done by using the following quantity.

Definition. The (linear) isoperimetric constant (or the Cheeger constant) of
a hyperbolic surface NG is defined by

hðGÞ ¼ sup
W

AðWÞ
lðqWÞ ;

where the supremum is taken over all relatively compact domains W HNG

with smooth boundary, AðWÞ is the hyperbolic area of W and lðqWÞ is the
hyperbolic length of the boundary qW .

The concept of the isoperimetric constant has its origin in the isoperimetric
problem on the Euclidean plane. The same problem can be formulated on the
hyperbolic plane and the solution is also well-known. See [4, Section 10] for
instance.

Proposition 5. In the hyperbolic plane H2, consider any simple connected
domain bounded by a simple closed curve with a given length l. Among all such
domains, the one having the greatest area is a hyperbolic ball B and its area is

AðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4p2

p
� 2p:

In particular, the isoperimetric constant hð1Þ of H2 is one.

The following theorem due to Cheeger gives a relationship between l0ðGÞ
and hðGÞ. See Chavel [2, Section IV.3].

Proposition 6. Every Fuchsian group G satisfies

l0ðGÞb
1

4hðGÞ2
:

Note that the isoperimetric constant always satisfies hðGÞb 1. Theorem 2
follows from Propositions 4 and 6 if hðGnÞ ! 1 ðn ! yÞ for our Fuchsian groups
Gn.

In the definition of the isoperimetric constant hðGÞ, the family of domains
W HNG over which the supremum is taken can be slightly modified. If W has
a boundary curve that bounds a topological disk in NG, then by filling the disk,
the area becomes larger but the boundary length becomes smaller. Hence W can
be assumed to have no trivial boundary curves. Furthermore, relative com-
pactness can be broken at each puncture. This is because if W has a boundary
curve around a puncture then its length can be arbitrarily small keeping the area
even larger by replacing it with a cuspidal curve arbitrary close to the puncture.
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After all, W can be taken from a family of those which are topologically finite
and whose boundary curves are homotopically non-trivial and non-cuspidal.

For each boundary curve c of such a domain W , there is a unique simple
closed geodesic c� freely homotopic to c. The domain W � having the boundary
curves c� is homotopically equivalent to W in NG.

Definition. A domain W � in a hyperbolic surface R is called a geodesic
domain if W � is a topologically finite domain possibly with punctures and its
boundary qW � consists of a finite number of simple closed geodesics.

As the following theorem implies, the isoperimetric constant can be estimated
by considering the supremum of AðW �Þ=lðqW �Þ taken over all geodesic domains
W �.

Theorem 7. Let W be a topologically finite domain with smooth boundary in
a hyperbolic surface R and assume that boundary curves are non-trivial and non-
cuspidal. Then the geodesic domain W � homotopically equivalent to W in R
satisfies

AðWÞ
lðqWÞ a

AðW �Þ
lðqW �Þ þ 1:

Proof. The boundary qW consists of a finite number of simple closed
curves fcigmi¼1. For each ci, there corresponds the simple closed geodesic c�i ,
which is a boundary component of the geodesic domain W �. Let li ¼ lðc�i Þ be
the length of c�i for each i ¼ 1; . . . ;m.

For the geodesic domain W � HR, consider its Nielsen extension ŴW , which is
a complete hyperbolic surface obtained by adding a geodesic annulus along each
geodesic boundary component c�i . The original domain W can be embedded
isometrically into ŴW . Consider the union W UW �. It satisfies AðW UW �Þb
AðWÞ and lðqðW UW �ÞÞa lðqWÞ. Hence, in order to estimate AðWÞ=lðqWÞ
from above, we have only to examine such a domain W H ŴW that contains W �.

In each annular component Hi of ŴW �W � ði ¼ 1; . . . ;mÞ, consider a
problem of finding a minimal-length curve c 0i that bounds an annulus of a
prescribed area Ai :¼ AðW VHiÞ together with the geodesic c�i ¼ qHi V qW �.
The existence of the minimizer c 0i is guaranteed by a compactness property (the
Ascoli-Arzela theorem) of a family of homotopically non-trivial, equicontinuous
embeddings of a circle into Hi. Moreover, we see that the c 0i is a curve of
constant geodesic curvature. See for example [4] Section 5, Theorem 10.1 and its
references about those arguments. Consequently, there exists a convex domain
W 0 homotopically equivalent to W in ŴW whose boundary components are c 0i
ði ¼ 1; . . . ;mÞ and that satisfies

AðWÞ
lðqWÞ a

AðW 0Þ
lðqW 0Þ :
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Each boundary component c 0i of the convex domain W 0 is equidistant from
every point on c�i , where the distance can be represented as arcsinhðtan yiÞ by
using an angle constant yi A ½0; p=2Þ. In this representation, the length of c 0i is
li sec yi and the area of the annulus bounded by c�i and c 0i is li tan yi. Hence
W 0 satisfies

AðW 0Þ
lðqW 0Þ ¼

AðW �Þ þ
Pm

i¼1 li tan yiPm
i¼1 li sec yi

¼

P
liP

li sec yi
AðW �Þ þ

P
li tan yiP
li sec yi

X
liP

li
a

AðW �Þ
lðqW �Þ þ 1:

Therefore, AðWÞ=lðqWÞ is also bounded by the last term in the above in-
equality. r

Remark that Fernández and Rodrı́guez [3, Lemma 1.2] gave an estimate of
the same kind in the form

AðWÞ
lðqWÞ a

AðW �Þ
lðqW �Þ þ 2:

Our Theorem 7 succeeds in replacing their constant 2 with 1, which is the best
possible constant. This improvement is crucial for proving Theorem 2, as is seen
in the next section.

§4. Proof of Theorem 2

In this section, an estimate of the isoperimetric constant hðGnÞ is given from
above, by which the proof of Theorem 2 will be complete.

Take a sequence of positive numbers fengyn¼1 satisfying en ! 0 as n ! y.
By the definition of hðGnÞ, there exists an admissible domain Wn HRn such that

hðGnÞ <
AðWnÞ
lðqWnÞ

þ en:

Here Wn can be again replaced with a domain bounded by a single simple closed
curve cn. This is because filling a punctured disk in the planer surface Rn

bounded by an inner boundary component of qWn ð0 cnÞ makes the area larger
but the boundary length smaller. Hence Wn may be assumed to have a single
boundary curve and at most a finite number of punctures.

Take the simple closed geodesic c�n freely homotopic to cn ¼ qWn in Rn

and consider the geodesic domain W �
n bounded by c�n . Set An ¼ AðW �

n Þ and
ln ¼ lðc�n Þ. Then Theorem 7 implies

hðGnÞ <
An

ln
þ 1þ en:
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By the Gauss-Bonnet formula, if the number of punctures of W �
n is pðnÞ, then

An ¼ 2pðpðnÞ � 1Þ < 2ppðnÞ:
An upper bound of pðnÞ is obtained by using the hyperbolic metric on B2

instead of RnðHB2Þ. Let l 0
n be the hyperbolic length of c�n in B2. Monotonicity

of the hyperbolic density under the inclusion relation implies l 0
n a ln. By

Proposition 5, the area of W �
n measured in B2 is bounded from above byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl 0
nÞ

2 þ 4p2

q
� 2p < l 0

n a ln:

Each puncture z of W �
n has a mutually disjoint neighborhood Bðz; nÞHB2 of

radius n, whose area is 4p sinh2ðn=2Þ. In these circumstances, pðnÞ can be
estimated as follows.

Lemma 8.

pðnÞ < ln

2p sinh2ðn=2Þ
þ ln
2n

Proof. Consider the intersection of W �
n and Bðz; nÞ for each puncture z of

W �
n . Then at least one of the following two conditions are satisfied:

(1) the area of the intersection W �
n VBðz; nÞ is greater than half the area of

Bðz; nÞ;
(2) the length of the intersection qW �

n VBðz; nÞ is greater than the diameter
of Bðz; nÞ.

Indeed, when qW �
n VBðz; nÞ0j, there are subarcs a of qW �

n and b of qBðz; nÞ
which together bound a domain containing z. If lðbÞa lðqBðz; nÞÞ=2, then
lðaÞ > 2n and hence condition (2) is satisfied. If lðbÞ > lðqBðz; nÞÞ=2 and
lðaÞa 2n, then a half-disk of Bðz; nÞ divided by a diameter connecting two
antipodal points on b is entirely contained in W �

n and hence condition (1) is
satisfied.

The area of W �
n HB2 is bounded by ln and half the area of Bðz; nÞ is

precisely 2p sinh2ðn=2Þ. Therefore, the number of punctures z in W �
n satisfying

condition (1) is at most ln=f2p sinh2ðn=2Þg. Similarly, the number of punctures
satisfying condition (2) is at most ln=ð2nÞ. r

The combination of all estimates above yields

hðGnÞ <
2ppðnÞ

ln
þ 1þ en

<
1

sinh2ðn=2Þ
þ p

n
þ 1þ en ! 1 ðn ! yÞ:

This implies that dðGnÞ ! 1=2 as n ! y.
Remark that Álvarez, Pestana and Rodrı́guez [1, Theorem 1] gave an es-

timate of the isoperimetric constant by a similar method, however, our estimate
has an advantage when the injectivity radius n grows to infinity.
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§5. Questions and comments

There still remains a question whether the lower bound 1=2 of the
critical exponents is attained by a conservative Fuchsian group. As is
mentioned in Section 2, such a Fuchsian group, if exists, contains no parabolic
elements.

Problem. Does there exist a conservative Fuchsian group G with dðGÞ ¼ 1=2?

Note that if dðGÞ < 1=2 then the 1-dimensional Hausdor¤ measure of LHðGÞ
is zero as in [11, Theorem 3]. This fact also follows from Proposition 1. Hence
the exponent 1=2 is critical for conservativity in this sense.

The sequence of Fuchsian groups fGng in our construction (modulo con-
jugation) converges geometrically to a parabolic cyclic group G, which satisfied
dðGÞ ¼ 1=2. However, concerning the continuity of the critical exponent, only
the lower semi-continuity holds in general: lim infn!y dðGnÞb dðGÞ. See [6,
Lemma 21]. This does not help us to prove Theorem 2.

References
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