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Small covers over wedges of polygons
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Abstract. A small cover is a closed smooth manifold of dimension n
having a locally standard Zn

2 -action whose orbit space is isomorphic to a simple

polytope. In the paper, we classify small covers and real toric manifolds whose
orbit space is isomorphic to the dual of the simplicial complex obtainable by a
sequence of wedgings from a polygon, using a systematic combinatorial method
of puzzles finding toric spaces.

1. Introduction.

One of basic objects in toric topology is a small cover which is an n-dimensional

closed smooth manifold with a locally standard Zn
2 -action whose orbit space is a simple

convex polytope. It was firstly introduced in [9] as a generalization of real projective toric

variety; when X is a toric variety of complex dimension n, there is a canonical involution

on X and its fixed points set forms a real subvariety XR of real dimension n, called a real

toric variety. It should be noted that XR admits a Zn
2 -action induced from the action of

torus Tn = (S1)n on X, and its orbit space is equal to X/Tn. A non-singular complete

toric variety X is called a toric manifold, and the corresponding real toric variety XR

is called a real toric manifold. Hence, if a toric manifold X is projective, then its orbit

space is a convex polytope, and hence XR is a small cover. For an n-dimensional small

coverM , the boundary complex K of its orbit spaceM/Zn
2 =: P is a polytopal simplicial

complex of dimension n − 1. We simply say that M is a small cover over K or a small

cover over P .

Two small covers are said to be Davis–Januszkiewicz equivalent (simply, D–J equiv-

alent) if there is a weakly equivariant homeomorphism between them which covers the

identity map of their orbit spaces. It is known by [9] that small covers are classified by

a pair of a polytopal simplicial complex K and a Z2-characteristic map λ over K. The

definition of Z2-characteristic map will be given in the next section. One fundamental

problem in toric topology is to classify small covers as well as (real) toric manifolds up

to D–J equivalence. See [10], [3], [4], [14], [6].

However, the class of small covers (up to D–J equivalence) is too huge to be clas-

sified. Hence, we have to restrict our attention to a smaller but interesting subclass of

manifolds. We denote by Pm the boundary complex of the regular m-gon, and by (∂In)∗

the boundary complex of the n-dimensional cube. Two remarkable classes of polytopal
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simplicial complexes are ones obtainable by a sequence of wedges (definition will be given

in Section 2) from either (i) (∂In)∗ or (ii) Pm. A simplicial complex in the class (ii) is

called a wedged polygon, and it is denoted by Pm(J) for some positive integer m-tuple

J ∈ Zm
+ . The reason why such classes are interesting came from the classical results for

toric manifolds. Up to present, there are complete classifications of toric manifolds up to

Picard number 3 ([12], [2], [6]). Interestingly, if X is a toric manifold of Picard number

≤ 3, then the boundary complex K of its orbit space should be in the class (i) or (ii).

In general, if the complex dimension of X is n and its Picard number is m− n, then K
is (n− 1)-dimensional star-shaped complex having m vertices. Therefore, if m− n = 2,

then K must be the boundary complex of the product of two simplices [15] which can

be obtained by a sequence of wedges from P4 = (∂I2)∗. Furthermore, it is shown in [11]

that if m− n = 3 and K supports a toric manifold, then K is obtainable by a sequence

of wedges from either P5 or (∂I3)∗. Therefore, it is reasonable to focus on toric spaces

whose orbit space has the boudary complex belonging to the class (i) or (ii).

A study of toric manifolds and small covers over K in the class (i) is well established.

Note that a simplicial complex (∂In)∗(J) in the class (i) is the boundary complex of the

product of simplices. A toric manifold over (∂In)∗(J) is known as a generalized Bott

manifold, and its real part is called a generalized real Bott manifold. In [5], it has been

shown that every small cover over (∂In)∗(J) is indeed a generalized real Bott manifold

and they have been classified up to D–J equivalence in terms of block matrices.

Nevertheless, for the class (ii), a study of toric manifolds and small covers over Pm(J)

has not been established for long times except for a wedged pentagon P5(J) which is in

the Picard number 3 case. Kleinschmidt and Sturmfels [13] showed that every toric

manifold over P5(J) is projective, and, by using this fact, Batyrev [2] classified toric

manifolds over P5(J).

Very recently, the authors in [6], [8] found a new way how to find all characteristic

maps over a wedge of K from information of K, and, using this new technique, in [7],

they have classified all toric manifolds over Pm(J) in the class (ii) and showed that all

toric manifolds over Pm(J) are projective. This generalizes both the main results of [13]

and [2]. Furthermore, they could count the number of the small covers (and real toric

manifolds) over P5(J) in [6]. Hence, as the next step, it is natural to classify small covers

or real toric manifolds over Pm(J), as stated in Question 6.3 of [8]. This is our main

purpose.

This paper is organized as follows. In Section 2, we review some notions including

simplicial wedges, characteristic maps, and diagrams and puzzles. In Section 3, we

compute the diagram of Pm, and, by using this, we give the classification of the small

covers over Pm(J) in Section 4. In addition, we classify real toric manifolds over Pm(J)

in Section 5. In the final section, we shall provide a summary of the paper. There, we

enclose all combinatorial concepts required to understand the results, and present the

main results and examples. This section would be helpful for the readers even if s/he did

not read other parts of the paper carefully.
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2. Backgrounds.

The reader is recommended to refer [8] for many terms of this paper, even though

we will present definitions of essential notions.

Let K be a simplicial complex on the vertex set [m] := {1, 2, . . . ,m}. We say that a

subset τ ⊆ [m] of the vertex set [m] is a minimal non-face of K if τ itself is not a face of

K, but every proper subset of τ is a face of K. Every simplicial complex K is determined

by describing its minimal non-faces.

Definition 2.1 ([1]). Let J = (j1, . . . , jm) be an m-tuple of positive integers. The

simplicial complex K(J) is defined by the vertex set

{11, 12, . . . , 1j1︸ ︷︷ ︸, 21, 22, . . . , 2j2︸ ︷︷ ︸, . . . ,m1, . . . ,mjm︸ ︷︷ ︸}
and the minimal non-faces

{(i1)1, . . . , (i1)ji1︸ ︷︷ ︸, (i2)1, . . . , (i2)ji2︸ ︷︷ ︸, . . . , (ik)1, . . . , (ik)jik︸ ︷︷ ︸}
for each minimal non-face {i1, . . . , ik} of K.

In particular, for distinct vertices p1, . . . , pk ∈ [m] of K, denote by Jp1,...,pk
the m-

tuple such that the pith entries are 2, for i = 1, . . . , k, and the other entries are 1, and,

then we use the notation

wedp1,...,pk
K:= K(Jp1,...,pk

).

When k = 1, the operation wedp1 K is known as the (simplicial) wedge operation, and

it is easy to show that K(J) can be obtained from a sequence of wedges. See Figure 1

for an example of the simplicial wedge.

1

2

34

5 −→

11

12 2

34

5

K wed1K = K(2, 1, 1, 1, 1)

Figure 1. Illustration of a wedge of K.

Let us further assume that K is a polytopal simplicial complex, that is, K is a

simplicial complex isomorphic to the boundary of some simplicial polytope. Note that if

K is polytopal, then every K(J) is also polytopal ([6, Proposition 2.2]).

Definition 2.2. A Z2-characteristic map over K, or simply a characteristic map,
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is a map λ : [m]→ Zm
2 such that the following holds:

if {i1, . . . , in} ∈ K, then {λ(i1), . . . , λ(in)} is linearly independent. (∗)

The condition (∗) is known as the non-singularity condition. Two characteristic maps

λ1, λ2 : [m]→ Zn
2 over K are called Davis–Januszkiewicz equivalent, or D–J equivalent, if

there exists a linear isomorphism ϕ ∈ GL(n,Z2) such that λ2 = ϕ ◦ λ1. The equivalence

classes themselves are called Davis–Januszkiewicz classes or D–J classes.

When K is a polytopal simplicial complex of dimension n − 1, it is a fundamental

fact shown in [9] that Z2-characteristic maps over K up to D–J equivalence correspond

one-to-one to small covers over K up to weakly Zn
2 -equivariant homeomorphism fixing

orbit spaces. A characteristic map λ : [m] → Zn
2 is often represented by an (n × m)-

matrix called the characteristic matrix, whose ith column vector corresponds to λ(i) for

1 ≤ i ≤ m. Two characteristic matrices λ1 and λ2 correspond to two D–J equivalent

characteristic maps if and only if λ2 can be obtained from λ1 by a series of elementary

row operations.

For a polytopal simplicial complex K and a face σ of K, its link LkK σ is also

polytopal. If K supports a characteristic map λ, then the link also supports a natural

characteristic map over a link of K called the projection as follows.

Definition 2.3. For a characteristic map λ : [m] → Zn
2 and a face σ of K, the

projection of λ with respect to σ is defined as

(Projσ λ)(w) = [λ(w)] ∈ Zn
2/⟨λ(v) | v ∈ σ⟩ ∼= Zn−|σ|

2

when w is a vertex of LkK σ. The projection is well defined up to D–J equivalence. When

σ = {v} is a vertex, one can simply write Projσ λ = Projv λ.

Remark 2.4. Note that a link of K corresponds to a face of its dual simple

polytope. Furthermore, the projection is the characteristic map for a submanifold fixed

by a subtorus. When σ is a vertex, then the submanifold is known as a characteristic

submanifold.

Remark 2.5. Throughout this paper, we will not necessarily distinguish the con-

cept of characteristic maps and D–J classes unless otherwise mentioned. In actual cal-

culation, we will mainly deal with characteristic maps while freely using elementary row

operations. Also observe that the projection is actually an operation of D–J classes.

Let Pm be the boundary complex of the regular m-gon for m ≥ 3. We call Pm(J) a

wedged polygon. Our objective of the current paper is to figure out the D–J classes over

Pm(J). For this objective, let us review the definition of the diagram D(K) of a polytopal

simplicial complex K. Once D(K) is calculated, one can construct every characteristic

map over K(J) for any J due to [8].

Definition 2.6. Let K be a polytopal simplicial complex and define V,E, and S

as follows.
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1. V is the set of the D–J classes over K.

2. E is the set of the D–J classes over wedpK where p is a vertex of K.

3. S is the set of the D–J classes over wedp,qK where p and q are distinct vertices of

K.

The triple (V,E, S) is called the diagram of K and is denoted by D(K). The elements

of V,E, and S are called the nodes, edges, and realizable squares of D(K) respectively.

To any edge Λ of D(K), one can correspond the set {λ1, λ2, p} where λ1, λ2 ∈ V are

two D–J classes over K which are the two projections of Λ, namely, λ1 = Projp2
Λ and

λ2 = Projp1
Λ. This can be regarded as an edge connecting λ1 and λ2 which is colored

p, which looks like

λ1
p

λ2 .

In this case, we say that λ1 and λ2 are p-adjacent. We can abuse the set {λ1, λ2, p}
for the edge Λ by the uniqueness result of [6, Theorem 1.1]. That is, if both of the

characteristic maps Λ and Λ′ over wedpK correspond to {λ1, λ2, p}, then either they

are D–J equivalent or they are the “twins” of each other (see Remark 2.7). An edge

{λ1, λ2, p} is said to be trivial if λ1 = λ2. The edge set E contains every possible trivial

edge. That is, for every D–J class λ ∈ V and every vertex p ∈ K, {λ, p} ∈ E.

Like edges, for any realizable square Λ, we have the four projections λ1, λ2, λ3, and

λ4 onto K, so that

λ1 = Proj{p2,q2} Λ,

λ2 = Proj{p1,q2} Λ,

λ3 = Proj{p2,q1} Λ, and

λ4 = Proj{p1,q1} Λ,

and the four edges

λ1
p

q

λ2

q

λ3
p

λ4 .

(2.1)

We call a figure of the form (2.1) a square.

Remark 2.7. For a D–J class Λ over wedpK such that λ1 = Projp2
Λ and λ2 =

Projp1
Λ, there surely exists a D–J class Ξ over wedpK such that λ1 = Projp1

Ξ and

λ2 = Projp2
Ξ, because of symmetry of the simplicial wedge. That means, every edge of
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D(J) has its “twin”. The twins must be distinguished when counting D–J classes over

wedpK, but in most other situations they need not be distinguished. A similar argument

goes for four different realizable squares over wedp,qK corresponding to the same square

up to symmetry.

Here, we introduce a general method how to find D–J classes over K(J) using the

given diagram D(K) referring to [8]. Let K be a polytopal simplicial complex. Let

J = (j1, . . . , jm) ∈ Zm
+ be an m-tuple of positive integers. We consider an edge-colored

graph G(J) with m colors constructed as follows: G = G(J) is the graph determined

by the 1-skeleton of the simple polytope ∆j1−1 ×∆j2−1 × · · · ×∆jm−1, where ∆j is the

j-dimensional simplex. One remarks that each edge e of G can be uniquely written as

e = p1 × p2 × · · · × pv−1 × ev × pv+1 × · · · × pm,

where pi is a vertex of ∆ji−1, 1 ≤ i ≤ m, i ̸= v, and ev is an edge of ∆jv−1. Then we

color v ∈ [m] on the edge e. Let us call a subgraph of G(J) a subsquare if it comes from

a 2-face of ∆j1−1 ×∆j2−1 × · · · ×∆jm−1 which has 4 edges. Two edges

e = p1 × · · · × pv−1 × ev × pv+1 × · · · × pm and

e′ = p′1 × · · · × p′v−1 × e′v × p′v+1 × · · · × p′m

of G(J) are said to be parallel if ev = e′v. Every parallel edge of G(J) has the same color.

Observe that the diagram D(K) whose realizable squares are forgotten can be re-

garded as a pseudograph whose edges are colored.

Definition 2.8. A realizable puzzle over K is a pseudograph homomorphism

π : G(J)→ D(K) such that

1. π preserves the coloring of the edges, and

2. each image of the subsquare of G(J) is a realizable square in D(K).

Theorem 2.9 ([8], Theorem 5.4). There is a one-to-one correspondence

{D–J classes over K(J)} ←→ {realizable puzzles G(J)→ D(K)}.

We have one more useful statement as follows.

Proposition 2.10 ([8], Proposition 4.3). Let v be any fixed node of G(J) and

suppose that there are two realizable puzzles π, π′ : G(J) → D(K). Then π = π′ if and

only if π(v) = π′(v) and π(w) = π′(w) for every node w of G(J) which is adjacent to v.

The essential form of the above statement is for the realizable squares. That is, if

a square of the form (2.1) is realizable, then λ4 is uniquely determined by λ1, λ2, and

λ3. If this holds, we say that the two edges {λ1, λ2, p} and {λ1, λ3, q} spans a realizable

square.

According to Remark 5.7 of [8], for any edge {λ1, λ2, p} and any vertex q ̸= p, the

square of the form
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λ1
p

q

λ2

q

λ1
p

λ2

is always realizable. We say the realizable square is reducible. Realizable squares which

are not reducible are called irreducible.

3. The diagram D(Pm).

According to Theorem 2.9, the diagram D(K) can be used to construct every

D–J class over K(J). Therefore, our objective here is to provide the diagram D(Pm).

Throughout the paper, we identify the vertex set of Pm with [m] in counterclockwise

order.

3.1. Node of D(Pm).

We begin by calculating the node set V of D(Pm). Let us label the vectors(
1
0

)
,
(
0
1

)
,
(
1
1

)
∈ Z2

2 by a, b, and c, respectively. Then one can regard a characteristic

map λ : [m]→ Z2
2 as a finite circular sequence consisting of a, b and c, no letter in which

appears consecutively. Furthermore, any cardinality two subset of {a, b, c} is a basis of

Z2
2 and the other element is the sum of the two, and hence any permutation of a, b, and

c does not affect the D–J type of the characteristic map λ.

Proposition 3.1. Let tm be the number of D–J classes over Pm. Then,

tm =
2m−1 − (−1)m−1

3
.

Proof. We may assume that λ(1) = a and λ(2) = b. If λ(m − 1) = a, then the

number of possible cases for λ(3), . . . , λ(m − 2) is equal to tm−2 and λ(m) is either b

or c. So total number is 2tm−2. If λ(m − 1) ̸= a, then λ(m) is determined uniquely,

and the number of possible cases for λ(3), . . . , λ(m − 1) is equal to tm−1. Therefore,

tm = tm−1 + 2tm−2, where t3 = 1 and t4 = 3. □

It should be observed that a D–J class over Pm can be regarded as a special kind

of partitions of [m]: for each λ (up to D–J equivalence), [m] is divided into at most

three disjoint subsets λ−1(a), λ−1(b), and λ−1(c). Using this observation, we can give

an alternative definition of the D–J class over Pm. A subset I of [m] is called non-

consecutive if {p, p+ 1 mod m} are not contained in I for any p ∈ [m].

Definition 3.2. The set {µa, µb, µc} is a D–J class over Pm if it satisfies the

following:

1. {µa, µb, µc} is a weak partition of [m], that is, it is a partition of [m] and one of µi

could be empty.
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2. all of µa, µb, and µc are non-consecutive.

3.2. Edge of D(Pm).

The next step is for the edges of D(Pm).

Definition 3.3. For a characteristic map λ over Pm and p ∈ [m], the support of

p for λ, denoted by suppλ p, is suppλ p = λ−1(λ(p)). Since suppλ p = suppλ′ p whenever

λ and λ′ are D–J equivalent, the support suppλ p is well defined for a D–J class λ.

Example 3.4. The characteristic map λ over P7 represented by(
1 0 1 0 1 1 0

0 1 1 1 0 1 1

)
,

or simply written as abcbacb, is D–J equivalent to acbcabc, and they correspond to

the D–J class {{1, 5}, {2, 4, 7}, {3, 6}} or simply {15, 247, 36}. The support of 4 for λ is

suppλ 4 = {2, 4, 7}.

Lemma 3.5. Two D–J classes λ1 and λ2 over Pm are p-adjacent if and only if

suppλ1
p = suppλ2

p.

Proof. A proof is easily given by direct matrix calculation. Note that λ1 and λ2
are p-adjacent if and only if there is a characteristic matrix Λ over wedp Pm whose two

projections are λ1 and λ2. As a version of Lemma 4.2 of [8] for the Z2-characteristic

maps, it is known that for a characteristic map

λ1 =
(
w1 w2 · · · wm

)
n×m

over a simplicial complex K where wi denotes the ith column vector of λ1, the D–J

class Λ over wedpK one of whose projection is λ1 can be expressed by a matrix of the

following form, called a standard form for an edge,

Λ =

 1 · · · p− 1 p1 p2 p+ 1 · · · m
w1 · · · wp−1 wp 0 wp+1 · · · wm

e1 · · · ep−1 1 1 ep+1 · · · em


(n+1)×(m+1)

, (3.1)

for ei ∈ Z2 for i ̸= p. The numbers above the horizontal line are indicators for vertices

of simplicial complexes.

In our case, let us assume that λ1(p) = λ2(p) =
(
1
0

)
. For a suitable rearrangement

of columns, Λ can be written as

Λ =

1 0 1 · · · 1 0 · · · 0 1 · · · 1
0 0 0 · · · 0 1 · · · 1 1 · · · 1
1 1 a1 · · · aj b1 · · · bk c1 · · · cℓ

 ,

whose first two columns correspond to Λ(p1) and Λ(p2) respectively. Check that the

projection λ1 = Projp2
Λ is
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Small covers over wedges of polygons 747(
1 1 · · · 1 0 · · · 0 1 · · · 1
0 0 · · · 0 1 · · · 1 1 · · · 1

)
and λ2 = Projp1

Λ is(
1 1 + a1 · · · 1 + aj b1 · · · bk 1 + c1 · · · 1 + cℓ
0 0 · · · 0 1 · · · 1 1 · · · 1

)
.

One can see that a1 = · · · = aj = 0 in order for λ2 = Projp1
Λ to satisfy non-singularity

condition, which is equivalent to that suppλ1
p = suppλ2

p. □

Recall that a characteristic map λ over Pm can be regarded as a finite circular

sequence consisting of a, b, and c. If S ⊂ [m] is a non-consecutive subset with |S| ≥ 2,

then λ|[m]\S is divided into |S| finite sequences called pieces of λ determined by S. If

S = λ−1(a) = {p | λ(p) = a}, then one obtains pieces consisting of b and c, each of

which will be called a bc-piece. Likewise, ca-pieces and ab-pieces are defined.

For a bc-piece s, the inversion of s is obtained from s by exchanging b and c. The

following proposition completely describes the edges of D(Pm).

Proposition 3.6. Let λ1 and λ2 be two characteristic maps over Pm and p ∈ [m].

We also assume that λ1(p) = λ2(p) = a. Then the D–J classes with respect to λ1 and

λ2 are p-adjacent if and only if λ1 becomes λ2 after replacing a number of bc-pieces by

their inversions.

Proof. The proof is similar to Lemma 3.5. Pick a bc-piece of λ1 together a’s on

its ends. For example, consider a part of λ1(
1 0 1 0 1 · · · 1 0 1
0 1 1 1 1 · · · 1 1 0

)
which corresponds to abcbc · · · cba. According to the proof of Lemma 3.5, λ2 should

look like (
1 0 + s1 1 + s2 0 + s3 · · · 1 + sr−1 0 + sr 1

0 1 1 1 · · · 1 1 0

)
at the same place, for s1, . . . , sr ∈ Z2. Since λ2 satisfies non-singularity condition, we

have s1 = · · · = sr. If s1 = 0, then the corresponding bc-piece is fixed. If s1 = 1, then the

inversion is applied to the bc-piece. This works regardless of the shape of the bc-piece,

completing the proof. □

Example 3.7. Over P7, assume that λ = abcbacb and p = 1 or p = 5. Then there

are apparently three characteristic maps obtained by a number of inversions of bc-pieces:

acbcacb, abcbabc, and acbcabc. But since the whole exchanging of b and c does not

change the D–J equivalence type, abcbacb ∼= acbcabc and acbcacb ∼= abcbabc. In

general, there are 2| suppλ p|−1 D–J classes p-adjacent to the D–J class with respect to λ.
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Let λ be a characteristic map over Pm and let s, t ∈ [m] be two vertices of Pm such

that λ(s) = λ(t) = a. Then s and t divide [m] \ {s, t} into two pieces A and B. Then we

obtain a new characteristic map inv{s,t} λ by replacing every bc-piece lying in A by its

inversion. Although this definition depends on the choice of A, inv{s,t} λ is well defined

up to D–J equivalence provided λ(s) = λ(t). More generally, let S = {s1, . . . , s2ℓ} ⊂ [m]

be a non-consecutive subset of even cardinality and let λ be a characteristic map over

Pm such that λ(si) = λ(sj) for i, j = 1, . . . , 2ℓ. Then we define

invS λ = inv{s1,s2} inv{s3,s4} · · · inv{s2ℓ−1,s2ℓ} λ.

One can easily see that the operation invS is well defined up to D–J equivalence and does

not depend on the order of s1, . . . , s2ℓ.

Remark 3.8. Intuitively, invS can be understood as the following. One can regard

S as a set of 2ℓ points on the circle. Then one paints each piece of the circle S1 \S black

or white like the chessboard, such that neighboring pieces have different colors. Then

one performs inversion for every bc-piece in the black region. There are exactly two ways

of such colorings, but invS is independent of coloring up to D–J equivalence.

Definition 3.9. For a D–J class λ over Pm, an ordered pair (p, S) is called an

e-set (compatible with λ) if it satisfies the following

1. p ∈ [m],

2. S ⊂ [m] is of even cardinality, and

3. S ⊂ suppλ p.

Note that (p, ∅) is an e-set for arbitrary λ. We call (p, ∅) an empty e-set. We have a

natural map ϵ which maps an edge e = {λ1, λ2, p} of D(Pm) to an e-set ϵ(e) = (p, S) in

the following way: p is the color of e, and S is the unique set such that λ2 = invS λ1.

Example 3.10. Let us consider the edge e = {λ1, λ2, p} when p = 1,

λ1 = abcabababab, and

λ2 = abcacacabac.

Then suppλ1
p = {1, 4, 6, 8, 10} and ϵ(e) = (1, {1, 4, 8, 10}).

When λ is a node incident to e in D(Pm) and ϵ(e) = (p, S), ϵ(e) is compatible with

λ. Conversely, for any node λ of D(Pm) and its compatible e-set (p, S), there is a unique

edge e incident to λ such that ϵ(e) = (p, S).

3.3. Square of D(Pm).

The last step is to find realizable squares of D(Pm). Recall that, if two edges

{λ1, λ2, p} and {λ1, λ3, q} (p ̸= q) span a realizable square, then the fourth vertex is

unique. That is, if both of the two squares
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λ1
p

q

λ2

q

λ3
p

λ4

and

λ1
p

q

λ2

q

λ3
p

λ5

are realizable, then λ4 = λ5 as D–J classes. In order to find a realizable square, we

firstly consider Λ over wedp,qK whose projections are given three characteristic maps

λ1, λ2 and λ3, namely, Proj{p2,q2} Λ = λ1, Proj{p2,q1} Λ = λ2 and Proj{p1,q2} Λ = λ3.

Then, if Λ exists, then it must be uniquely determined by λ1, λ2, and λ3, as well as

λ4 = Proj{p1,q1} Λ.

We have the matrix (3.1) for an edge of the diagram. For realizable squares, every

D–J class over wedp,qK for p ̸= q can be expressed by the following matrix called a

standard form for a square,
1 · · · p− 1 p1 p2 p+ 1 · · · q1 q2 · · · m
w1 · · · wp−1 wp 0 wp+1 · · · wq 0 · · · wm

e1 · · · ep−1 1 1 ep+1 · · · eq 0 · · · em
f1 · · · fp−1 fp 0 fp+1 · · · 1 1 · · · fm


(n+2)×(m+2)

,

by Proposition 4.3 of [8]. Note that its two projections with respect to p2 and q2 have

the form of (3.1) when v = q and v = p respectively. We can regard them as the two

edges {λ1, λ2, p} and {λ1, λ3, q}. One can see that Λ is a genuine characteristic matrix

over wedp,q Pm if and only if Proj{p1,q1} Λ satisfies the non-singularity condition as a

characteristic map over Pm. In that case Proj{p1,q1} Λ = λ4 is the fourth node of the

realizable square.

By Lemma 3.5, we know that suppλ1
p = suppλ2

p and suppλ1
q = suppλ3

q. We

have two cases depending on whether suppλ1
p = suppλ1

q or not. Let us consider the

first case when suppλ1
p = suppλ1

q. We may assume that λ1(p) = λ1(q) = a. Let Λ be

a standard form over wedp,q Pm. Among vertices of wedp,q Pm, we pick p1, p2, q1, q2 and

any other point r as a representative and we write λ1(r) =
(
v1

v2

)
. The submatrix of the

matrix Λ consisting of the columns corresponding to p1, p2, q1, q2, and r would look like

the following:

Λ′ =


p1 p2 q1 q2 r

1 0 1 0 v1
0 0 0 0 v2
1 1 0 0 x

0 0 1 1 y

 ,

where x, y ∈ Z2. To compute λ2(r), λ3(r), and λ4(r) from this matrix, we add the third

and fourth row to the first one to obtain
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p1 p2 q1 q2 r

0 1 0 1 v1 + x+ y

0 0 0 0 v2
1 1 0 0 x

0 0 1 1 y

 .

Since the columns corresponding to p1 and q1 are coordinate vectors, one can obtain

Proj{p1,q1} Λ
′ by deleting rows and columns containing the underlined entries:p2 q2 r

1 1 v1 + x+ y

0 0 v2

 .

As consequence, we conclude that λ4(r) =
(
v1+x+y

v2

)
and similarly λ2(r) =

(
v1+x
v2

)
and

λ3(r) =
(
v1+y
v2

)
. When v2 = 0, v1 should be 1 and one concludes λ1(r) =

(
1
0

)
= a and

x = y = 0. When v2 = 1, λi(r) = b or c for any i = 1, 2, 3, 4. In this case, observe that

x and y indicate whether the bc-piece at the position of r is inverted or not. Therefore

we reach the following theorem.

Theorem 3.11. Consider the characteristic map λ1 over Pm of the form

λ1 = as1as2a · · ·ask,

where k = | suppλ 1| and si are bc-pieces for 1 ≤ i ≤ k. Let p and q be distinct two vertices

of Pm such that λ1(p) = λ1(q) = a. Then any two edges {λ1, λ2, p} and {λ1, λ3, q} span
a realizable square with fourth node λ4. Furthermore, one can assume that

λ2 = aϕ1(s1)aϕ2(s2)a · · ·aϕk(sk)

and

λ3 = aψ1(s1)aψ2(s2)a · · ·aψk(sk),

where each of ϕi and ψi is either the identity or the inversion, and the fourth node λ4 is

computed as follows :

λ4 = aψ1(ϕ1(s1))aψ2(ϕ2(s2))a · · ·aψk(ϕk(sk)). □

Example 3.12. Let λ1, λ2, and λ3 be characteristic maps over P11 represented by

λ1 = abcbacabacb,

λ2 = abcbabababc,

λ3 = acbcabababc,

and pick distinct elements p and q in µa = {1, 5, 7, 9}. Then the fourth node determined

by the edges {λ1, λ2, p} and {λ1, λ3, q} is
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λ4 = acbcacabacb.

The remaining second case is when suppλ1
p ̸= suppλ1

q. In this case, we can assume

that λi(p) = a and λi(q) = b for all i = 1, . . . , 4. Just like before, let Λ be a standard form

for wedp,q Pm. We again pick p1, p2, q1, q2, and r like before and we write λ1(r) =
(
v1
v2

)
.

The submatrix of the matrix Λ consisting of the columns corresponding to p1, p2, q1, q2,

and r would look like the following:
p1 p2 q1 q2 r

1 0 0 0 v1
0 0 1 0 v2
1 1 0 0 x

0 0 1 1 y

 ,

where x, y ∈ Z2. Again like before, we obtain

λ2(r) =

(
v1 + x

v2

)
, λ3(r) =

(
v1

v2 + y

)
and λ4(r) =

(
v1 + x

v2 + y

)
. (3.2)

One observes that if Λ is non-singular then xy = 0 because if both of x and y were 1,

then one of λ1(r), λ2(r), λ3(r), or λ4(r) should be zero, violating the non-singularity

condition.

Let µ and ν be two characteristic maps, not D–J classes, over Pm. We denote by

µ∆ν the set {v ∈ [m] | µ(v) ̸= ν(v)}. For a subset A ⊆ [m], we denote by A the set

A = {v + 1, v, v − 1 mod m | v ∈ A} ⊆ [m].

Lemma 3.13. Let λ1, λ2 and λ3 be characteristic maps over Pm such that λi(p) = a

and λi(q) = b for i = 1, 2, 3. Then the following are equivalent.

1. Two edges {λ1, λ2, p} and {λ1, λ3, q} span a realizable square.

2. λ1∆λ2 ∩ (λ1∆λ3) = ∅.

3. λ1∆λ2 ∩ λ1∆λ3 = ∅.

Proof. Note that r ∈ λ1∆λ2 if and only if x = 1 in (3.2), and r ∈ λ1∆λ3 if

and only if y = 1 in (3.2). In other words, λ1∆λ2 indicates the position of the inverted

bc-pieces and λ1∆λ3 corresponds to the inverted ca-pieces. Since xy = 0, one has

(λ1∆λ2) ∩ (λ1∆λ3) = ∅.
Let us show the implication (1) =⇒ (2). Suppose that there is an element r ∈ [m]

such that r ∈ λ1∆λ2 \ (λ1∆λ2) and r ∈ λ1∆λ3. Because r is adjacent to an inverted

bc-piece, λ1(r) = a. Without loss of generality, one can assume that r + 1 ∈ λ1∆λ2.

Then r + 1 ∈ λ1∆λ3 ∩ (λ1∆λ2) and reminding that (λ1∆λ2) ∩ (λ1∆λ3) = ∅, we obtain

that λ1(r + 1) = b because r + 1 ∈ λ1∆λ3 \ (λ1∆λ3). Then (3.2) implies that λ4(r) =

λ4(r + 1) = c, which contradicts to the non-singularity condition.

To show the implication (2) =⇒ (3), consider parts of λ1∆λ2 and λ1∆λ3 where they

could intersect. There are two possibilities of λ1 restricted on λ1∆λ2:

· · · bcbca or · · · cbcba.

751(63)



752 S. Choi and H. Park

Similarly, there are two possibilities of λ1 restricted on λ1∆λ3:

bacac · · · or bcaca · · · .

In order to satisfy both λ1∆λ2 ∩ λ1∆λ3 ̸= ∅ and (λ1∆λ2) ∩ (λ1∆λ3) = ∅, the only

possibility is

· · · cbcbcaca · · · ,

where · · · cbcb lies on λ1∆λ2 and caca · · · is on λ1∆λ3. But it contradicts to the

condition (2).

For the remaining part (3) =⇒ (1), one observes that (3.2) guarantees λ4 is obtained

from λ1 by performing two inversion maps given by two edges {λ1, λ2, p} and {λ1, λ3, q}.
Since each inversion does not change the endpoints of λ1∆λ2 and λ1∆λ3, λ4 is well

defined and non-singular, proving that the square is realizable. □

The realizable square in Lemma 3.13 is called a realizable square of type 2 if it is

irreducible. A realizable square of D(Pm) is called of type 1 if it is not of type 2.

Example 3.14. Put p = 1, q = 2 and let λ1, λ2, and λ3 be characteristic maps

over P10 represented by

λ1 = ababcbabcb,

λ2 = abacbcabcb,

λ3 = ababcbabab.

Then

λ4 = abacbcabab.

From now on, we study the realizable square in the language of e-sets, starting from

the following definition. We fix a characteristic map λ over Pm.

Definition 3.15. When p ̸= q, two e-sets (p, S) and (q, T ) compatible with λ

are said to be type 1 or type 2 λ-related, if edges {λ, invS λ, p} and {λ, invT λ, q} span a

realizable square of type 1 or type 2, respectively.

When p = q, (p, S) and (q, T ) compatible with λ are always said to be type 1 λ-

related.

Now, let us find a combinatorial criterion for two given e-sets to be type 2 λ-related

or not. Let (p, S) be a non-empty e-set of [m] and fix a vertex r ∈ [m] \ S. Recall

Remark 3.8 to observe that the set S divides [m] \ S to two disjoint subsets A and B

corresponding to “black” and “white” arcs respectively. We can assume that r ∈ B.

Then we write A =: Ωr(S).

Proposition 3.16. Assume that we are given two non-empty e-sets (p, S) and

(q, T ) compatible with λ. Then (p, S) and (q, T ) are type 2 λ-related if and only if λ(p) ̸=
λ(q) and Ωq(S) ∩ Ωp(T ) = ∅.
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Proof. To show the “only if” part, let us assume that ϵ({λ1, λ2, p}) = (p, S) and

ϵ({λ1, λ3, q}) = (q, T ). We can further assume that λ1(p) = λ2(p) = λ3(p) = a and

λ1(q) = λ2(q) = λ3(q) = b. Then observe that λ1∆λ2 = Ωq(S) and λ1∆λ3 = Ωp(T ).

Then, it immediately follows by Lemma 3.13.

To show the “if” part, one picks any λ such that

λ(i) =

{
a, i = p or i ∈ S;
b, i = q or i ∈ T

and the proof goes analogously. □

Remark 3.17. We remark that an empty e-set (p, ∅) is always type 1 λ-related

with arbitrary e-set (q, T ) compatible with λ. One can see that two non-empty e-sets

(p, S) and (q, T ) compatible with λ are type 1 λ-related if and only if λ(p) = λ(q).

4. Classification of small covers over Pm(J).

We are now ready to describe the realizable puzzles over Pm. Let us fix J =

(j1, . . . , jm) ∈ Zm
+ which is an m-tuple of positive integers. We denote by DJ(m,J)

the set of pairs (λ, E) such that λ is a node in D(Pm) and E is a finite sequence of e-sets

compatible with λ,

(1, S1
1), . . . , (1, S

1
j1−1), (2, S

2
1), . . . , (2, S

2
j2−1), . . . , (m,S

m
1 ), . . . , (m,Sm

jm−1),

such that the members of E are pairwise λ-related.

Theorem 4.1. There is a bijection

{small covers over Pm(J) up to D–J equivalence} ←→ DJ(m,J).

Proof. By Theorem 2.9, we will use the realizable puzzle instead of the D–J class

over Pm(J). We label nodes of G(J) in the following way. Let V (G(J)) be the node set

of G(J). Recall that G(J) is the 1-skeleton of the polytope

∆j1−1 ×∆j2−1 × · · · ×∆jm−1.

By labeling the vertices of ∆n−1 by 1, 2, . . . , n, we may identify V (G(J)) = I(J) where

I(J) = {α = (α1, . . . , αm) | 1 ≤ αp ≤ jp for p = 1, . . . ,m}.

Let us use the notation 1 := (1, . . . , 1). A node α adjacent to 1 can be written as

α(p, αp) := (1, . . . , 1, αp, 1, . . . , 1),

where the pth entry is αp, and the other entries are 1. In order to construct a pair

(λ, E) from a realizable puzzle π : G(J) → D(Pm), we put λ = π(1) and E the sequence

consisting of (ϵ ◦ π)({1,α(p, αp)}) when 1 ≤ p ≤ m and 1 ≤ αp ≤ jp − 1. Then, (λ, E) is
indeed an element of DJ(m,J). In summary, (λ, E) is determined by π(1) and π(α) for
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all α adjacent to 1.

The converse construction is the essential part of the proof. Our aim here is to

construct a realizable puzzle π using the data of (λ, E). The basic philosophy is Propo-

sition 2.10. We assign an e-set to each edge of G(J) incident to 1 analogously to above

argument. This is extended to the whole edges of G(J) using the following rules.

1. Every parallel edge is assigned the same e-set.

2. For a triangle and the corresponding e-sets (p, Si), i = 1, 2, 3,

S3 = (S1 ∪ S2) \ (S1 ∩ S2).

This assignment is indeed well defined and the verification is very easy. Recall that G(J)

is an edge-colored graph. If e is an edge of G(J) whose color is i, then its assigned e-set

is (i, S) for some S. Now we define a pseudograph homomorphism π : G(J) → D(Pm)

by the following rules.

1. π(1) = λ.

2. If α and β are adjacent nodes in G(J) and the assigned e-set to the edge {α,β} is
(p, S), then

π(β) = invS π(α).

We must check that π is well defined and is a realizable puzzle. The following

diagram

e,(p,S) @@
@@

@@
@

e′,(p,S′)~~
~~
~~
~

λ1
g,(r,U)

f,(q,T )

~~
~~
~~
~~

λ2
f ′,(q,T ′)

@@
@@

@@
@@

indicates some nodes and edges of G(J), whose two nodes map to λ1 and λ2 = invU λ1
by π respectively. Here, e, e′, f, f ′, and g are edges and the ordered pairs are assigned

e-sets. We additionally assume that the e and e′ are parallel and thus S = S′ if p ̸= r,

and the f and f ′ are parallel and T = T ′ if q ̸= r.

In order to show both well-definedness and realizablity of π, we have to show the

transitivity property of e-sets: if (p, S), (q, T ) and (r, U) are mutually λ1-related as e-

sets compatible with λ1, then (p, S′), (q, T ′) and (r, U) are mutually λ2-related as e-sets

compatible with λ2.

Step 1: Let us firstly show that (p, S′), (q, T ′) and (r, U) are e-sets compatible with

λ2. Note that suppλ1
r = suppλ2

r by the definition of invU . Since U ⊂ suppλ1
r, we also

have U ⊂ suppλ2
r. Therefore, (r, U) is compatible with λ2.

Note that S′ is either S or (S ∪ U) \ (S ∩ U). If λ1(p) = λ1(r), then
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{p} ∪ S′ ⊂ {p} ∪ (S ∪ U) ⊂ suppλ1
p = suppλ1

r = suppλ2
r.

Since p ∈ suppλ2
r, we have suppλ2

r = suppλ2
p, and, thus

{p} ∪ S′ ⊂ suppλ2
p. (4.1)

If λ1(p) ̸= λ1(r) (and thus p ̸= r), then (p, S) and (r, U) must be type 2 λ1-related.

Hence, Ωp(U) ∩ Ωr(S) = ∅. Note that since p ̸∈ Ωp(U) and S ⊂ Ωr(S), we have

({p} ∪ S) ∩ Ωp(U) = ∅. Assume that λ1(p) = a and λ1(r) = b. Then, invU is the map

exchanging a and c in Ωp(U). Therefore, {p} ∪ S ⊂ suppλ2
p. Therefore,

{p} ∪ S′ = {p} ∪ S ⊂
(
suppλ2

p ∩ suppλ1
p
)
. (4.2)

In both cases, (p, S′) is compatible with λ2. Similar arguments can be applied to (q, T ′).

Step 2: Observe that (r, U) and (p, S′) are λ2-related since the three edges e, e′,

and g determine a realizable square when p ̸= r, or a triangle when p = r. Similarly,

(r, U) and (q, T ′) are λ2-related.

Step 3: If U = ∅, then λ1 = λ2, S
′ = S and T ′ = T . Therefore, since (p, S) and

(q, T ) are λ1-related, (p, S
′) and (q, T ′) are λ2-related. If S = ∅, then S′ = ∅ or S′ = U .

In the second case, we must have p = r and thus (p, S′) = (r, U) and we can use the

result of Step 2. Hence, in any case, (p, S′) and (q, T ′) are λ2-related. Similar argument

can be applied to the case T = ∅. Hence, the claim holds when one of S, T and U is an

empty set.

From now on, let us assume that none of S, T and U is an empty set. We may use

Proposition 3.16 and Remark 3.17 as criteria whether the e-sets are λ2-related in the

next Step.

Step 4: Let us show that (p, S′) and (q, T ′) are λ2-related. We divide this case

into a few smaller cases:

• λ1(p) = λ1(q) = λ1(r): By (4.1), we have

p ∈ suppλ2
p = suppλ2

r = suppλ2
q ∋ q.

Therefore, (p, S′) and (q, T ′) are type 1 λ2-related.

• λ1(p) = λ1(q) ̸= λ1(r) and Ωp(U) = Ωq(U): Note that suppλ1
p = suppλ1

q, and

observe that

p ∈ suppλ2
p \ Ωp(U) = suppλ1

p \ Ωp(U)

= suppλ1
q \ Ωq(U) = suppλ2

q \ Ωq(U) ∋ q.

Therefore, λ2(p) = λ2(q), and hence, (p, S′) and (q, T ′) are type 1 λ2-related.

• λ1(p) = λ1(q) ̸= λ1(r) and Ωp(U) ̸= Ωq(U): Note that {U, [m]\Ωp(U), [m]\Ωq(U)}
is a partition of [m]. Also observe that
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{p} ∪ Ωr(S) ⊂ [m] \ Ωp(U)

and

{q} ∪ Ωr(T ) ⊂ [m] \ Ωq(U).

Thus q /∈ Ωr(S) and Ωq(S) = Ωr(S). Likewise Ωp(T ) = Ωr(T ), concluding Ωq(S)∩
Ωp(T ) = ∅. Since S′ = S and T ′ = T , (p, S′) and (q, T ′) are type 2 λ2-related.

• λ1(p) ̸= λ1(q): If λ2(p) = λ2(q), then (p, S′) and (q, T ′) are type 1 λ2-related. Now

let us consider the case where λ2(p) ̸= λ2(q). In this case, (p, S) and (q, T ) are

type 2 λ1-related. Hence, Ωp(T ) ∩ Ωq(S) = ∅. If r ̸= p and r ̸= q, then S = S′

and T = T ′. Therefore, (p, S′) and (q, T ′) are type 2 λ2-related. If p = r, then

S′ = (S ∪ U) \ (S ∩ U), and T ′ = T because q ̸= r. Since (q, T ) and (r, U) must

be type 2 λ1-related, we have Ωp(T ) ∩ Ωq(U) = Ωr(T ) ∩ Ωq(U) = ∅. To show

Ωp(T
′) ∩ Ωq(S

′) = ∅, we are enough to prove that

Ωq(S
′) ⊂ Ωq(S) ∪ Ωq(U). (4.3)

To show (4.3), pick any element x ∈ [m] \ (S ∪ U) reminding that the right hand

side contains S ∪ U . Then [m] \ {x, q} is the disjoint union of two consecutive sets

A and B. Now x is an element of Ωq(S
′) if and only if |S′ ∩ A| is odd. Thus one

of |S ∩ A| or |U ∩ A| must be odd, and x ∈ Ωq(S) ∪ Ωq(U). In conclusion, (p, S′)

and (q, T ′) are type 2 λ2-related.

The above Steps 1–4 prove our claim.

Let us finish our goal using the above claim we just have shown. Pick a node

α = (α1, . . . , αm) ∈ I(J) of G(J) and consider the minimal path from 1 to α given by

the sequence

1 = (1, . . . , 1), (α1, 1, . . . , 1), (α1, α2, 1, . . . , 1), . . . , (α1, . . . , αm) = α.

Then π(α) is given by a chain of inv maps

π(α) = invSm
invSm−1

· · · invS2
invS1

λ

for the e-sets (1, S1), . . . , (m,Sm) corresponding to the above sequence. To check that this

is well defined, we start from the node 1. The edge connecting 1 and (α1, 1, . . . , 1) and

that connecting 1 and (1, α2, 1, . . . , 1) spans a realizable square since the e-sets (1, S1) and

(2, S2) are λ-related. Therefore invS2 invS1 λ is well defined. Next, we move on the node

(α1, 1, . . . , 1). Then the claim shows that (2, S2) and (3, S3) are π(α1, 1, . . . , 1)-related

and thus invS3 invS2 invS1 λ is well defined. The inductive application of this procedure

proves that π is well defined for every node of G(J). Similarly, our claim shows that

every subsquare is realizable, completing the proof. □

For a D–J class λ over Pm, put

E(λ, J) = {E | (λ, E) ∈ DJ(m,J)}.

756(68)



Small covers over wedges of polygons 757

Corollary 4.2. The number of small covers over Pm(J) is equal to the sum of

|E(λ, J)| for all D–J classes λ over Pm.

Some examples and calculations for Corollary 4.2 will be given in Section 6.

5. Real toric manifolds over Pm(J).

The objective of this section is to specify every real toric manifold over the wedged

polygon in terms of realizable puzzles. In [7], the authors have described all smooth

complete toric varieties over wedged polygons Pm(J) up to D–J equivalence. By taking

the mod 2 reduction, one can obtain the classification of real toric manifolds over wedged

polygons up to D–J equivalence. Before that, we need some preperation. We identify

[m] with the vertex set of Pm as before. Let us start with the real toric manifolds over

Pm.

Lemma 5.1. Let λ : [m] → Z2
2 be a Z2-characteristic map over Pm. The small

cover given by λ, written as M(λ), is also a real toric manifold if and only if

1. λ is D–J equivalent to
(
a b a b

)
, or

2. the image of λ has exactly three elements.

In other words, M(λ) is a real toric manifold unless λ is D–J equivalent to

Λ2k :=
(
a b a b · · · a b

)
2×2k

,

where k ≥ 3.

Proof. First of all, recall the classical fact that every complete smooth toric

surface is either CP 2 or a consecutive equivariant blow-up of a Hirzebruch surface. Then

their mod 2 reductions cannot be D–J equivalent to Λ2k for k ≥ 3. More precisely, we

can define a blow-up of a Z2-characteristic map
(
v1 · · · vm

)
over Pm to be(

v1 · · · vi vi + vi+1 vi+1 · · · vm

)
for i = 1, . . . ,m− 1, or (

v1 · · · vm vm + v1

)
for i = m, which is a Z2-characteristic map over Pm+1. Observe that Λ2k is not a blow-up

of other Z2-characteristic map, and Λ2k gives a real toric manifold if and only if k = 2.

Conversely, we are going to show that every λ : [m] → Z2
2 with three values gives a

real toric manifold. One can assume that m ≥ 5 and we use an induction on m. Note

that there is an inverse operation of the blow-up for λ, called a blow-down, if there is a

vertex p of Pm such that λ(p), λ(p+1), and λ(p+2) are all distinct, when p, p+1, and

p+ 2 are considered modulo m. When λ is viewed as a circular sequence, it should have

a subsequence acb up to D–J equivalence, i,e, λ(p) = a, λ(p+ 1) = c, and λ(p+ 2) = b.

If |λ−1(c)| ≥ 2, then the blow-down obtained by deleting c in the subsequence also has

three values. If p + 1 is the only one with the value c, then we have λ(p − 1) = b for
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p−1 ̸= p+2 mod m and we have a subsequence bacb. Therefore there is an blow-down

obtained by deleting a. Since |λ−1(a)| ≥ 2, the blow-down still has three values. By

induction, λ is obtained by consecutive blow-ups from a Z2-characteristic map over P4

and the proof is complete. □

The next step is for real toric manifolds over wedp Pm. The following is from [7].

Proposition 5.2. [7, Proposition 3.1] Let Σ1 and Σ2 be two complete non-singular

fans with m rays in R2 and the matrix

λ =

(
1 0 x3 x4 · · · xm
0 1 y3 y4 · · · ym

)
a characteristic matrix for Σ1. Suppose that the two fans are 1-adjacent in the diagram

Dtoric(Pm) for toric manifolds. Then either of the following holds :

1. two fans are the same.

2. two fans share a ray generated by
(−1

0

)
.

In the second case, a characteristic matrix for Σ2 can be written as the following :

ζe :=

(
1 0 x3 · · · xℓ−1 xℓ = −1 xℓ+1 + e xℓ+2 − yℓ+2e · · · xm − yme
0 1 y3 · · · yℓ−1 yℓ = 0 yℓ+1 = −1 yℓ+2 · · · ym

)
for some e and ℓ. Conversely, for every e ∈ Z, ζe is 1-adjacent to λ whenever λ contains

a ray generated by
(−1

0

)
.

An edge {λ1, λ2, p} in D(Pm) is said to be real toric if either λ1 = λ2 or the following

holds:

1. there exists q ∈ [m] so that λ2 = inv{p,q} λ1, and

2. each piece of λ1 determined by {p, q} does not contain λ1(p) or contains all three

values.

An edge satisfying above (1) can be represented by the set {λ1, (p, q)}, or a circular

sequence consisting of a, b, and c whose two points at p and q are marked with different

marks () and {} respectively. For example, consider the edge {λ1, λ2, 1} where

λ1 = abcbacab and

λ2 = abcbabac.

It can be represented by {abcbacab, (1, 5)} or (a)bcb{a}cab. It is real toric because

bcb does not contain a and cab contains all three values. On the other hand, the edge

(a)bc{a}bab is not real toric since bab contains a and has only two values.

Lemma 5.3. An edge in D(Pm) gives a real toric manifold over wedp Pm for some

p ∈ [m] if and only if it is real toric.
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Proof. Let us denote by λR the mod 2 reduction of a characteristic map λ : [m]→
Zn. Let us deal with “if” part first. That is, we are given an edge satisfying (1) and (2).

We start from the circular sequence (a)b{a}b or (a)b{a}c and apply consecutive blow-

ups to finally obtain any edge satisfying (1) and (2). Observe that every edge obtained

in this way corresponds to a real toric manifold over wedp Pm by Proposition 5.2. Or,

equivalently, one starts from a circular sequence with two different marks satisfying

(1) and (2), and performs blow-downs conserving two marks to end with (a)b{a}b or

(a)b{a}c. First, let us consider the case that each piece of λ1 determined by {p, q} does
not contain a. Then each piece consists of b and c and for example it will look like

(a)bcb · · · cbc{a},

together with the two marked a’s. Then one can repeat blow-downs until the piece has

length 1, obtaining (a)b{a} or (a)c{a}. When a piece contains λ1(t) = a, watch for

its two neighbors at t − 1 and t + 1 mod m. If they are different to each other, then

we can remove a at t by blow-down. If not, then without loss of generality λ1(t − 1) =

λ1(t+1) = b. Then one searches for c at t−2 and t+2 mod m in the piece and at t−3

and t+ 3 and so on. Since the piece contains c by condition (2), one can eventually find

c in the piece. For example, the following piece

babab · · ·abc,

where the underlined a is at the position t, can be reduced to

bac

by consecutive blow-downs. Finally we can remove a on the underline.

For “only if” part, the condition (1) is a direct consequence of Proposition 5.2.

Suppose that the condition (2) does not hold. Then we have a non-singular fan Σ in R2

spanning the upper half-plane whose mod 2 reduction has the form abab · · ·aba up to

D–J equivalence. Then by reflection of Σ across the x-axis, we obtain a complete non-

singular fan whose mod 2 reduction has only two values a and b. This is a contradiction

with Lemma 5.1 and the proof is done. □

Let J = (j1, . . . , jm) ∈ Zm
+ be an m-tuple of positive integer.

Theorem 5.4. A realizable puzzle π : G(J) → D(Pm) corresponds to a real toric

manifold if and only if either every node of G(J) maps to the same node of D(Pm), or

there is a quadruple (p, q, λ1, λ2) such that

1. p, q ∈ [m] and λ2 = inv{p,q} λ1,

2. the edges {λ1, λ2, p} and {λ1, λ2, q} are real toric, and

3. every nontrivial edge of G(J) maps to either the edge {λ1, λ2, p} or {λ1, λ2, q}.

In the latter case, every irreducible realizable square has the form
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λ1
p

q

λ2

q

λ2
p

λ1 .

Proof. The proof is an immediate consequence of Proposition 3.2 of [7] and

Lemma 5.3. □

6. Summary.

This self-contained section is the summary for this article. We describe our classi-

fication in terms of combinatorial language and provide several counting examples. We

shall introduce again all notions required to understand the main results.

Let us fix a positive integer m ≥ 3. For a finite set S, a weak partition {S1, . . . , Sk}
of S is a partition of S such that some of Si could be empty. A subset I of [m] =

{1, 2, . . . ,m} is said to be non-consecutive if {p, p + 1 mod m} are not contained in I

for any p ∈ [m].

We consider a weak partition λ = {µa, µb, µc} of [m] such that all of µa, µb, and µc

are non-consecutive. We call λ a D–J class over Pm. Two elements p and q of [m] are

said to be λ-equivalent if {p, q} ⊂ µi for some i.

Remark 6.1. It is convenient to describe a D–J class over Pm using a word con-

sisting of letters a, b, and c. For example, the D–J class {{1, 3}, {2}, {4}} can be written

as abac or bcba; the representation is unique up to permutation of a, b, and c.

Definition 6.2. For a D–J class λ = {µa, µb, µc} over Pm, an ordered pair (p, S)

is called an e-set (compatible with λ) if it satisfies the following

1. p ∈ [m],

2. S ⊂ [m] is of even cardinality, and

3. all elements of {p} ∪ S are mutually λ-equivalent, that is, {p} ∪ S ⊂ µi for some i.

In particular (p, ∅) is always an e-set for any λ.

Let (p, S) be an e-set of [m] and fix a vertex r ∈ [m] \S. Note that S divides [m] \S
to two disjoint subsets A and B corresponding to “black” and “white” arcs respectively.

We can assume that r ∈ B. Then we write Ωr(S) := A ∪ S.

Definition 6.3. Let (p, S) and (q, T ) be two e-sets compatible with λ.

1. Two e-sets (p, S) and (q, T ) of [m] are type 1 λ-related if and only if either one of

S and T is empty, or p and q are λ-equivalent.

2. Two e-sets (p, S) and (q, T ) of [m] are type 2 λ-related if and only if S and T are

nonempty, p and q are not λ-equivalent, and Ωq(S) ∩ Ωp(T ) = ∅.
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In addition, (p, S) and (q, T ) are said to be λ-related if they are either type 1 λ-related

or type 2 λ-related.

For a D–J class λ over Pm and a positive integerm-tuple J = (j1, . . . , jm), we denote

by E(λ, J) the set of finite sequences E of e-sets of [m] compatible with λ

(1, S1
1), . . . , (1, S

1
j1−1), (2, S

2
1), . . . , (2, S

2
j2−1), . . . , (m,S

m
1 ), . . . , (m,Sm

jm−1)

such that the members of E are mutually λ-related.

Theorem 6.4. The number of small covers over Pm(J) up to D–J equivalence is∑
λ

|E(λ, J)|,

where λ runs through all D–J classes over Pm.

For a given λ, it should be interesting to consider a subset Ẽ(λ, J) of E(λ, J), which

is the set of E such that its e-sets are mutually type 1 λ-related.

Proposition 6.5. Let λ = {µa, µb, µc} be a D–J class over Pm, and J =

(j1, . . . , jm) ∈ Zm
+ . Then,

|Ẽ(λ, J)| = (2|µa|−1)wa + (2|µb|−1)wb + (2|µc|−1)wc − 2,

where wi =

{
0, if µi = ∅ ;∑

k∈µi
(jk − 1), otherwise.

Proof. Note that the number of even-subsets of µi is 2
|µi|−1. For each p ∈ µi, we

have to choose (p, S) such that S is an even-subset of µi. One remarks that if p ∈ µi and

(p, S) ∈ E with a non-empty set S, then (q, T ) ∈ E implies that either q ∈ µi or T = ∅.
Therefore, there are (2|µi|−1)wi cases. Together with the case that every S is an empty

set, the proposition is proved. □

Example 6.6 (Example 2.9 of [4]). Assume that m = 4 and J = (j1, j2, j3, j4).

There are only three D–J classes λ1 = abab, λ2 = abac, and λ3 = abcb. For each

λi, λi-related (p, S) and (q, T ) are always of type 1, that is, E(λi, J) = Ẽ(λi, J). By

Proposition 6.5, we have

|Ẽ(λ1, J)| = 2j1+j3−2 + 2j2+j4−2 − 1,

|Ẽ(λ2, J)| = 2j1+j3−2, and

|Ẽ(λ3, J)| = 2j2+j4−2.

Thus, the number of D–J classes over P4(J) is

2j1+j3−1 + 2j2+j4−1 − 1.

Example 6.7 (Theorem 8.3 of [6]). Assume that m = 5 and J = (j1, . . . , j5).
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Then, there are five D–J classes over P5. Put

λi ≡ {{i}, {i+ 1, i+ 3}, {i+ 2, i+ 4}} mod 5.

Similarly to Example 6.6, for each λi, one can see that E(λi, J) = Ẽ(λi, J), and we

have |Ẽ(λi, J)| = 2ji+1+ji+3−2 + 2ji+2+ji+4−2 − 1 where all indices are given by modulo

5. Therefore, the number of D–J classes over P5(J) is

2j1+j3−1 + 2j2+j4−1 + 2j3+j5−1 + 2j4+j1−1 + 2j5+j2−1 − 5.

Example 6.8. Assume that m = 6 and J = (j1, . . . , j6). There are 11 D–J classes

over P6. In order to compute the number of D–J classes over P6(J), since we can compute

|Ẽ(λ, J)| easily due to Proposition 6.5, it is enough to consider E(λ, J) \ Ẽ(λ, J). We

note that there are only a few possible pairs of (p, S) which can be type 2 related:

(i+ 2± 1, {i+ 1, i+ 3}), (i+ 5± 1, {i+ 4, i+ 6}) for i = 1, 2, 3.

Here is the list of all type 2 λ-related pairs for each λ.

Type 2 λ-related pair corresponding λ

(2± 1, {1, 3}), (5± 1, {4, 6}) ababab, ababcb, acabab, acabcb

(4± 1, {3, 5}), (1± 1, {6, 2}) ababab, abacab, cbabab, cbacab

(6± 1, {5, 1}), (3± 1, {2, 4}) ababab, ababac, abcbab, abcbac

Hence, one can see that the sum of |E(λ, J) \ Ẽ(λ, J)| for all D–J classes λ over P6

is

4×
(
(2j1+j3−2 − 1)(2j4+j6−2 − 1) + (2j3+j5−2 − 1)(2j6+j2−2 − 1)

+ (2j5+j1−2 − 1)(2j2+j4−2 − 1)
)
.

Real toric manifolds over Pm(J) are small covers and there is an analogue of E(λ, J)

for real toric manifolds which is a subset of E(λ, J). Let us fix a D–J class λ = {µa, µb, µc}
over Pm and pick two distinct points p, q ∈ [m] which are λ-equivalent. Then we can

assume that p, q ∈ µa. The points p and q divide [m] \ {p, q} to two disjoint sets A1 and

A2 in the way explained above. In this settings, we say p and q satisfies property RT

with λ if µa ∩Ai = ∅ or µa ∩Ai, µb ∩Ai, and µc ∩Ai are all nonempty, for each i = 1, 2.

Definition 6.9. Let λ be a D–J class over Pm for m ≥ 4. We denote by ERT(λ, J)

the set of E ∈ E(λ, J) satisfying the following; for such a sequence E , one can take two

elements p, q ∈ [m] satisfying property RT with λ such that every entry of E is (i, ∅),
(p, {p, q}), or (q, {p, q}) for 1 ≤ i ≤ m. When λ = {{1}, {2}, {3}} is the unique D–J class

over P3, we define ERT(λ, J) to be the singleton whose unique element is E so that every

entry of E is (i, ∅) for 1 ≤ i ≤ m.

Remark 6.10. For k ≥ 2, we have a family of D–J classes Λ2k = {{1, 3, . . . , 2k −
1}, {2, 4, . . . , 2k}, ∅}. When λ is a D–J class over m ≥ 3, ERT(λ, J) = ∅ if and only if

λ = Λ2k for k ≥ 3. In fact, there is no pair p and q satisfying property RT with Λ2k for

k ≥ 3.
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Theorem 6.11. The number of real toric manifolds over Pm(J) is∑
λ

|ERT(λ, J)|,

where λ runs through all D–J classes over Pm.

Remark 6.12. For any D–J class λ over Pm and J ∈ Zm
+ , we have the inclusions

ERT(λ, J) ⊂ Ẽ(λ, J) ⊂ E(λ, J).

When m ≤ 5, the two inclusions are actually equalities (see Chapter 8 of [6]). But

in general, almost all inclusions are strict. Indeed, they are strict if m ≥ 6 and J ̸=
(1, . . . , 1).
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