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ON BOUNDARIES OF MODULI SPACES OF NON-SINGULAR
CUBIC SURFACES WITH STAR POINTS

NGuYEN CHANH TuU

Abstract

Let P be the parametrizing space of cubic surfaces in P3. Let M be the moduli
space of non-singular cubic surfaces and M be a suitable compactification. We study
components of boundaries of the relative subspaces of non-singular cubic surfaces with
star points in P' and in M.

1. Introduction

1.1. Let P" be the parametrizing space of cubic surfaces in P,g’, where k is
an algebraically closed field with characteristic 0. A hyperplane is called a rri-
tangent plane with respect to a given cubic surface X if the intersection consists of
lines. A star point of X is a common point of all lines of the intersection of a tri-
tangent plane and X. If a smooth cubic surface X has a star point then the cor-
responding hyperplane intersection consists of 3 distinct lines. This triple of lines
is called a star triple. 'We denote H, for the subset of P'° corresponding to non-
singular cubic surfaces with at least s star points. For each Hj, there is a decom-
position into irreducible components H" where each H" in fact, corresponds
to cubic surfaces generically containing exactly r star points. Definitions of all
H. §r> together results on their irreducibility, dimensions and inclusion relationships
could be found in [12] or [13].

1.2. We consider the action of PGL(4) on P'. Let ¢: (P)" — M be
the quotient space with respect to the action of PGL(4) on P!, where (P'%)* is
the subset of semi-stable points in the sense of geometric invariant theory (see [§],
[9] or [11]). Let M :=PGL(4)\(P' — A), where A is the locus of singular cubic
surfaces in P'°. In fact, the space M is projective, and M is the coarse moduli
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space of non-singular cubic surfaces (see [9], [10] or Section 3.2 of [13] for proofs).
The space M is a compactification of M. Let N := PGL(4)\(P'")’, where (P"°)’
is the subset of stable points.

Let (A)* = (P)*NA. We denote by AH" the mtersection of the closure
of H" with (A)*, Wthh is called the boundary of H in (P'®)*. The corre-
sponding space qﬁ(AHS ) is called the boundary of Hf) in M.

1.3. We denote by i.<Z) j.o/> the subset of P!’ corresponding to irreducible
cubic surfaces with exactly i singular points of type 4; and j singular points of
type A>. We refer to [1] and [2] or to [4] for general definitions of types of
singularities. We use j.o/, and i</ instead of 0.¢/;j.</, and i</10.0/, respec-
tively. In fact, we have 2i+3/ <9, i <4 and (i,j) # (3,1). It is well-known
that (P')* (respectively (P'°)*) consists of P! — A and all of i</ j.</, (respec-
tively io7)) (see [9], p. 51 or [13], 3.2.14 for a proof). We use the notation
iof) jof for the closure of i/ j.o/, in (Plg)‘“.

1.4. A singular, semi-stable cubic surface can be given by a polynomial in
the following form:

F= x3f2(x07x17x2) +f£1,(XO,X1,X2),

where f; for i =1,2 is a homogeneous polynomial of degree i and the point
(0:0:0:1) is a singular point. The type of singularity of the surface is char-
acterized by rank(f;) and the conﬁguration of points in Vp:(f2, f3) (see (4] for
details). A closed subscheme in P> of dimension 0 and of length 6 is called a
6-point scheme. Note that Vp:(f2, f3) is a 6-point scheme with special config-
urations. Conversely, let 2 be a 6-point scheme in P> with one of such con-
figurations. Let %, be the linear space of cubic forms in P? containing 2.
Then %5 has linear dimension 4. Let {fi,..., fa} be a basis of #». Consider
the morphism

y: P*—2— P
P = (/i(P): /o(P) : f3(P) : Ja(P)).

Let X be the closure of the image of yy. Then X is a semi-stable cubic surface.
The surface X is determined uniquely by £ up to projective transformations.
The surface X is called the csurface of 2. In the case Z consists of 6 points in
general position, the surface X is nothing but the blowing -up of P? at the 6
points. We denote ¢(2) for the formal cycle of a given 6-point scheme 2.
We denote S;; for the two-dimensional linear subspace consisting of all cubic
forms factoring into the linear form defining /; = P;P; and quadratic form passing
through 2 — {P;, P;}. This subspace determines uniquely a line on X which is
denoted by /;. The line J; is the closure of the image of /; — {P;, P;}. Similarly,
we denote Sp, for the two-dimensional linear subspace consisting of cubic forms
singular at P,. This determines uniquely a line on X which we denote by P;.
Also S¢, is denoted for the two-dimensional linear subspace consisting of all
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cubic forms factoring into the quadratic form defining the conic C; through
{Py,...,Ps} — {P;} and linear form vanishing at P;. This subspace determines
uniquely a line on X, which is denoted by C;. The line C; is nothing but the
closure of the image of C; — {Pi, P», P3}.

We complete this section with two well-known results.
LemMmA 1.1. The subsets i</)jAy are irreducible in PY.
Proof. This follows from [3]. Also see [13], 3.4.1. O

Lemma 1.2, Let x, y € (P)* such that the corresponding cubic surfaces con-
tain one singular point of type Ay. Let ¢ : (P"°)* — M be the quotient space.
Then ¢(x) = ¢(y). Consequently, the set M — N consists of the singleton s, which
is the image of all non-stable points.

Remark 1.3. This was pointed out (without proof) in the introduction part
of [10]. The reader could find a proof in [13], 3.4.2, which is formulated from a
suggestion of Prof. Dr. E. Looijenga.

2. On the boundary of H,

Recall that H is the subvariety of P! — A parameterizing all cubic surfaces
with at least one star point. The subset H; is irreducible of codimension 1 (see
[12], p. 288).

A surface X corresponding to a point in 2./, has exactly 16 lines. There is
one line on X containing two singular points and the unique star point of X.
See [13], p. 71 for the configuration of 16 lines of X.

PrROPOSITION 2.1. The subset 2.o/1 is contained in the closure of Hy. Con-
sequently, the subset 2.o/1 is a component of A(H). Moreover, the star point of
2.o/1 is the specialization position of star points on surfaces corresponding to points
in H1.

Proof. Let xe2</;. From [4] or [13], p. 71, we see that the corresponding
cubic surface X, is isomorphic to the csurface of a 6-point scheme 2 = Zle i
where 3 points Q,, 03, O lic on a line /;; three points Q4, Os, Qg lic on another
line ; no 3 of the five points Qi,..., Qs are collinear (FIGURE 1).

Let P, be a moving point on the line d = Q1 0. At a general position of P,
on d, the 6-point scheme %; = 21.6:1 P; where P, = Q; for | <i <5 and Ps = P,
gives a non-singular cubic surface with at least one star point. Except for a
finite number of positions, when P, moves on the line d, we have a family in H;.
This implies that x lies on the closure of H;. Moreover, we see that the section
of star points over the family is defined by the tritangent planes H, = (b3, lss, li¢).
In the specialization position, the linear subspaces S>3, S4s5, S¢, and Sp, coincide.
This means that Qg is the line connecting the 2 singular points and the section
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FIGURE 1. 6-point schemes giving points in 2.¢/

of tritangent planes H, contains the triple (2Q1,716). This implies the last con-
clusion. O

Recall that each surface corresponding to a point in .o/, has exactly 15 lines
([4], p- 255). Moreover, any singular point of type A, is a star point ([13],
p. 82).

PROPOSITION 2.2.  Any x € o/, lies on the closure of H,. Consequently, the
subset </, is a component of A(Hy). Moreover, the A, singularity of X, as a star
point, is the specialization position of star points on surfaces corresponding to points
in H].

Proof. Let 2 be a 6-point scheme where ¢(2) =20 + Zfiz Q;, such that
three points Q;, 0>, Q3 are contained in a line /; the direction at double point 20,
does not contain any Q; for i = 2,3,4,5; the four points Q1, 0>, Q4, Os as well as
4 points Q1, 03, Q4, Qs are in general position (FIGURE 2, (a)). We know that
([13], p. 73 and p. 86), the csurface of # is isomorphic to a cubic surface with
exactly one A, singularity.

Let xe.o/;. The surface X, is isomorphic to the csurface of a 6-point
scheme 2 where ¢(2) =20, + 7, O; described as above.

Let O be the intersection point of / and Q40s. Let d be the direction at the
double point 2Q;. Let m be a fixed line which contains Q3 and does not contain
any other point in {Qy,...,0s}. Let (Ps, P3) be a pair of moving points where
Ps e d and P; e m such that P3Pg contains O. It is clear that, except for a finite
number of positions, when moving (Ps, P3), the csurfaces of 6-point schemes
P = Z?ZIP,», where P; = Q; for ie{l1,2,4,5}, are isomorphic to non-singular
cubic surfaces with at least one star point. This defines a family in H;. When
(Pg, P3) = (Q1, Q3), we get 6-point scheme 2 whose csurface is isomorphic to X.
So x lies on the closure of Hi. Moreover, the star section over the family is
defined by the tritangent planes (/j2,/5,/36). In the specialization position, the
linear subspaces Si», 82 and Sy, coincide; the linear subspaces S3g, S13 and Sp,
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FIGURE 2. 6-point schemes giving points in .o/,

coincide. Note that the 6 lines QI,QZ,Q3,I~45,I~14 and l~15 contain the A, sin-
gularity. It is clear that the section of star points gives a specialization to the
intersection of Q,, Q5 and s, which is the A4, singularity. O

Remark 2.3. 1In [13], p. 82, there is a list of all star points on semi-stable
cubic surfaces. Moreover, there is a definition of proper star point, which is the
specialization position of some section of star points on non-singular cubic sur-

faces. In fact, all star points on semi-stable cubic surfaces are proper star points
([13], 3.4.10).

Consider the set K| consisting of all 6-point schemes 2 where ¢(#) = 21.6:1 P,

such that 2 is contained in an irreducible conic and /j; N34 Nls¢ = {O} (FIGURE
3).

FIGURE 3. 6-point schemes of K;

Let D; be the subset of P! consisting of all points corresponding to the
cubic surfaces, each of them is isomorphic to the csurface of an element in Kj.
It is clear that D; < .o/;. We see that D, is contained in the closure of H; also.
For this, let x e D;. The corresponding surface X, is isomorphic to the csurface
of some 6-point scheme # € K. Let ¢(2?) = Ele P;. Fix Py,...,Ps5 and let Pg
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move on the line PsO. This defines a family of 6-point schemes whose csurfaces
are isomorphic to non-singular cubic surfaces with at least one star point. When
Pg is contained in the conic defined by Py,...,Ps, we get . This implies that
x lies on the closure of H;. Moreover, we prove that:

LEMMA 2.4. The subset Dy is irreducible in (P'%)*.

Proof. Let xe Dy. Since D; < .o/], by choosing coordinates, we can as-
sume that x is given by

2
(1) F = x3(x7 — xox2) + f3,
where
_ 3 2 2 3 2 2 2
f3 = apXy + a1xyX1 + axXox] + asxy + a4x; X2 + asx1x; + dexy,

such that the scheme Vp:(x7? — xox2, f3) consists of 6 distinct points (see [4], pp.
247-248). Furthermore, there exists a numbering of 6 points Pi,...,Ps of
Vp2 (x% — Xon,fg,) such that /1, Ni4Nisg # O (FIGURE 3)

The 6 points of Vp:(x7 — xox2, f3) are determined by the solutions of the
equation

(2) ao0® + a0y + 0% + a30°9° + as0°y* + a0y’ + agyp® = 0.

Let T be the projective space parameterizing all homogeneous polynomials of
degree 6 in two variables.
Consider the morphism

(PHYe = T
6

(a1 : b1+ --a6 : bg) — H(b,-ﬁ—ail//).

i=1
Each solution (0;: ;) of (2) corresponds to a point P; = (07 : Opp; : y?) for

1 < i < 6 which is contained in the conic Vp:(x7 — xox2). We see that, the set of
all elements of (Pl)6 — A such that /15 N4 Nisg # O is irreducible. This implies
that the subset D = P' which consists of all elements corresponding to poly-
nomials of the form (1) and satisfying the above condition is irreducible. We see
that D; is the image of the morphism ¢ : PGL(4) x D] — P which is induced

from the action of PGL(4) on P!. So the set D; is irreducible. O
THEOREM 2.5. AH; = D, U2/ U of;.

Proof. 1t is clear that the sets Di,2./; and .o/, are irreducible components
of AH;. Conversely, let x be the generic point of an irreducible component W
of AH,. Suppose that W # 2./, and W # o/,. Since dim W =17, we have
x € .o/;. So the surface X, is isomorphic to the csurface of a 6-point scheme
2 such that ¢(2) = Zf’:l P; where 6 distinct points Py,..., Ps are contained in
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an irreducible conic. Note that X, has exactly 21 lines (see [4], p. 249). The
21 lines of X, are P; and ll, for 1 <i< j<6. Note that any singular point of
type A, is not a star point (see [13], p. 82). Therefore, the star point of X is
determined by a triple of the form (l,,,lhk,lm,,) This implies that the 6 points
Py, ..., Ps satisfy [ NIy N1y, # 0. This means that xe D; and W =D,. [

Recall that ¢ : (Plg)‘“ — M is the quotient space with respect to the action
of PGL(4) on PY.

_ COROLLARY 2.6. $(AH\) = ¢(D1)U¢(2+/1). Moreover, the components
#(D1) and $(2.o/) contain the singleton s.

Proof. Since ¢: (PY)* — M is a good quotient (see [11], 2.13 or [13],
3.2.8), the sets ¢(D;) and $(2.7)) are closed. Moreover, since 2./, < 2./1, we
have s e ¢(2.¢7;). The first conclusion follows from the theorem.

Let 2 € K. By definition, we have ¢(2) = Zle P; where 6 points Py, ..., Pg
are contained in an irreducible conic and /;; N4 Nise = {O}. Consider the qua-
dratic transformation ¢ with respect to Py, P; and Ps, we see that the 6-point
scheme ¢(2) consists of 6 distinct points Q1,..., Qs such that Q,, Q4, Q¢ are
collinear and Q;0>N Q304N Q0506 = {p(0)} (FIGURE 4). The 6-point scheme
@(2) corresponds to a csurface in D; (see [12], 3.3.10).

Qs \2

FIGURE 4. 6-point schemes giving points in D,

Consider a family in D; given by fixing 5 points 0>, ..., Q¢ and moving Q;
on the line O»¢(0), where ¢(0) = Q304N QsQ¢. When Q) coincides with the
intersection point of Q,¢(0O) and Q3;Qs, we get a 6-point scheme whose csurface
is isomorphic to a surface with exactly one A, singularity. This implies that

s € ¢(Dy). O

3. On the boundaries of Héz) and H§3>

Recall that H, is the subset of P'” — A corresponding to non-singular cubic
surfaces with at least two star pomts The space H, is of codlmensmn 2 and has
two irreducible components H, ) and H 3. The subset H, 2) parametrizes non-
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singular cubic surfaces containing two star triples with one line in common. The
subset H, ®) parametrizes non-singular cubic surfaces containing two star triples
with no hne in common; these surfaces have at least 3 star points, which are
collinear (see [12], p. 289 or [13], 2.3.1).

3.1. On the boundary of H§3)

ProposITION 3.1. The set 3./, is contained in the closure of H 3. Con-
sequently, the set 3.2/ is an irreducible component of AH

Proof. Let xe3.¢/;. The corresponding surface X, can be considered as
the csurface of a 6-point scheme 2 consisting of 6 distinct points Qy,..., Qg such
that Qp, 03, Q¢ as well as Qs3,0s, 0> and Qg4, 05, O¢ are collinear; moreover
01 ¢ 0204 (FIGURE 5). See [13], p. 74 for other configurations of 3./;.

FIGURE 5. 6-point schemes giving points in 3.c7)

Consider a family of 6-point schemes 2 = 21‘6:1 P; where P;=Q,; for ie
{2,3,4,6} and P, Ps move on the line Q;Q0s in such a way that P;Q3; N Q4PsN
0,06 # 0. Except for a finite number of positions, each pair (Pj,Ps) gives a
6-point scheme such that its csurface is isomorphic to a cubic surface in H23
This gives a family in Hf). The three star points are given by (l~15,l~23,l~46),
(IN13,1~45,1~26) and (i34,1~16,725). When P; = Q; then Ps = Qs. This implies that
xe AH§3). ]

DEerFINITION. Let K be the subset of (PZ)4 consisting of 4-tuple (P, P, P3,
P4) in general position. Let

Ky = {(Py, P, P3, Py, P5) € (P*)° | (P1, P, P3, Py) € Ko; Ps € l13; Ps ¢ Lx;
Ps # P, Vi= 1,2};
) — {(Py, Py, Py, P4, Ps, Pg) € (P*)° | (Py, Pa, P3, Py, Ps) € Ki;
116 N 124 n 135 #* 0; 114 N 123 N 156 #* (Z)} (FIGURE 6)
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FIGURE 6. 6-point schemes giving points in Dg)

Let D ) be the subset of P'° consisting of all points such that each cor-
responding cublc surface is 1som0rphlc to the csurface of a 6-point scheme deter-
mined by some 6-tuple in B( U (T easy to see that D( ) .

ProPOSITION 3.2.  The closure of D§3) is an irreducible component of AHé3>

Proof. First of all, we prove that D %) is irreducible. The set Ky is an open
subset of (Pz) so it is irreducible. Each fiber of the projection p: K; — Kj is
isomorphic to an open set of P!. This implies that K, is irreducible. Since K

is isomorphic to BS), the set Bf) is irreducible.

Let
L={(?F\,F,F;F) \?}eBg);Fi for 1 <i<4 is a cubic form in %},
U= {(9,F17F2,F3,F4) €L| {Fl,F27F3,F4} is a basis of gy}
Consider the following diagram:

open closed

3) % (P9)4

where p is the projection. The map g is surjective and every fiber is isomorphic
to (P*)*. So L is irreducible. This implies that U is irreducible.

Let D; be the subset of B§3) x P consisting of all pairs (#,x) where the
cubic surface corresponding to x is isomorphic to the csurface of the 6-point
scheme determined by 2. Given (2, F\, F,, F3,F4) € U, the closure of the ra-
tional map from P? to P? defined by the basis {F17F2,F3,F4} is a cubic surface
in P>. We have a morphism 7: U — D; which is surjective. This implies that
D, is irreducible. The projection D; — D( ) s surjective. Consequently D( ) is
irreducible.

Let x e D(23). The corresponding surface X, can be considered as the csur-
face of a 6-point scheme Z such that ¢(2) = Zl P where (Py,...,Pg) € B(>
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Fix Py, P,, Ps, P4 and let P3;, Ps move on the lines b3, /ss, respectively in such
a way that ljsNhsNhs #0. We obtain a family in H23) such that x is a
specialization position. In this family, the three star points are given by
(114,123,156), (1167124;135) and (126;1457113)- Moreover, we see that when Ps; = Pg
then P; moves to the intersection point of /j¢ and 3. This gives a 6-point
scheme whose csurface is isomorphic to a cubic surface with exactly one A;
singularity (FIGURE 2, (a)). U

LEMMA 3.3. Let x be the generic point of an irreducible component of AHé3>
Then x ¢ 2.9/,.

Proof. Suppose that x € 2.o/;. Let Si, 52,53 be the three star points of X,.
By choosing coordinates, we can assume that the corresponding cublc surface Xy
is isomorphic to the csurface of a 6-point scheme 2 such that ¢(2) = Z, 1 0i
where Qg, 0>, O3 as well as Qg, Q4, Q5 are collinear, and no 3 of the five points
Oi,...,0s are collinear (see FIGURE 1). The line Q6 contains the two singular
points and has multiplicity 4. The line I intersects Q6 but does not contain any
singular point, Note that the 9 lines of the 3 star triples of a non-singular cubic
surface in Hf’) are mutually different. Since the line /¢ has multiplicity 1, the
line /16 does not contain all S7,S5>,S83. Thus there exists a star triple whose lines
are different from /js. But from the configuration of lines and tritangent planes
together their multiplicities (see [6], Articles 35-201 or [13], pp. 71-72), we see
that there does not exist a such star triple. O

TurOREM 3.4. Let ¢: (P")” — M be the quotient space with respect to the
action of PGL(4) on PY.  Then ¢(AH§3)) :¢(D§3))U¢(TQ71). Moreover, the
components ¢(D (23) and ¢(3.o/1) contain the singleton s.

Proof By the end of the proof of Proposition 3.2, we see that the boundary
of D() contains a point of .o/,. So seg/)(D3) Srnce 3./, < 3.4/;, we have
S e ¢(3J2/1)

Let x be the generic point of an irreducible component W of ¢(AH )
Suppose that W # ¢(3.¢/;). From the previous lemma, we see that x ¢ 2.¢/.
Therefore x € o7;. By choosing coordinates, we can assume that the surface Xy
is isomorphic to the csurface of a 6-point scheme 2 where ¢(2) = Zl | Pi such
that the 6 points Pj,...,Ps are contained in an irreducible conic. Since the
singular point of X, is~not~ a star point, the 3 star points of X, are determined by
3 triples (Zij, buns kn)s (lim L, L) and (lmk,l,h,ljn) Where {i,j,mnhk} ={1,23,
4,5,6}. This implies that the 6 points Py, ..., Ps in P? satisfy the correspondrng
conditions, namely ;N Ly NIk # O, L N 1 ﬂ lnh # 0 and Ly NN 1L, # 0. Con-
sider the quadratrc transformation with respect to P;, P,, Py ([13] 3.3.10), we see
that the image of 2 is a 6-point scheme 2 where ¢(2) = Zl , OQ; such that 6
points Qp,...,Q6, up to a permutatlon of 6 letters, form an element of B()

This implies that W = ¢( 5 ) U
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3.2. On the boundary of Hz(z)

DErINITION.  Let

B(22) = {(P1,...,Ps,0) e (P>)®| P, Py, P35, P4, Ps are in general position;
ba N5 = {O}; the conic determined by Py,...,Ps is tangent
to P10 at P} (FIGURE 7 (a)).

Note that each element in B defines uniquely a 6-point scheme £ such that
c(P) = 2P, + ), P, where the direction at the double point 2P; is determined
by P;O. Moreover, the csurface of # has exactly two A4; singularities ([13], pp
71-72). Let D( ) be the subset of P consisting of all points such that each
corresponding cub1c surface is 1somorph1c to the csurface of a 6-point scheme
determined by some element of BU Then D< < 2.9.

Let

2 ={(P1,...,Ps) e (P))°| P, # P; Vi # j; Ly NIy Nlsg # O; 1 Nz Nsg # 0;

Py, Py, P35, Py, Ps, Pg are contained in an irreducible conic}

(FIGURE 7 (b))

Let E ) be the subset of P consisting of all points such that each cor-
respondlng cubic surface is isomorphic to the csurface of a 6-point scheme
determined by some 6-tuple in C(z) Then E, @) < .

FIGURE 7. 6-point schemes of B(Zz) and Céz), respectively

(})’ROPOSITION 3.5. The closures of Dg) and E2(2> are irreducible components of
AH,”.

Proof. Let P° be the projective space parameterizing the non-zero quadratic
forms in three variables. Let
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Ko ={(P1,P2,P3,Ps) € (Pz)4 | P1, Py, P3, Py are in general position};
Ky = {(P1, P2, P3, Py, 0,%) € (P?)° x P° | (Py, P2, P3, Py) € Ko; O € by;
O ¢ {Py, Ps}; O ¢ I13; € is the conic containing Py, P,, P3, P4 and
tangent to PO at Pi};
Ky = {(Py, P, P3, Py, P5, 0,%) € (P*)® x P | (Py, Py, P3, P4, 0,%) € Ky;
Ps e €N P;0}.

It is clear that the set Ky is irreducible. Every fiber of the projection

: Ki — K is isomorphic to an open set of P!. This implies that K, is irre-
duc1b1e The projections K, — K; and K; — B( ) are isomorphisms. Therefore
B;Z) is irreducible.

Similarly, we prove that Cz(2> is irreducible.

By a similar argument as used in the proof of (3.2), we see that D ) and E
are irreducible.

Suppose x € D<2) The corresponding surface X, is isomorphic to the csur-
face of a 6-point scheme P, determined by an element (Py,... P5,0) eB
Consider a family of H given by 6-point schemes # such that ¢(2) = Zl lP
where Pg is a moving pomt on the l~1ne~P1 O (FIGURE 7 (a)). The two star points
are given by (131,@6,116) and (li6, bh4,l35). This implies that xeAHéz)

Let x be an element in E, ) The cubic surface X, corresponding to x
is 1somorph1c to the csurface of a 6-point scherne %, determined by a 6-tuple
(Py,...,Ps) In C Consider a family of H glven by 6-point schemes 2 such
that c( )= Zl | Q, where Q; = P, for 1 < < 5 and Qg is a moving point on the
line 0,0, (FIGURE 7 (b)). The two star points are given by (/i2,/54,/s56) and
(Iss,l14,b3). This implies that XGAH ) O

PROPOSITION 3.6.  Let x be the generic point of an irreducible component W
of AHéz). If xe o, then W = E2<2).

Proof. By choosing coordinates, we can assume that the surface X, 1s iso-
morphic to the csurface of a 6-point scheme 2 such that ¢(2) = 3.° | P, where 6
points Py, ..., Ps are contained in an irreducible conic. Since the :41~s1n~gular1ty
is not a star point, the two star points of X, are defined by triples (;, lym, ln) and
(l,],l , Iun) Where {i, j,m,n,h, k} = {1,2,3,4,5,6}. This implies that the 6 points
Pi,....,Ps in P? satisfy the corresponding conditions, namely /; N/, Ny, # 0
and ;N Ly N1y # 0. Up to a permutation of 6 letters, the six points Py, ..., Pg

define a 6-tuple in C2<2). This means that er2<2) and therefore W:E2(2>.
U

Remark 3.7. How many components does the boundary of H ) have? We
do not know. We just know that, if §(A(H (2))) has another component then it is
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a subset of ¢(2.o/5). For this, a cubic surface corresponding to a general point of
#(3.o/1) contains 3 star points and there is no line containing more than one star
point.

4. On the boundaries of Hf) and Hff)

DeFmNITION.  Let X be a non-singular cubic surface having two star triples
with no lines in common. It follows that X has a third star triple such that three
corresponding star points are collinear. A such three star triples is called a Star-
Steiner set.

From [12], p. 289 or [13], p. 24, we have Hy = Hf) UH‘(t >UH where the
irreducible component Hff) (Hf),H‘(‘9> respectively) parametrizes non-singular
cubic surfaces, each of which possesses a pair (S, T) where S is a Star-Steiner set
and T is another star triple with exactly one line (all three lines, no line respec-
tively) in common with the lines of S.

4.1. On the boundary of Hf)

PrROPOSITION 4.1. The set 4./ is contained in the closure of H 5. Con-
sequently, the closure of 4./, in (P°)* is an irreducible component of AH”

Proof. Let xe4do/). By choosing coordinates, the corresponding surface
X, is isomorphic to the csurface of a 6-point scheme 2, where ¢(2) =20, +
204 + Q> + Qs such that Q;, 0>, 03, Q4 are in general position and the directions
at Q) and Q4 contain Qs (FIGURE 8, (b)). See [13], p. 96 for another config-
uration for 4.¢/; (FIGURE 8, (a)).

Pl 1D3 ™~ P

<
P @ ///Qs\

TR e %

() ()

FIGURE 8. 6-point schemes giving points in 4.c/

Let C be the conic containing Qi, 0>, Q4 and being tangent to the directions
at Q) and Q4. Consider a 6-point scheme 2 such that ¢(2) = Z P¢ where
P, = Q; for ie{l,2,4,5}, two points P;, P¢ are contained in C and PPN
P2P5 ﬂP3P6 75(2) (FIGURE 9)
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FIGURE 9. 6-point schemes giving points in Hiﬁ)

Let P; and Ps move on the conic C in such a way that P;PyNP,PsN
P3Pg # 0. We have a family of cubic surfaces in ijl The 6 star points are
given by (P1,Cs,hs), (Ps,Cs,lus), (ha,bs,l6), (Ca, P2,b4), (Ps,Cy,hs) and
(C1, Py, 112). When (P3,Ps) = (P1,Ps), we get the 6-point scheme 2. This
implies that x e AHff). O

Remark 4.2. We know that four A4, singularities on a cubic surface cor-
responding to a point in 4.¢7; form a tetrahedron. Each edge of the tetrahedron
contains one star point. Two star points on opposite edges lie on another line of
X, which has multiplicity one. Therefore, the 6 star points of X lie on a hyper-
plane spanned by the three lines of multiplicity 1.

Recall that ¢ : (P')* — M be the quotient space with respect to the action
of PGL(4) on PY.

THEOREM 4.3. The set ¢(AH§6>) consists of two points, one is the singleton
s and another is the image of 4.</1 in M.

Proof. Let Kf) be the set consisting of all 6-point schemes £ in general
position such that ¢(2) = Zle P¢ where the conic Cs is tangent to /j5 and Iys
at Py and P, respectively; the lines /14,55 and 36 have one point in common
(FIGURE 9).

The blowing-up of P? at 2 Kf’) is isomorphic to a non-singular cubic sur-
face in H46>. Conversely, for any x € H, (6 , the corresponding cubic surface X is
isomorphic to the csurface of some 6-point scheme in Kf). Let Z € Kf). Fix
Py, Py, Py, Ps and let P3, P¢ move on the conic Cs in such a way that P;Pg
contains the intersection point of /j4 and ls. Except for two positions deter-
mined when P3P = s and P3P = li4, the 6 points Py,..., Ps define a 6-point

scheme in K4(6>. This defines a surjective morphism from an open set of P!

to qﬁ(HiG)). This extends to a surjective morphism ¢ : P! — ¢(H P). It is clear
that when P3Ps = /14, we get a point #; € P' such that &(t;) = ¢(4.o7)) (see (4.1)).
When P3Ps = b5, we get a point #, € P'. The point &(f;) corresponds to the
csurface of a 6-point scheme %, such that ¢(#)) = 2P, + Py + P4+ P3 + Ps + P¢
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where P;, P3, Ps are collinear. The csurface of 6-point scheme #, has exactly
one singular point of type A,. Therefore (1) = s. O

Since Hﬁé) c Hf), we have:
COROLLARY 4.4. The set ¢(AH2(2)) contains the singleton s.

4.2. On the boundary of Hf)
Recall that N = PGL(4)\(P'")’. We know that M = NU{s}. Let

Bf:‘) ={(Py,...,Ps,01) € (P*)°| P\, Py, P3, Py are in general position;
112 ﬂl34 = {01}'])5 € 113 ﬂlz4;P6 € 123 ﬂPSO } (FIGURE 10 ( ))

Note that each element in B ) defines umquely a 6-point scheme £ such that
o(2?) = Zl , P,. Moreover, the csurface of Z is isomorphic to a cubic surface
with exactly three A4; singularities (see [13], pp. 74-75). Let D( be the subset of
P consisting of all points such that each corresponding cublc surface is iso-
morphic to the csurface of a 6-point scheme determined by some element in
Bf). We see that D( ) = 3.

Let

Y = {(P1,...,Ps,01,05) € (Pz)6 | Py, P2, P3, Py are in general position;
loNhyNise ={01}; 113 m124 Nise = {02}; ha N6 Nlss # O; Ps € bz}

(FIGURE 10 (b)) Each element in C ) defines umquely a 6-point scheme 2 such

that ¢(#) =3.%, P Moreover, the csurface of 2 is isomorphic to a cubic

surface with exactly one A4; singularity. Let E ) be the subset of P consisting

of all points such that each corresponding cub1c surface is 1somorph1c to the

cs%face of a 6-point scheme determined by some element in C( We see that
(e Jf 1.

FIGURE 10. 6-point schemes of Bff) and Cf), respectively

PrOPOSITION 4.5. The closures of Df) and Ef) in (P)* are irreducible
components of AH£4)
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Proof. Let Ky = {(P1, P2, P3,Ps) € (P 2)4|P1,P2,P3,P4 are in general posi-
tlon} Consider the projection p : B<4> — Ky. We see that p is an isomorphism.
So B Y s 1rreduc1b1e Similarly, the projection Cf) — Kj 1s an isomorphism.
So the set C is irreducible. By a similar argument as used in the proof of
(3.2), we see that D( ) and E, @ are irreducible.

Let x e D( ) By deﬁnltlon the surface X, is isomorphic to the csurface of
a 6-point scheme 2 determined by an element (Pi,...,Ps O;) of B<> Fix 4
points Py, Py, Py, P;. Let [;3Nhy ={0,}. Let P{, P, move on the hne 0,0, in
such a way that I;sNhgN/ly #0. Except for a finite number of positions of
(P, P¢), the 6 points Py,..., P4, PL, P; form a 6-point scheme # such that the
csurface of # is isomorphic to a cubic surface in H, ) ([12], p. 289). The four
star points are given by (11231347156) (11271365145) (113,1247156> and (134,]15,[26)
We obtain a family in H,~. It is clear that x is a specialization position of this
family.

Similarly, if x € Ei , we consider a family defined as above. The point x is
a specialization position which is determined when 53N 0,0, = {Ps}. O

Remark 4.6. 1t is not clear that if the boundary of Hf) in M contains the
singleton. However, we can prove the following corollary.

COROLLARY 4.7, The set ¢(AH )ﬂN consists of two points which are the
image of D4 and E4

Proof. See [13], 3.4.24. ]
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