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BASE POINTS OF POLAR CURVES ON A SURFACE OF TYPE

zn ¼ f ðx; yÞ

Jawad Snoussi

Abstract

We give a method for characterizing base points of polar curves on a normal

surface of type zn ¼ f ðx; yÞ, after a resolution of singularities by Jung’s method.

1. Introduction

Local polar varieties are collections of subspaces of a reduced equidimen-
sional analytic germ. Roughly speaking a polar variety is the closure of the
critical locus of a linear projection restricted to the non-singular locus of the
germ. D. T. Lê and B. Teissier have introduced these objects and proved their
relation with characteristic classes of singular spaces and di¤erent other objects
occurring from the local study of singularities [6].

In the case of surfaces, the collection of polar varieties reduces to the one of
polar curves. One of the various links between polar curves and the ‘‘nature’’ of
the surface singularity occurs while studying the resolution of the surface by
normalized Nash modifications.

Nash modification (or Nash blow-up) is a modification of the surface that
consists of replacing the singularities by all limits of directions of tangent spaces
to the surface at non-singular points.

M. Spivakovsky proved in [11], that any normal surface singularity can be
resolved by a finite number of normalized Nash modifications. However, up to
now, no method is known for constructing Nash resolution of a general surface
singularity from its minimal resolution.

This problem is linked with the one of determining base points of the polar
curves on a resolution of the surface; i.e. points of the non-singular surface that
belong to the strict transform of almost all the polar curves (see [11] and [3]).

We dedicate this work to the study of these base points on a resolution of a
normal surface singularity by the so called Jung’s method.

The main idea of this work is to study the image of the polar curves in a
projection to C2 and determine base points of these images after the minimal
embedded resolution of the discriminant curve singularity.
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The main interest of this work is to provide a way to construct examples
of surfaces for which we can determine base points of polar curves on Jung’s
resolution or sometimes on the minimal resolution.

We restricted our study to the case of normal surfaces defined by equations
of type zn ¼ f ðx; yÞ. The reason is that, in this case, the image of the polar
curves in C2 is mainly a collection of pencils generated by the discriminant locus
of the projection and its generic polar curve (with some appropriate powers).

We first characterize the base points of a generic pencil on the minimal
embedded resolution of the discriminant locus by valuative criteria. We get
more precise results when we apply these criteria to the case of an irreducible
discriminant, using for that a theorem by D. T. Lê, F. Michel and C. Weber in
[5] on the growth of ‘‘Hironaka’s quotients’’.

Finally we give various examples of surfaces of type zn ¼ f ðx; yÞ, that il-
lustrate how useful can be our method for characterizing base points of polar
curves.

2. Polar curves in Jung’s resolution of a surface

2.1. Polar curves and its base points
Let ðS; 0Þ be a germ of normal surface singularity embedded in some

ðCN ; 0Þ. A linear projection p : CN ! C2, induces a morphism p : S ! U on a
representative of the germ ðS; 0Þ to an open neighborhood of 0 in C2.

Remark 2.1. If we choose the kernel of the projection p to be transversal to
the tangent cone of the surface S at 0, i.e. the intersection of ker p with the tangent
cone is f0g, then the morphism p is finite ( proper with finite fibers) and its degree is
equal to the multiplicity of the surface S at the origin (see for example [14, I.5.2]).
Such a projection p is called generic.

Let L be a generic ðN � 2Þ-plane (in the sense of remark 2.1), and
pL : S ! C2 the restriction of the linear projection whose kernel is L. According
to [6, 2.2.2], the polar curve PLðS; 0Þ, defined by L on S, is the closure in S, of
the critical locus of the restriction of pL to the non-singular locus of S. In other
words, it is the closure of

fx A Snf0g=dimðLVTxSÞb 1g;

where TxS denotes the direction of the tangent space to S at a (non-singular)
point x A Snf0g.

When the direction L is generic and the surface normal and singular, the
polar curve is non-empty and coincides with the critical locus of the projection
that defines it.

A polar curve could be thought of as a generic element of a linear system
parameterized by the Grassmannian GðN � 2;NÞ of ðN � 2Þ-linear subspaces in
CN .
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Now, consider a modification m : S 0 ! S over 0. That means a proper map,
that induces an analytic isomorphism on the pre-image of Snf0g. If C is a curve
on S, the closure in S 0 of m�1ðCnf0gÞ is called the strict transform of C by m and
is denoted by C 0.

Definition 2.2. A point h A S 0 is a base point of the linear system of polar
curves by m, or simply a base point, if there exists an open dense subset W of the
Grassmannian GðN � 2;NÞ, such that for every L A W, h A P 0

LðS; 0Þ.

When the modification is the blow-up of the singularity, a full character-
ization of the base points of polar curves is given in [10, 6.3 and 5.8].

Remark 2.3. Nash modification, or Nash blow-up, of a normal surface
singularity has the property of being the ‘‘minimal ’’ modification of a normal
surface singularity for which the polar curves have no base point (see [3, 1.2]).

Let r : X ! S, be a resolution of singularities of S, i.e. a modification with
X non-singular.

Characterizing base points of polar curves on a resolution of a normal
surface singularity is an open problem. The answer is known only in some
particular cases: [3] for the case of rational double points and [11] in the case of
minimal singularities.

There are di¤erent ways to remove a surface singularity (see [15], [11], [1]
. . .). We will study base points of polar curves under a resolution of singularities
by Jung’s method.

2.2. Jung’s method
Consider a finite projection p : S ! U HC2, and call D its discriminant

locus; D is defined as the reduced image of the critical locus. Let r : Z ! U be
an embedded resolution of D, i.e. a modification of U over 0 such that the strict
transform of D is non-singular and the total pre-image of D has only normal
crossing singularities. Let ~SS be the normalization of the pull-back of S by
r. Denote by p 0 : ~SS ! Z the pull-back of p by r and r 0 the pull-back of r
by p. The discriminant locus of p 0 is contained in the total pre-image of
D. The surface ~SS has only normal quasi-ordinary singularities, whose resolution
r : X ! ~SS is given by combinatoric data of the ramified covering (see for example
[1, III.5]).

X ���!r ~SS ���!r 0

S

p 0

???y
???yp

Z ���!r U

ð1Þ

Definition 2.4. We call Jung’s resolution of a germ of surface any resolution
obtained by the method described in the diagram 1.
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Our goal in this work, is to follow the linear system of polar curves all along
this diagram in order to be able to get some information about the base points on
the surface ~SS.

Denote by CL the image of a polar curve PLðS; 0Þ on U HC2 by the finite
map p. Let us call the family of plane curves fCL;L A GðN � 2;NÞg the
‘‘image-system’’ of the linear system of polar curves on the open set U , or simply
the image-system. We will study the base points of the image-system by the
resolution r.

The notations introduced in this section will be used all along this work.

2.3. Case of surfaces of the form zn ¼ f ðx; yÞ
Suppose the surface S is defined by an equation of the form zn ¼ f ðx; yÞ in

C3 with coordinates x, y and z. Assume the function f is reduced in order to
ensure the normality of S at the origin.

The linear system of polar curves on S is given by:

a
qf

qx
þ b

qf

qy
þ gzn�1 ¼ 0; ða : b : gÞ A P2:

Consider the projection p : S ! U HC2 induced by ðx; y; zÞ 7! ðx; yÞ. The
discriminant locus D of p is defined by the equation f ¼ 0. The image-system
on U is the family of plane curves defined by the equations:

a
qf

qx
þ b

qf

qy

� �n

þ ð�1Þn�1
gn f n�1 ¼ 0; ða : b : gÞ A P2:

Note that the curve D 0
t defined by a

qf

qx
þ b

qf

qy
¼ 0 is the polar curve in the

direction t ¼ ða : bÞ A P1 associated to the curve defined by f ¼ 0 (see [5]). We

will denote by f 0
t any representative of a

qf

qx
þ b

qf

qy
modulo multiplication by a

complex number.
We have then:

Proposition 2.5. An open dense part of the image-system in U HC2 is given
by the linear systems of curves defined by

lð f 0
t Þ

n þ m f n�1 ¼ 0; ððl : mÞ; tÞ A P1 � P1:

In other words, it is the collection parameterized by t A P1, of pencils generated

by the ðn� 1Þ th power of the reduced discriminant D and the nth power of its polar
curve D 0

t .

Remark 2.6. The discriminant curve of the projection p can be given a
scheme structure [13, §§1 and 2]. In this case it is the hypersurface defined by
f n�1 ¼ 0, that is one of the generators of the pencils of the image-system.
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In order to look for base points of the linear system of polar curves, our idea
is first to look for base points of the pencil of curves generated by the dis-
criminant and its general polar curve.

3. Base points of pencils of curves

We will now look for base points of a pencil of curves of the form
lð f 0

t Þ
n þ mf n�1 under a modification of the origin, f being a reduced holo-

morphic function, f 0
t a derivative of f in a generic direction, and n a positive

integer.
In a general setting, let f and g be reduced holomorphic functions around

the origin of C2, without common branches, a and b two positive integers. Base
points of the pencil generated by the functions f a and gb after a modification m
are defined as in definition 2.2; they are also called indeterminacy points of the
‘‘function’’ f a=gb in the modification m. D. T. Lê and C. Weber, studied this
indeterminacy for two reduced plane curves without common branches in [7].
Following their work, we are going to characterize base points under a mod-
ification by valuative criteria:

Let n : ~UU ! U be a normalized modification of 0 A C2 (i.e. a modification
composed with a normalization). We will call D1; . . . ;Dn the irreducible com-
ponents of the total transform ðð f agbÞ � nÞ�1ð0Þ; it includes the irreducible com-
ponents of the exceptional divisor and the strict transforms. We recall that the
valuation vpð f Þ of f at a point p A Di is the smallest degree of a Taylor ex-
pansion of f � n at p. We define the valuation við f Þ (resp. viðgÞ) of f (resp. of
g) on a component Di as the valuation vpð f Þ (resp. vpðgÞ) at a generic point of Di.

Let r : Z ! U be the minimal embedded resolution of the curve D defined
by f ¼ 0, as in §2.2.

Theorem 3.1. The base points of the pencil generated by f a and gb under the
resolution r are the intersection points of two components Di and Dj such that

við f Þ=viðgÞ < b=a < vjð f Þ=vjðbÞ
where we allow the quotient of valuations to be the infinity.

Proof. Let h A Z be a point of the exceptional divisor of r. Locally
around h, the total transform of f a and gb can be written respectively on the
form uha1

1 � � � han
n and vhb1

1 � � � hbn
n , where u and v are units and hi is a reduced local

equation of the irreducible component Di; with ai and bi non-negative integers.
We note that the integers ai and bi are the respective valuations of f a and gb

on Di.
Let ðl : mÞ A P1. The total transform of lf a þ mgb around h is

luha1

1 � � � han
n þ mvhb1

1 � � � hbn
n :ð2Þ

If h is on D1, but not at the intersections with the other components, then in
(2) we have a1 ¼ v1ð f aÞ, b1 ¼ v1ðgbÞ and ai ¼ bi ¼ 0 for 2a ia n.
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We distinguish two cases:
If a1 0 b1 then the total transform of lf a þ mgb is of the form h

ja1�b1j
1 � unit.

Hence h is not in the strict transform of any member of the pencil generated by
f a and gb.

If a1 ¼ b1, then the total transform of lf a þ mgb is of the form
ha1

1 ðlu 0 þ mv 0Þ. For a generic ðl : mÞ A P1, lu 0 þ mv 0 is a unit, and hence h is
not a base point by r of the pencil generated by f a and gb.

Let h be an intersection point of some components, let us say for sim-
plicity D1 � � �Dk, and suppose við f aÞa viðgbÞ for 1a ia k. Then, for a generic
ðl : mÞ A P1, the total transform of lf a þ mgb is of the form ha1

1 � � � hak
k � unit.

Hence, h is not a base point.
If there exist two components, let us say D1 and D2 such that h A D1 VD2

with v1ð f aÞ < v1ðgbÞ and v2ðgbÞ < v2ð f aÞ then the total transform of lf a þ mgb is

of the form ha1

1 hb2

2 ðlujþ mvcÞ, with jðhÞ ¼ cðhÞ ¼ 0 for all ðl : mÞ A P1. Hence
h is a base point.

So, h is a base point by r of the considered pencil if and only if, h is an
intersection point of at least two components Di and Dj such that

ðvið f aÞ � viðgbÞÞðvjð f aÞ � vjðgbÞÞ < 0:ð3Þ
By the definition we gave for a valuation of a function along an irreducible

curve, we have that viðhkÞ ¼ kviðhÞ.
If viðgÞvjðgÞ0 0, then we divide (3) by viðgÞvjðgÞ and get that h is a base

point if and only if

við f Þ=viðgÞ < b=a < vjð f Þ=vjðgÞ
or the same formula inverting the inequalities.

If viðgÞ ¼ 0 then, both vjðgÞ and við f Þ are non zero, and hence we get the
same inequality with við f Þ=viðgÞ ¼ y. r

Remark 3.2. i) The a‰rmation of theorem 3.1 is mainly the same as the
one in the proof of [7, 2.1]. In our case we do not need to suppose that we have
resolved the singularities of the curve ð fgÞ�1ð0Þ.

ii) The case we are interested in is when g ¼ f 0
t , where f 0

t is an equation of a
generic polar curve associated to f , b ¼ n and a ¼ n� 1. Since the function f is
supposed to be reduced, the curves f ¼ 0 and f 0

t ¼ 0 do not have any common
branch.

An obvious base point would have been an intersection point of the strict
transforms of f ¼ 0 and f 0

t ¼ 0. However, such a point does not exist in any
embedded resolution of f ¼ 0, see [5, 2.1].

4. Hironaka’s quotients

The quotients of valuation used in the previous section appear in the lit-
erature as ‘‘Hironaka’s quotients’’ of the functions f and f 0

t . In [5] the authors
study the growth of these quotients in the resolution diagram of a curve. Using
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their results, we will express some conditions on the base points of pencils
generated by the functions f n�1 and ð f 0

t Þ
n.

First we need to introduce some vocabulary on resolution diagram of plane
curves.

4.1. Vocabulary on resolution diagrams
Let f A Cfx; yg be a reduced holomorphic function, and let r : Z ! ðC2; 0Þ

be the minimal embedded resolution of the curve f ¼ 0. One knows it can be
obtained as a composition of blow-ups of points [2, III]. Denote by E1; . . . ;Er

the irreducible components of the exceptional divisor r�1ð0Þ.
The dual graph G of the resolution r is the graph obtained by associating to

each component Ei a vertex that we still call Ei, and to each intersection Ei VEj

an edge connecting the two corresponding vertices. We will represent the ir-
reducible components of the strict transform of the curve ð f ¼ 0Þ by arrows
supported on the vertices representing the irreducible exceptional components
intersecting it. We may also represent by some other arrows, the strict transform
of any other curve C. In this case it may happen that an arrow has support on
an edge and the intersections need not be transversal.

Following the definitions of [5, §2], we call #1 the vertex corresponding
to the irreducible component that appears in the first blow-up. An extremity of
the graph is a vertex other than #1 that is attached to only one other vertex and
not attached to any arrow of the curve ð f ¼ 0Þ. A rupture vertex is a vertex
attached to at least 3 other vertices or arrows of the curve ð f ¼ 0Þ. A dead
branch of G is a geodesic of G, linking a rupture vertex to an extremity without
containing any other rupture vertex.

4.2. The growth of Hironaka’s quotients
Let f and g : ðC2; 0Þ ! ðC; 0Þ be two reduced holomorphic functions, and

r : Z ! ðC2; 0Þ the minimal embedded resolution of the curve f �1ð0Þ. Denote
by E1; . . . ;Er the irreducible components of the exceptional divisor r�1ð0Þ and by
G the dual graph of the resolution r.

Definition 4.1. Hironaka’s quotient of the component Ei is the rational num-
ber qið f ; gÞ ¼ við f Þ=viðgÞ (or simply qi), where við f Þ (resp. viðgÞ) is the valuation of
f (resp. g) along the irreducible exceptional component Ei.

To each vertex of the dual graph we associate Hironaka’s quotient of the
corresponding irreducible component. The following theorem on the growth of
Hironaka’s quotient is proved by D. T. Lê, F. Michel and C. Weber in [5, 3.2].

Theorem 4.2. a) If E0 carries an arrow of g ¼ 0 then, there exists a vertex
E1 carrying an arrow of f ¼ 0 such that qi is strictly increasing along the geodesic
on the dual graph from E0 to E1.

b) qi is constant on the closure of each connected component of the com-
plement of all the geodesics linking the strict transforms of f with the ones of g.
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By closure we mean that, to each connected component we glue the vertex that
attaches it to the rest of the dual graph.

We are actually stating the theorem in the way of [12, II.1], restricted to the
case of functions defined on an open set of C2.

Remark 4.3. In [12, II.1], the morphism r is supposed to be a resolution of
the curve ð fgÞ�1ð0Þ. However, the same proof is valid in the situation of theorem
4.2.

4.3. The case of an irreducible curve
In this part we will restrict to the case where the function f is analytically

irreducible and the function g is a derivative f 0
t of f in a generic direction.

The dual graph G of the minimal embedded resolution r of the curve f ¼ 0
can be drown as in fig. 1.

There exists a unique way to write the graph G as a disjoint union of
connected linear subgraphs Gi such that each Gi contains one rupture vertex or
the arrow. Such a subgraph Gi will be called an ‘‘L-square’’ or simply an ‘‘L’’.

The L’s of a dual graph can be ordered from the first one that contains
the vertex #1 to the last one that contains the vertex carrying the arrow. There
is a one-to-one correspondence between the ordered L’s of the graph G and the
ordered Puiseux pairs associated to the irreducible function f .

Call m the multiplicity at the origin of the curve f ¼ 0 and let n be a
positive integer.

Theorem 4.4. Consider the pencil generated by f n�1 and ð f 0
t Þ

n. The base
points of this pencil in the minimal embedded resolution of f ¼ 0 satisfy the
following conditions:

– If m < n, the only possible base points are on the dead branches of the graph
G.

– If m ¼ n, the only possible base points are on the dead branches of G, but
not on the first L.

– If n < m, and the graph G contains two L’s or more, there is no base point
on the first L and they are possible on all the others.

Figure 1.

jawad snoussi38



We can have a more precise result if we require that the irreducible curve
f ¼ 0 has only one Puiseux pair. In this case the dual graph G of the minimal
embedded resolution of f ¼ 0 has only one L, and at most one rupture vertex
and one dead branch, as in fig. 2 (see [2, III]).

Corollary 4.5. – If n ¼ m, there is no base point.
– If n < m, the only base point is the intersection of the strict transform of

f �1ð0Þ with the exceptional divisor.
– If n > m, the only possible base points belong to the exceptional components

corresponding to vertices of the dead branch of G.

Before proving the theorem 4.4, let us recall that in [5], D. T. Lê, F. Michel
and C. Weber studied the ‘‘position’’ of the strict transform of a generic polar

curve (associated to a plane curve) in the dual graph of the minimal embedded
resolution of the given curve. In the case where the curve f ¼ 0 has only one
branch, we can summarize their result saying that: the strict transforms of a
generic polar curve intersect only the components of the dead branches. We also
refer to [9] for the irreducible case.

Proof of theorem 4.4 and corollary 4.5. By theorem 4.2, Hironaka’s quotient
við f Þ=við f 0

t Þ is constant over the vertices of the first L that are not on the dead
branch (including the rupture vertex). Furthermore, it is equal to m=ðm� 1Þ
since the multiplicity of a general polar curve at the origin is m� 1. On the
geodesic from the first rupture vertex to the vertex carrying the arrow of f ¼ 0,
við f Þ=við f 0

t Þ > m=ðm� 1Þ. Along the dead branch of the first L við f Þ=við f 0
t Þ <

m=ðm� 1Þ.
Now, apply theorem 3.1, to determine base points of the pencil.
– If ma n, then n=ðn� 1Þam=ðm� 1Þ. Hence, outside the dead branches,

including the arrow of f ¼ 0, við f Þ=við f 0
t Þb n=ðn� 1Þ. Hence there are no base

points outside the dead branches.

Figure 2.
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– If m ¼ n, then n=ðn� 1Þ ¼ m=ðm� 1Þ and við f Þ=við f 0
t Þ < n=ðn� 1Þ on the

vertices of the dead branch of the first L. Hence it contains no base point. In
particular, if f ¼ 0 has one Puiseux pair, then there are no base points.

– If n < m, then m=ðm� 1Þ < n=ðn� 1Þ. For all the vertices of the first L
we have við f Þ=við f 0

t Þ < n=ðn� 1Þ. So, if f ¼ 0 has more than one Puiseux pair,
there is no base point on the first L. If it has only one Puiseux pair then, the
intersection point of the arrow of f ¼ 0 with the exceptional divisor is a base
point. r

5. Relation with the polar curves on the surface

Our goal is to determine or characterize base points of polar curves on a
normal surface S of the form zn ¼ f ðx; yÞ, after Jung’s resolution of the surface
singularities.

We have already seen in proposition 2.5 that, under the projection
p : ðx; y; zÞ 7! ðx; yÞ, the collection of pencils

lð f 0
t Þ

n þ mf n�1 ¼ 0

ðl : mÞ A P1, t A P1 is a dense part of the image-system.
It is clear that a base point of the image-system is a base point of the pencil

generated by ð f 0
t Þ

n and f n�1 for a generic direction t. The converse is not nec-
essarily true. In fact, it may happen that each pencil ð f n�1; ð f 0

t Þ
nÞ has a base

point pt that depends on the parameter t. Such a point will not be a base point
of the image-system.

In order to state the exact correspondence between base points of both
families of curves, we need to introduce some additional vocabulary.

Consider a pencil of curves generated by the functions g and h supposed to
be reduced without common factors. Call E1; . . . ;En the irreducible components
of the exceptional divisor of sequence of point blow-ups. Following [7, §2], we
will call a dicritical component a component Ei, such that the function g=h is well
defined on Ei and is not constant.

Consider now the family of curves f 0
t ¼ 0 parameterized by t A P1. It is

the pencil generated by qf =qx and qf =qy. Let h be a base point of the pencil
generated by f n�1 and ð f 0

t Þ
n in the minimal embedded resolution r of the curve

f ¼ 0. By analogy with the previous definition, we will say that h is a mobile
base point, if it is a point of some dicritical component for the family of curves
f 0
t ¼ 0, t A P1.

Let ~SS be the normalized pull-back of S by r and p 0 the pullback of p by r,
as in the diagram 1.

Proposition 5.1. The base points of the polar curves of S on the surface ~SS
are the inverse image by p 0 of the non-mobile base points of the linear system
generated by f n�1 and ð f 0

t Þ
n, for a generic direction t A P1.
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Proof. The image by p 0 of a base point of the polar curves in ~SS is a base
point of the image system. It is then a non-mobile base point of the pencil
generated by f n�1 and ð f 0

t Þ
n for a generic direction t.

Conversely, a non-mobile base point of the pencils generated by f n�1 and
ð f 0

t Þ
n is the same base point for all these pencils. Since the morphism p 0 is finite

it is an image of a base point of polar curves on ~SS.
Since the surface S is a cyclic covering ramified over f ¼ 0, the surface ~SS is

locally the normalization of a cyclic covering ramified over the total pre-image of
f ¼ 0 by r. Hence, if x1 and x2 are two points of ~SS such that p 0ðx1Þ ¼ p 0ðx2Þ,
then the germs ð ~SS; x1Þ and ð ~SS; x2Þ are analytically isomorphic. So any point of
~SS whose image by p 0 is a non-mobile base point of a pencil ð f n�1; ð f 0

t Þ
nÞ for a

generic direction t is a base point of the polar curves of the surface S. r

This proposition, combined with theorems 3.1 and 4.4 and corollary 4.5
allow us to check in many cases whether a resolution of a surface has base points
for its polar curves.

6. Examples

In the examples of this section, we will use the process of desingularization
explained in [8]. The process is manly Jung’s resolution, with some extra-
techniques for constructing the weighted dual graph of the desingularization of
the surface. See also [4].

6.1. Dn-Surfaces
Consider the germ at the origin of the surface S defined by z2 ¼ x2yþ yn�1,

nb 4; the so-called Dn-singularity. The projection S ! C2 that maps ðx; y; zÞ to
ðx; yÞ has its discriminant locus defined by f ðx; yÞ ¼ x2yþ yn�1 ¼ 0.

We need to distinguish two cases:
n is even: Let us say n ¼ 2k.
In this case, the discriminant has three smooth branches and two tangents.
The dual graph of its minimal embedded resolution is given in fig. 3, where

the upper row of integers refers to the valuation of f and the lower row to the
one of f 0

t . The simple arrows represent the strict transform of f ¼ 0 and the
double ones, represent the strict transform of f 0

t ¼ 0 for a generic t A P1.
By [5, 2.1], the general polar curve associated to the discriminant has two

branches whose strict transform will intersect #1 and the rupture vertex.

#1

3 3+2 3+2(k–2)3+2(k–3)

2 2+1 2+(k–3) 2+(k–2)

Figure 3.
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By theorem 3.1, the base points of the linear system generated by f and
ð f 0

t Þ
2 are the intersection points of the strict transform of the discriminant with

the exceptional divisor.
If we apply the process explained in [8], we can blow-up once these in-

tersection points to ensure that the normalized pull-back is non-singular.
We get the new dual graph given in fig. 4.

by theorem 3.1, there are no more base points.
We pull-back this embedded resolution and get a resolution of the surface

that coincides in this case with the minimal resolution (See [8]). Hence there is
no base point on the minimal resolution of a D2k-singularity.

n is odd: Let us say n ¼ 2k þ 1.
The discriminant has two branches, a smooth one ðy ¼ 0Þ and a cuspidal

singularity ðx2 þ y2k�1 ¼ 0Þ. The dual graph of its minimal resolution is given
in fig. 5, the notations being the same as the previous case.

In this case also the base points of the linear system generated by f and
ð f 0

t Þ
2 are the intersection points of the strict transforms of the discriminant with

the exceptional divisor.
In order to ensure that the normalized pull-back is non-singular, we need

to blow-up once the intersection of the strict transform with the irreducible
component #1 of the exceptional divisor. We get fig. 6.

#1

3 3+2(k–2) 4+2(k–2)

4+2(k–2)

4

2 2 2+(k–2) 2+(k–2)

2+(k–2)

Figure 4.

#1

3 3+2(k–2)

2 2+(k–2)

4+2(k–2)

3+(k–2)

8+4(k–2)
5+2(k–2)

Figure 5.
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By theorem 3.1, there is only one base point on the new configuration: the
intersection point of the strict transform with the rupture vertex. We apply [8]
and get the minimal resolution, with the dual graph of fig. 7.

The only base point is on the irreducible component E of the exceptional
divisor.

Remark 6.1. G. Gonzalez-Sprinberg studied the Nash resolution of rational
double points of surfaces in [3]. The result of our example coincides with his result
concerning base points of the polar curves on Dn-singularities.

6.2. zk ¼ x2yþ yn�1

The discriminant curve is the same one as in the previous example.
However, base points depend also on the integer k.

In fact, we can see on the dual graph of the resolution of the discriminant
that, if kb 4 and nb 6 then the quotient of the valuations of the discriminant
and its polar curve will be strictly bigger than k=ðk � 1Þ. Hence, by theorem 3.1,

the base points of the linear system generated by f k�1 and ð f 0
t Þ

k on the minimal
embedded resolution of the discriminant are the intersection points of the strict
transform of f 0

t ¼ 0 with the exceptional divisor.
By proposition 5.1, we need then to check if these points are base points for

the pencil f 0
t ¼ 0, t A P1.

For simplicity, we will make the computations for a special value of n. Let
us assume n ¼ 7.

We get the dual graph in fig. 8, in which the upper row of integers are the
valuations of fx and the lower one are the valuations of fy.

#1

3 3+2(k–2)

2 2+(k–2)

4+2(k–2)

3+(k–2)

8+4(k–2)
5+2(k–2)4

2

Figure 6.

E

Figure 7.
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Applying the valuative criterion of theorem 3.1, to the functions fx and fy,
we find that the family of polar curves f 0

t , t A P1 has a base point corresponding
to the intersection of the strict transform of fx ¼ 0 with the exceptional com-
ponent with valuations 4 and 5.

Hence the surface zk ¼ x2yþ y6 has a base point on its Jung’s resolution.
We leave to the reader the case k ¼ 3.

6.3. zk ¼ x4 þ y5

The discriminant curve is defined by f ðx; yÞ ¼ x4 þ y5. It is an irreducible
curve with one Puiseux pair. The dual graph of its minimal resolution is given
in fig. 9.

For k ¼ 4, by corollary 4.5, the pencil generated by f 3 and ð f 0
t Þ

4 has no
base point. Hence Jung’s resolution of the surface z4 ¼ x4 þ y5 has no base
point for the polar curves of the surface.

For 2a ka 3 the pencil generated by f k�1 and ð f 0
t Þ

k has a unique base
point on the intersection of the strict transform of f ¼ 0 with the exceptional
divisor.

We apply the process of [8], and we find that Jung’s resolution of zk ¼
x4 þ y5 has one base point for the polar curves, k ¼ 2 or k ¼ 3.

For k > 4, the pencil generated by f k�1 and ð f 0
t Þ

k may have some base
points on the dead branch (by corollary 4.5). In order to localize them, we need
to fill the dual graph with the valuations of the generic polar curve f 0

t ¼ 0. We
get the filled graph of fig. 10, where the integer between parenthesis refers to the
valuation of the generic polar curve along the exceptional divisor, and the double
arrow refers to the strict transform of the generic polar curve.

We find out that the only base point of the pencil is the intersection of the
strict transform f 0

t ¼ 0 with the dual graph.

fy

2 3

4

7

2 104

fx

fx

5

Figure 8.

20 15 10 5

4

Figure 9.
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In order to apply proposition 5.1, we need to check wether this intersection
point is a mobile point or not. If we follow, on the dual graph of the resolution
of the discriminant, the valuations of qf =qx and qf =qy, we find that the inter-
section point is a mobile point of the polar curves associated to f ¼ 0. Hence,
by proposition 5.1, Jung’s resolution of zk ¼ x4 þ y5 has no base point for k > 4.

Remark 6.2. Jung’s resolution of a surface, is not in general the minimal
resolution. In order to get the minimal resolution from Jung’s resolution, one
needs to blow-down all the smooth rational irreducible components of the ex-
ceptional divisor that have a self-intersection equal to �1. This contraction may
create base points of the linear system of polar curves on the minimal resolution of
the surface. In order to determine these possibly new base points, one needs to
characterize the dicritical components of the linear system on Jung’s resolution.
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