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Abstract. We study the formal neighborhoods at rational non-
degenerate arcs of the arc scheme associated with a toric variety. The first
main result of this article shows that these formal neighborhoods are gener-
ically constant on each Nash component of the variety. Furthermore, using
our previous work, we attach to every such formal neighborhood, and in fact
to every toric valuation, a minimal formal model (in the class of stable iso-
morphisms) which can be interpreted as a measure of the singularities of the
base-variety. As a second main statement, for a large class of toric valuations,
we compute the dimension and the embedding dimension of such minimal for-
mal models, and we relate the latter to the Mather discrepancy. The class
includes the strongly essential valuations, that is to say those the center of
which is a divisor in the exceptional locus of every resolution of singularities
of the variety. We also obtain a similar result for monomial curves.

1. Introduction.

1.1. 1In [23], Nash introduced an intriguing connection between the arc scheme
associated with an algebraic variety and the singularities of the variety (see Subsec-
tion 2.1, Remark 2.1 for details and references). Since this seminal work, the study of
the geometry of arc scheme has become a current prominent topic in the broad field of
singularity theory. One approach is to investigate the singular locus of the arc scheme
itself by considering the analytic type of its singularities, in other word to study formal
neighborhoods of arcs over the singular locus.

The first breakthrough in this way has been obtained by Reguera in [25]. The
present work can be linked, in spirit, to the subsequent work [22].

1.2. In this article, we focus on the two following questions. The first one states
the problem of the behaviour of the isomorphism class of the formal neighborhoods of
the arc scheme under the variations (over the singular locus) of the considered arc.

QUESTION 1.1.  Let k be a field. Let V be a k-variety. Denote by £ (V) the
arc scheme associated with V, and, for every arc v € £ (V), by Zs(V), the formal
neighborhood of v in 2 (V). How does 2 (V') vary when «y runs over the arcs whose

center is in the singular locus of V? Can one relate this variation with the singularities
of V7
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In general, one can observe on specific examples that the formal neighborhood varies
with the arc v over the singular locus (see [1]). The second question completes the first
one.

QUESTION 1.2. Let k be a field. Let V be a k-variety. Let v be an arc over the
singular locus. What part of the information of the singularities of V is carried on the
formal neighborhood Z.(V'),?

1.3. The aim of this article is to study these two questions when V' is a toric variety
and ~ a rational non-degenerate arc, i.e., not contained in the arc scheme associated with
the singular locus of V. The study of this specific class of arcs is motivated in particular by
a theorem of Drinfeld and Grinberg-Kazhdan (see [15],[12] or [1]) which, for every such
arc v, constructs an affine pointed k-variety (S, s), with s € S(k), and an isomorphism
of formal k-schemes:

Loo(V)y = Ss@pk[[(Th)ien]]- (1.1)

Every noetherian formal k-schemes of the shape S, with (.5, s) as before and which realizes
isomorphism (1.1) is called a finite dimensional formal model of the formal neighborhood
Zw(V), (or of the arc 7). Such a formal k-scheme S, is said to be non-cancellable if
there does not exist an affine pointed k-variety (S,s’) such that Ss = S, @xk[[T]]. If
(S, s) and (5',s’) are pointed k-varieties, the formal k-schemes Sy and S’, are said to be
stably isomorphic if there exist positive integers n and m such that S,@uk[[T1, . .., Ty]] =
S @kk[[T1,...,Ty]]. Asproved in [1], thanks to a cancellation lemma due to Gabber (see
loc. cit.), there exists (up to isomorphism) a unique non-cancellable finite dimensional
model of v, such that every finite dimensional formal model of «y is stably isomorphic to
it: we call this model the minimal (finite dimensional) formal model of ~.

In particular, for the class of non-degenerate arcs, the study of the formal neighbor-
hood Z,(V'), is equivalent to that of its minimal formal model, which, as a noetherian
object, is likely to be more tractable. Moreover, as justified in [4], the minimal formal
model can be understood as a measure of the singularity of V' at the origin of v. More
precisely, in loc. cit, the authors proved that the minimal formal model is trivial if and
only if the branch at v(0) (which contains ) is formally smooth.

1.4. Let us explain in more details the content of the present article (see Subsec-
tion 2.1 for details on the terminology and notation used here in the description of the
Nash problem). In the direction of Question 1.1, we show the following statement (see
Theorem 4.2 for a more precise statement).

THEOREM 1.3. Let k be a field. Let V be an affine toric k-variety. Let D be an
exceptional divisor of a toric resolution m: W — V. Let Np C Lo (V) be the associated
Nash set. Then there exists a Zariski non-empty open subset U of Np such that O _(v)

(hence also ODZO(\VM) is constant when the arc v runs over U(k).

Let us stress that this theorem relates, in an original manner, the formal neighbor-
hoods in the arc scheme of non-degenerate rational arcs to the Nash components, hence to
the Nash problem. More generally, we may wonder whether this kind of statements may
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reflect some deep “equisingularity property” for the arc scheme (see also Remark 4.4).
In the direction of Question 1.2 we prove in particular the following result.

THEOREM 1.4. Let k be a field of characteristic zero. Let V be an affine toric k-
variety. Let v be a strongly essential toric valuation. Then the minimal formal model of
a sufficiently generic rational non-degenerate arc lying in the Nash set associated with v
is of dimension zero, and its embedding dimension coincides with the Mather discrepancy

of v.

Such a result can be compared to [22], where Reguera and Mourtada have obtained
similar results in the computation of the embedding dimension of other types of formal
neighborhoods in arc schemes.

1.5. Let us explain the organization of the paper. After a recollection on toric
geometry in section 2, we establish a technical lemma dealing with toric valuations as-
sociated with arcs on toric varieties in section 3, making a crucial use of results of Ishii
([16]) and Ishii-Kollar ([18]). This lemma is used for proving Theorem 4.2 which answers
Question 1.1 in the toric case for rational non-degenerate arcs. The proof of Theorem 6.3
is based of an alternative proof of the Drinfeld-Grinberg-Kazhdan theorem in the toric
case, which exploits the binomial nature of ideals defining toric varieties and which we
explain in section 5. Though both proofs share some tools such as the use of the Weier-
strass division theorems, our approach produces a finite dimensional formal model which
differs from the one computed by Drinfeld’s and turns out to be much more suited to the
computation of the minimal formal model and its embedding dimension. Theorem 6.3
identifies a large class of toric valuations for which one also obtains an explicit description
of the minimal formal model, with a result for the embedding dimension. This allows
us to show that the dimension of the minimal formal model of a rational non-degenerate
arc may be arbitrarily large, even when restricting to 3-dimensional varieties. (See Sub-
section 8.1.) In the end, let us note that this approach also works more generally in the
context of binomial varieties, in other words for non-normal toric varieties. For the sake
of simplicity, we have not written up the full details, but as an illustration, we use similar
arguments in section 7 to compute, for every monomial curve singularity, the minimal
formal model at a primitive arc and its embedding dimension, generalizing in particular
results of [3]. In the end, in section 8, we provide various examples and further problems
in the direction of the present work.

ACKNOWLEDGEMENTS. We would like to thank Shihoko Ishii for her kind expla-
nations on the Mather discrepancy. We also thank the referee for his/her careful reading
and his/her corrections and remarks.

Convention, notation.

In this article, we fix a field k of arbitrary characteristic. A k-variety is a k-scheme
of finite type. The non-smooth locus of the structural morphism of a k-variety V is the
singular locus of V' and its associated reduced k-variety is denoted by Viing. To every
k-variety V (or more generally to every scheme), one attaches its arc scheme Lo (V)
(e.g., see [26] for a precise definition). A point in %5 (V) is an arc. An arc of V which
does not belong to Zo (Viing) is called a non-degenerate arc of V. The k-scheme £ (V)
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is endowed with a canonical morphism of V-scheme 7y: % (V) — V which sends every
arc v to its base point (0). For every subset Z C V, we denote by % (V) the subset of
2 (V) formed by the arcs of V whose base-point belongs to Z, i.e., L (V)? := n; 1 (Z).
A test-ring (over k) is a local k-algebra (A, m4), whose residue field is (k—)isomorphic to
k and whose maximal ideal is nilpotent. Let us note that, for every arc v € £ (V) (k),
the formal neighborhood £ (V') is determined by the restriction of its functor of points
to the category of test-rings. For every test-ring (A,m4), an A-deformation of v is an
element y4 € L (V),(A). It will be useful to keep in mind that such an A-deformation
corresponds to one of the following (equivalent) commutative diagram:

O vy —2> A Ov, —2= A[T)] Oy, —2> A[[T]] (1.2)
el
k=————=k KT =—=FkIT)],  k[[T]) == k[T,

(E.g., see [1] for details.)

2. Recollection on the Nash problem and toric geometry, terminology.
In this section, we recollect various useful material and fix the used terminology.

2.1. We recall important definitions and properties about the Nash problem and
related concepts (see [18] for more details). Let k be a field and V be an algebraic
k-variety which admits resolution of singularities. An ezceptional divisor over V is a
divisorial valuation vp defined by an irreducible exceptional divisor D of a resolution
of singularities 7: W — V. The Nash set Np attached to D is the closure in Z (V)
of the set Lo (7)(Loo (W)P); it depends only on vp and not on the choice of the pair
(W, D). Since % (W)P is irreducible, so is Np. An essential divisor over V (resp. a
strongly essential divisor over V') is an exceptional divisor v over V such that for every
resolution of singularities 7: W — V the center of ¥ on W is an irreducible component
(resp. an irreducible component of codimension 1) of the exceptional locus 77 (Viing)-
We shall also speak of (strongly) essential valuations on V. A Nash component of V is
an irreducible component of ., (V) Vsinz \ L (Viing ). For every Nash component C, one
shows that there exists a unique essential divisor D over V such that Np \.,foo(Vsing) =
C. The so-called Nash problem may be stated as the problem to determine whether
Np \ Zoo(Viing) is a Nash component for every essential divisor D over V.

REMARK 2.1.  When the field k is assumed to be of characteristic zero, one knows
that the answer to the above question fails to be true, in general, for varieties of dimension
> 3. (e.g., see [20] for details and references, and [18] for the first counterexample in
dimension 4.) In positive characteristic, the question is open even in dimension two. By
[18], we also know that this problem has a positive answer for the specific case of toric
varieties.

REMARK 2.2.  For the notion of essential divisors, we follow the terminology of [18].
Beware that in the works [8], [7], to be mentioned later, the slightly different terminology
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of Nash in [23] is followed. Thus what we call here an essential divisor is called there
an essential component, whereas what we call here a strongly essential divisor is called
there an essential divisor.

2.2.  We now recall some standard facts about toric geometry, fixing along the
way some notation used in the rest of the paper. (For more details on the suject, we
refer to [10].) Let k be a field, 7 be a split algebraic k-torus of dimension d and
N := Hom(G, x, T) the group of its cocharacters. It defines a free abelian group of rank
d. Let o be a strictly convex N-rational polyhedral cone in N ®z R, in other words o
is the convex cone generated by finitely many elements of N, which moreover does not
contain any line. Let M := NY = Hom(N,Z) (which also is a free abelian group of
dimension d) and V(o) := Spec(k[o¥ N M]) be the associated affine normal toric variety
(often denoted by V if the cone o is clear from the context). For every m € M we denote
by x™ the rational function on V(o) defined by m. Let M, C oV N M be the minimal
finite set generating the semigroup o¥ N M, which then forms a generating system of the
Q-vector space M ®z Q.

2.3. There is a natural bijection between the set of faces of o and the set of T-
orbits in V. The orbit orb(r) associated with a face 7 has codimension dim(r). In
particular orb({0}) is the open orbit (which is isomorphic to 7) and orb(c) is the only
T-invariant k-point on V. Moreover x € V is smooth if and only if it belongs to an orbit
orb(7) with 7 a N-regular face of o (that is to say, 7 may be generated by a part of a
basis of N).

2.4. Recall that a N-primitive element of N is an element n € N such that the
only elements of N which admit n as a multiple are n and —n. Each N-primitive element
n of NN determines a toric (i.e., torus-invariant) divisorial valuation on V', which maps
the element of k(V') corresponding to the character m € M to (m, n) (We stress that
for us a divisorial valuation has multiplicity 1.). We shall frequently identify n and the
associated toric valuation, thus speaking for example of (strongly) essential primitive
elements of c N N.

2.5. We now recall from [18] (resp. [7], [8]) the description of the essential divisors
(resp. strongly essential divisors) of the affine toric variety V' = V(o). First we introduce
some terminology and notation, and make some remarks. Define a partial order on c NN
by n <, n’ if and only if n’ € n 4 o. Set

Sing(o) := U T°.

T<0
T singular

EXAMPLE 2.3. If d :=dim(X) =2 and V is singular, one has Sing(c) = o°.

DEFINITION 2.4. Let n € o N N. We say that n is indecomposable if for every
decomposition n = ny + ne with ny1,no € 0 N N one has either ny = n or ny = n.

REMARK 2.5. Let n € 0 N N be a nonzero element. Then n is indecomposable if
and only if » is a minimal element of (¢NN)\ {0}. In particular if n is an indecomposable
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element of Sing(c) N N then n is a minimal element of Sing(c) N N. But in general there
are minimal elements of Sing(c) N N which are not indecomposable.

EXAMPLE 2.6. Let N be a free Z-module with basis {e1, e2, e3} and o be the cone
of N ®z R generated by e1, ea, f1 :=e1+e3 and fo =es+e3. Let n =es+ f1 = e1 + fo.
Then Sing(o) = ¢° and n is a minimal element of Sing(o) NN, yet n is not indecompos-
able.

THEOREM 2.7. Letn € Sing(c) NN be a N-primitive element. Then n is essential
if and only if n is a minimal element of Sing(c) N N with respect to the order <.
Moreover n is strongly essential if and only if n is indecomposable.

PrOOF. The first assertion follows from [18, Section 3] and the second assertion
is a consequence of [8, Theorem 1.10] and [7, Theorem 1.2]. O

3. Toric valuations and stratifications on non-degenerate toric arcs.

In this section we recall some facts about toric valuations attached to arcs on toric
varieties following [16], [18], and we prove a useful technical lemma (Lemma 3.6).

3.1. Let V := V(o) be an affine toric variety associated to the cone o. We retain
the previously introduced notation. We set Z2 (V) := Z(V) \ ZLoo(V \ T). Let us
consider v € 22 (V) (k). As an element of £ (V)(k), the rational arc -y corresponds to
a k-algebra morphism k[oY N M| — k[[T7]], or equivalently to a morphism of semigroups
Ysg: 0¥ N M — E[[T]]. Composing vs, with T +— 0 gives the base-point v(0). Since v
does not lie in .Z.(V \ T) and since the ideal of V'\ T in k[o" N M] is generated by the
product of the {x™}menr,, no x™ lies in Ker(v). In other words, for every m € ¢¥ N M,
one has v54(m) # 0. Thus one may compose v with the usual map ordr and obtain a
morphism of semigroups

ord(y): ¥ N M — N.

In this way, we observe that the functional ord(v) in fact belongs to o N N. More
generally, for every arc v € £22(V), one can define ord(y) € o N N by considering the
element of Z2 (V)(k(y)) induced by ~.

REMARK 3.1. For every arc v € £2(V), the functional ord(y) determines in
particular the toric stratum to which +(0) belongs. Indeed, by [18, Proposition 3.9(i)],
for every face 7 of o, one has v(0) € orb(7) if and only if ord(y) € 7°.

3.2.  Since the torus 7 acts on V, the group scheme £ (7) acts on .Z5 (V). This
action has been studied in particular by S. Ishii, who proved the following result.

LEMMA 3.2 ([16, Theorem 4.1(ii)]). Let y1,72 € L2 (V)(k). Then ord(y1) =
ord(y2) if and only if there exists t € Lo (T)(k) such that 1 =1t - a.

In [16], the base field k is assumed to be algebraically closed; here k is arbitrary but
due in particular to the fact that one works with split toric varieties, the arguments in
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[16] are easily seen to be still valid.
Since for every ¢t € Lo (T)(k), v +— t -y is an automorphism of Z(V'), we deduce
the following consequence:

COROLLARY 3.3.  Let v € Z3 (V) (k). Then the local ring O»_ (v, depends only
on ord(). In particular the completion ODZO(\V),V depends only on ord(7).

DEFINITION 3.4. For n € o N N, we denote by ., the minimal formal model of
any element v of Z2 (V) (k) such that ord(y) = n.

REMARK 3.5. In section 5, we shall give another proof of the result concerning
O=Zc(\V),v in Corollary 3.3. This proof in fact will provide an explicit description of a
finite dimensional formal model at every arc v such that ord(y) = n. Moreover, we will
show that this description gives the minimal formal model .%, in case n is a strongly
essential valuation, as well as in some other cases.

3.3. For every integer p € N and every m € ¥ N M, the set {n € o,{m, n) < u}
will be simply denoted by {(m, -) < u} (similar definition and notation with < y replaced
with > u). For every n € o N N, we set £ (V) := {y € Z2(V), ord(v) = n}. More
generally, for every A C o, we set Z2 (V)4 :={y € Z2(V), ord(y) € A}. Recall that a
constructible subset of a separated and quasi-compact scheme S is a finite union of subsets
of the form O N (S'\ O3) for quasi-compact open subsets O1, Oy of S. A proconstructible
subset of S is an intersection of constructible subsets. By construction, the arc scheme
associated with S is separated and quasi-compact.

LEMMA 3.6.  For every integer p € N, L3 (V)m,y<u} 5 a constructible open
subset of L3 (V) and ZL3,(V)((m,y>u) 15 a constructible closed subset of Z£3 (V). For
every n € o NN, the set L2 (V), is a dense constructible open subset of L2 (V)n+to,
and the set L2 (V)nto is a proconstuctible closed subset in L2 (V).

PROOF. Note that for m € ¢¥ N M and v € £2 (V), the integer (m, ord(7)) is
nothing else but ordr(x™()). This shows the first assertion.
Let n € o N N. Since the set M, is finite (see Subsection 2.2), and since we have

LeWVn = Z5(V)nto N ( N fé(V)<m,->g<m,n>> )

meM,

we deduce that £2 (V),, is a constructible open subset of £2 (V),,1,. By [16, proposi-
tion 4.8], the closure of Z2 (V), is Z2 (V)nto-
On the other hand, the equality

gooo(v)n—&-a: ﬂ g;(v)<m7->2(m,n)

meMy

shows that .Z2 (V)n4o is a proconstructible closed subset in £ (V). O
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3.4. For the convenience of the reader, we quickly provide a general definition
of the notion of Mather discrepancy. Complements can be found, e.g., in [17], [19],
[13], [11]. If V is a k-variety of dimension d, if 7: W — V is a resolution of the
singularities of V' which factorizes through the Nash blow-up of V, then the image of
the canonical morphism 7*Qf, , — Qf, , is an invertible sheaf, and thus may be written

as ng/k(—f(w/v), where Kyy/y is a divisor called the Mather discrepancy divisor. This
divisor is supported on the exceptional locus of . For every exceptional divisor v, one
calls the Mather discrepancy along v the integer K, := ordD(f(W/V) where m: W — V
is a resolution of the singularities of V' which factorizes through the Nash blow-up and
such that the center D of v on W is an exceptional divisor.

Let us consider the particular case where V' = % is an integral unibranch curve at
the singular point x (with k assumed to be algebraically closed for simplicity). Let T be
the preimage of z in the normalisation % of ¥. Then the so-called multiplicity mult(%, )
of the germ (%, z) may be defined as the positive integer m such that T™ generates the
image of the maximal ideal me , of O« , by the composition v* of the morphisms

Ov e = Og s — Og 5 = K[[T]].

In particular, one has y*(dmg ) = T™WCD)=1L(T)|dT which shows that K; =
mult(%,x) — 1.

In the toric case, one has an explicit formula for the Mather discrepancy in terms
of the combinatorial data. We recall it here since it will be an ingredient in the proof of
Theorem 6.3.

LEMMA 3.7 ([11, Lemma 5.2]). Let V = V(o) be an affine toric k-variety of
dimension d. Let n be an N-primitive element of o N N, as before identified with a
toric divisorial valuation on V. Then, the Mather discrepancy K, of n is given by the
following formula

d
K, = min —1—&-5 (mj,n) |.
(m1,....ma)EMZ j=1

{m;} Q-linearly independent

4. Generic behaviour of formal neighborhood of non-degenerate arcs on
the Nash components of a toric variety.

In the direction of a comprehensive study of the formal neighborhoods of non-
degenerate rational arcs, a challenging question is to understand how these formal neigh-
borhoods change with the involved arcs. One of the motivation of this problem is the
situation in the case of curves explained in Subsection 4.1. The main result of this sec-
tion can be interpreted as a higher dimensional analog in toric geometry of the curves
situation. In particular, Corollary 4.2 establishes the generic behaviour of the formal
neighborhoods of arc schemes at rational non-degenerate arcs on the Nash components
(see Subsection 2.1 for definitions.)
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4.1. Let % be an integral curve defined over an algebraically closed field k of char-
acteristic zero. Let x € € (k) be a singular point. The set of the irreducible components
of 7y ' (z) coincides with that of the sets A}, where y runs over the preimages of v(0)
in the normalization of ¥, i.e, the set of arcs on ¥ which factorizes through the corre-
sponding branch %, (which is defined as an irreducible component of (@) For every
non-constant arc v € % (%), with base-point v(0) = z, the ideal generated by the image
of the attached morphism of complete local k-algebras

7*: O‘w’,x — k[[TH
is of the form T™k[[T]]. In this way, one constructs a map
mult: 75 ' (x) \ {z} - N

which sends v to m.; in the above formula, in the expression {z}, one identifies =
with its image by the zero section ¥ — 2 (€). Let v, € Z(%)(k) be a primitive
parametrization of € at = corresponding to a formal branch %, of € at = (see, e.g., [9]).
Let m, := mult(vy,). When % is unibranch at z, this integer is a possible definition for
the so-called multiplicity of the germ (%, ) (see also Subsection 3.4). The constructible
subset mult ! (m,,) of £ (%) induces a constructible open subset U of the irreducible
component of 7 !(x) corresponding to vy (or By), i.e., N, since on this component the
integer m, is the minimal possible value of the map mult. Every rational arc of U is a
primitive parametrization of %, which can be deduced from « by a reparametrization of
T induced by an automorphism of k[[T]]. As proved in [1], for every v/ € U(k), we have

Zoo (Cg)'yy = Diﬂoo (%)’Y"

4.2. Let us consider a toric resolution of singularities 7: W — V of the affine toric
variety V = V(o). Its exceptional divisors correspond to one-dimensional cones lying in
o. If D is such an exceptional divisor, we denote by np the primitive generator of the
corresponding one-dimensional cone.

LEMMA 4.1. Let D be an exceptional divisor of a toric resolution m: W — V|
Tp C o be the corresponding one-dimensional cone and np be the primitive generator of
7. Then one has Np N L2 (V) = L2 (V)np+o (see Section 3.3 for a definition). In
particular L2 (V)n,, is a dense open subset of Np.

PrROOF. By [18, Proposition 3.9(ii)], one has Zu (7)(Lao (W)°rP0) \ £ (W \
7)) = fm(V)og. Since W is assumed to be smooth and orb(rp) is open in D (see

T

2.4), we conclude that Z, (W)°rP(™0)\ £ (W \ T) is a dense open subset of %5, (W)P.
Thus, we deduce that L (V)g is dense in Lo (1) (Lo (W)"), hence in Np by the very
definition of Np. But one has

gooo(v%n C f&(v)rg - gOOO(V)HD"FU

and by Lemma 3.6, .Z2 (V) is a dense open subset of Z2(V),,+o. We infer that
L2 (V)np+o is dense in Np, hence in Np N £2 (V). But again by Lemma 3.6,
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L2 (V)np+o is closed in Z2 (V), thus Np N Z2 (V) = Z2(V)np+o as claimed. Since
L2 (V)n,, is a dense open subset of Z2 (V),,+0 and Np N.Z2 (V) is open in Np, we
conclude that .Z2 (V),,, is a dense open subset of Np. O

THEOREM 4.2.  Retain the previous notation. Let D be an exceptional divisor of a
toric resolution w: W — V(o). Then there exists a Zariski non-empty open subset U of
Np N L2 (V(o)) such that O vy (hence also Oy (v ) is constant for v € U(k).

PrROOF. By Lemma 4.1 and Corollary 3.3, it suffices to take U := .Z2 (V(0))n,,-
O

4.3. Regarding Theorem 4.2, the case where Np is a Nash components of V is
thus of particular interest, since it allows us to understand “generically” the minimal
formal model of arcs in £2 (V)Vsinz (k) \ Lo (Vaing). By [18, Theorem 3.16], if D is an
exceptional divisor over V', we know that Np is a Nash component of V' if and only if D
is an essential divisor of V' (In other words, the Nash problem has an affirmative answer
for toric varieties), and then D is necessarily a toric (i.e., torus-invariant) divisor.

REMARK 4.3. It seems to us an interesting problem to understand whether Theo-
rem 4.2 extend to arbitrary varieties.

REMARK 4.4. 1In [6], [5], [24], various statements for a global version of the
Drinfeld—Grinberg-Kazhdan have been established. It seems to us interesting to un-
derstand, at least in the toric framework, the precise link between these statements and
Theorem 4.2. We strongly believe that this will be connected to equisingularity properties
of Z(V).

5. A computation of finite dimensional formal models for binomial va-
rieties.

In this section, we provide an alternative proof of the Drinfeld—Grinberg—Kazdhan
theorem for varieties defined by binomial ideals. It produces a presentation of a finite
dimensional formal model different from the one given by Drinfeld’s general approach.
The presentation that we obtain turns out to be much more suited to the determination
of the minimal formal model and its embedding dimension. For the sake of simplicity,
we focus on the case of toric varieties. In section 7, we shall explain how this approach
allows to study the minimal formal model of monomial curve singularities.

5.1. Let us fix first some definitions and notation. If d < e are integers,
we denote by [d,e] the set {n € Z,d < n < e}. Let I and J be finite sets,
(dj) € N’ be a family of non-negative integers and (II;);c; be a family of elements
of k[(X;);es] such that, for every element i € I, one has IL;((T%);cs) = 0. We de-
fine the affine k-scheme W((d;) ez, (IL;)icr) as the closed subscheme of the affine space

A := Spec(k[(pj.a) jes ]) whose ideal is generated by all the coefficients with respect
a€ll,d;]
to the variable T" in the Jpolynomials
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Hi<<Tdf+ > pj,aTda'—a) ) (5.1)
a€[l,d;] JjeJ

for i € I. Note that this ideal is contained in the ideal ((p;,) jes ) which is the origin
a€l1,d;]

o of the scheme A. We denote by #((d;), (II;)) the formal complétion of W((d;), (IL,))

along this origin o. If jo € J, we define WU0)((d;), (II;)) to be the closed subscheme

of W((d;), (II;)) whose ideal is generated by the image of p;, 1 in O(W((d;), (IL;))). Its

formal completion of W) ((d;), (II;)) along the origin o is denoted by # (o) ((d;), (IL;)).

LEMMA 5.1.  Assume char(k) and d;, are coprime. Let jo € J and (Qj.a) jes

a€ll,d;]
be the family of elements of k[(pj,.a) jes | defined by ’
a€[1,d;]
Dio.1 dj D1 dj*ll
de 'adefa = (7T — Jo o T — Jo,
X e = (i) e 2 e (r )

aeﬂlvdjﬂ aellladj]]

(in particular Qj,1 = 0).
Then the automorphism of k-algebras of k[(pj.a) jes | mapping pjqa to pja for

a€ll,d;]
(4,a) = (jo, 1) and pj . to Qj q for any other value of the pair (j,a) induces isomorphisms:

W((d)), (I1;)) = WY ((d)), (I1;)) x5, A}
and
#((dy), (I1;)) = #U0)((d;), (T1;)) % Dy

PrOOF. This comes from the fact that, setting U = T — (pj,,1)/(d;,), expres-
sion (5.1) may be rewritten

1L-<Uda'mr Z Qjo.aT %0, (Udur Z ijaUdra> ) (5.2)
jEI\{Go}

ac(2,d;,] a€[l,d;]
Il

5.2. We keep the notation introduced in the previous sections. In particular,
V(o) designates an affine toric variety of arbitrary dimension d. Let I be a finite set and
(a;) € (ZM=)! be a finite collection of nontrivial integral linear relations between the
elements of M, that is to say, for every i € I,

Z a;mm = 0, (5.3)

meM,

such that moreover
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IR
el

meM, meM,
i m>0 aq,m<0

is a set of binomial generators of the kernel of the morphism k[( X, )mear, ] — kloV N M]
sending X,, to x™.

5.3. Let (v,,) € N™o be a family of non-negative integers such that, for every
element ¢ € I,

E 0 mVm = 0.
o

Then there exists a unique n € o N N such that, for every m € M,, we have
(m, n) = vp,.

This may be deduced from the fact that M, necessarily contains a Z-basis of M (consider
a M-regular subdivision of ¥, which exists by [14, Section 2.6]).

5.4. Let Mg C M, be a subset of cardinality d whose elements are Q-linearly
independent. In particular Mg is a Q-basis of M ®z Q. (See Subsection 2.2.) Thus,
every m € M, \ Z,\Z, is a Q-linear combination of elements of ﬁg Then, for every
m € M, \ Ma, there exists a positive integer a such that am is a Z-linear combination
of elements of M; We enlarge I by this kind of relations. Thus from now on the set I is
such that relations (5.3) verify that, for every m € M, \ M, there exists i € I such that

{m' € My, ;i # 0} \ M, = {m}.
5.5. Letne€onNN. We set

%:—W(Gm,n»m%,( IT xe-- 11 Xm> > (5.4)
el

meM, meM,
Dé'i,'m>0 ai,nL<0

and, for every mg € M, such that (mg, n) > 1,

ymo) = W<m0><<<m,n>>m%( [T <o - 11 Xn?“i’”) ) (5:5)
el

meM, meM,
a;,m>0 a;m<0

Let us state and prove the main theorem of this section.

THEOREM 5.2. Letn € o NN and v € L2 (X)n(k). Then, the formal k-scheme
W, (defined by formula (5.4)) is a finite dimensional formal model of £ (V).

The proof given below provides in particular an alternative proof of the Drinfeld—
Grinberg-Kazdhan theorem for v € £2 (X),, (k). Note also that Theorem 5.2 allows us to
recover the fact (obtained in Corollary 3.3) that the completion O_ (v, only depends
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on ord(7y). Furthermore, by Lemma 5.1, we directly obtain the following consequence.

COROLLARY 5.3. Letn € c NN and v € L3 (X)n(k). Let mg € M, such that
(mg, n) > 1. Assume that (mg, n) and char(k) are coprime. Then, the formal k-scheme
;o) (defined by formula (5.5)) is a finite dimensional formal model of Lo (V).

PRrROOF. (of Theorem 5.2) Recall that v corresponds to the datum of a morphism
of semigroups

Ysg: 0 N M = k[[T]]

such that v7,' ({0}) = 0 and ordz(vse(m)) = (m, n) for every m € ¢ N M. Composing
vVsg With T+ 0 gives the base-point (0). Let 7 < ¢ be the unique face such that n € 7°.

Thus, the arc y corresponds to the datum of a family (7, (T'))mens, of elements of
E[[T]) \ {0} such that, for every m € M,, one has ordr(v,,) = (m, n) and, for every
iel,

H 'Ym(T)ai’m — H ’Ym(T)iai'm'
meM, meM,
i, m>0 ai,m<0

Moreover, for every m € 7+, one has v,,(0) = k*. Thus, for every test-ring A, an A-
deformation of v is a collection (Y, a(T))mem, of elements of A[[T]] such that, for every
m e M,,

Ym,A(T) = ym(T)  (mod m[[T]]) (5.6)

and, for every i € I,

II vwa@m =TI wma@ (5.7)

meM, meM,

ai,?n>0 0Ci,'m<0
Let (Ym,a(T))menr, be a collection of elements of A[[T]] such that formula (5.6) holds.
For m € M,, let

'Vm,A(T) = pm,A(T)um,A(T)

be the Weierstrass decomposition of v, 4(T') (see [21, IV, Theorem 9.2]). In particular,
the polynomial p,, a(T) is a Weierstrass polynomial (see loc. cit.) with degree (m, n)
and u, a(T) € A[[T]]*. In case m € 71, one has py, 4 = 1 and Yy, a(T) = U, a(T).

By the uniqueness in the Weierstrass decomposition, the deformation
(Ym,A(T))menr, satisfies relation (5.7) if and only if the following relations hold
true:

viel ] pma@m = [ pma(@ o (5.8)
meM, meM,
ai,m>0 Oéi,m<0

and
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viel J] wma@m = J[ tma(@) . (5.9)

meM, meMy
Oéiym>0 (X,‘,’m,<0

Now, the functor on the category of test-rings defined by identifying T"%-coefficients
in relations (5.9) is isomorphic to A — mY. Indeed, relations (5.9) describe the A-
deformations of the arc 5 := (7,,(T)/T{™ ™), whose origin lies in 7 and is therefore
a non-singular point of V, which implies OaZ(\V)ﬁ = Spf(k[[(T})ien]])- Relations (5.8)
define #,(A) by formula (5.4). Thus the functor A — Def,(A) is isomorphic to the
functor A + #,,(A) x mY. That concludes the proof. O

ExXAMPLE 5.4. We consider the toric surface
& = Spec(k[Xo, X1, Xo, X3] /(X0 X2 — X7, X1 X5 — X3)

and the arc v(T) = (T, T, T,T?). Using Corollary 5.3 we obtain a finite formal model of
~ whose presentation in Spf(k[[po,o0,p1,0,P3,1,P3,0]]) is given by the T-coefficients of the
polynomials

T(T +poo) = (T +p1o)® and (T +p1o)(T? +psaT + pso) — T°.
After identification and elimination, we find that this finite model is isomorphic to
Spf(k[[p1,0]]/(pi,)), hence is minimal.
6. Minimal formal model of toric singularities.

Theorem 5.2 and Corollary 5.3 explain how to compute finite dimensional formal
models for toric singularities. In this section, we apply this result to provide a first
element of answer in the direction of Question 1.2 in toric geometry. (See Theorem 6.3.)

6.1. Let us begin by a useful technical lemma.

LEMMA 6.1.  Let I, Iy be two non-empty disjoint finite sets. For every j € {1,2},
let (de)eer; (resp. (au)ecr,) be two families of non-negative (resp. positive) integers such
that

Z dyo,. = Z dsag =: N.

rel; s€lz

Let A= Z[(pi.a)ic1,, je{1,2},]- Consider the polynomial of A[T] given by

a€ll,d;]
11 <Tdr+ > p,.,aTdr—a> - 11 (Td-ur > ps,aTds—a) : (6.1)
rel; a€l,d,] s€l2 a€fl,ds]

Then, for every element i € Iy and every b € [1,d;], there exists a polynomial Q;p € A,
whose expression does not contain the variable p;y, such that the TN=b_coefficient of
polynomial (6.1) reads
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a;pip + Qip-

PrROOF. Let Cy_p be the TN ~’-coefficient of polynomial (6.1). By a direct
computation, we observe that the monomial «;p;;, appears in Cny_p. Let us set
Qip = Cn_p — a;p;p. We have to prove that the variable p;; does not appear in
the expression of Cn_;p. If we attribute the weight a to p; , (in particular each variable
has a positive weight), polynomial (6.1) (as a polynomial in A[T]) is isobaric of weight
N. So, every monomial appearing in Cy_; has weight b = weight(p; ;). This shows the
result. O

6.2. For every element n € o N N, by a decomposition of n we mean a decom-
position of n into a sum of a finite number of elements of the semigroup ¢ N N. We
shall sometimes identify a decomposition of n with a finite family (n;);c; of elements
of o M N such that ) ,.;n; = n. We denote by £(n) the maximal number of terms in
a decomposition of n. For example, we observe that n is indecomposable if and only
if /(n) = 1. We introduce the following partial order < on the set of decomposition of
n: if Dy:n=>3_,n; and Dy: n = Z;Zl n; are two decompositions of n, we say that
Dy < Dy if there exists a partition of [1,s] into r non empty sets Ji,...,J. such that
for every i € [1,7] one has n; = ZjeJ,- n;. In particular, with respect to this order, the
minimal decompositions of n are the decompositions of n into a sum of indecomposable
elements. We say that property P, is satisfied if the supremum of the set of the minimal
decompositions of n is the trivial decomposition n = n.

EXAMPLE 6.2. If n is indecomposable, property P, is satisfied. The decomposable
element n described in Example 2.6 also satisfies property P,,.

6.3. We state and prove the main result of this section.

THEOREM 6.3.  Assume that the base-field k is of characteristic zero. Letn € o N N
be a N-primitive element. Let My, C M, be a set of Q-linearly independent elements
with cardinality d and such that K, = (Xmenr,, msn) — 1 (see Subsection 3.4). Let
mo € My, such that (mg, n) > 1. Let ’

Y, = W(m°)<(<m7n>)meMd,< I xa - 11 X;ﬂivm> )

meM, meM,
aq,m>0 aq,m<0

(resp. %, i= W) (), resp. Yy := W(...), resp. Dy :=W(...)).
1. One has embdim(%,) = K,,.

2. Assume that n is indecomposable. Then, the formal k-scheme %, has dimension
0; in particular it is non-cancellable.

3. Assume that n satisfies property P,. Then, the formal k-scheme %, has dimension
£(n) — 1, and it is non-cancellable.
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By Theorem 5.2, Corollary 5.3, the formal k-scheme %, is a finite formal model of
Zoo(V), for every arc v € £2 (X),. Then, Theorem 6.3 implies the following corollary.

COROLLARY 6.4. Letn € Sing(a)NN be a N-primitive element satisfying property
Pn. Then the minimal finite formal model .7, is of dimension £(n) — 1 and embedding
dimension K, .

By Theorem 2.7 and Example 6.2, the conclusion holds in particular if n is strongly
essential.

REMARK 6.5. Let us note that Theorem 6.3 presents analogies with the main result
of [22].

PROOF.  (of Theorem 6.3) Recall that Y;, (resp. Y;) is the closed subscheme of

Spec(k[(Pm,a) mem, ])
a€[1,(m,n)]
whose ideal Iy (resp. Iy, ) is generated by (resp. pj,,1 and) all the coefficients with
respect to the variable 7" in the polynomials

H pm(T)ai’m - H pm(T)iai’ma 1€ I,
meMy meM,
ai,m>0 a; m <0

where

p(T) =T 4 3" T
a€l,(m,n)]

Moreover %, = Spf(k[[(pm’a)l]/f};n) =: Spf(l?) (vesp. %, = Spf(k[[(pm.a)l/Iv,) =:
Spf(B)) is the completion of Y,, (resp. Y,,) along the origin, and by Lemma 5.1, one

has %, =~ %, x;.Dy,.
(1) We show the statement on the embedding dimension. If A is a complete local
k-algebra, one has embdim(A[[T]]) = embdim(A) + 1. Thus it suffices to show that

embdim(%;,) = K,, +1. We claim that the maximal ideal m; is generated by the classes
of the elements of the set

P = {pm,a} meMs n
a€f1,(m,n)]

Indeed, for every m € M, \ M, ,, Lemma 6.1 and Section 5.4 allow to eliminate the
variables {Dm,a tac[1,(m,n)]-

Let us now show that the classes of the elements of P constitute a basis of myz/ m%,
which will prove the claimed statement about the embedding dimension by the very
definition of M, ,. Let A be the test ring k[S]/(S?) and s be the image of S in A.
It suffices to show that the following property, called condition C, is satisfied: for every
p € M,.,, and every b € [1, (i, n)] there exists a morphism from B = El[(Pm,a)]l/ Iy, to A
satisfying the following property, called condition C,, ;: it maps p,; to s and p € P\{p,»}
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to 0.
For a € [[O,nrlréz}&ca (m, ny —1], set

My, i={meMyn, a<(m,n)—1} and M, ,:=M,n\M], .
Let (®m,a) mem, be a family of elements of k and consider the morphism
a€ll,(m,n)]

¢: E[[(pm.a)]] = A defined by ©(Pma) = Tmes. Let u € My, and b € [1, (i, n)]
(such that b # 1 in case u = myg). The morphism ¢ factorizes through B and induces a
morphisme B — A satisfying condition C,.p if and only if, for every ¢ € I, the following
identities holds in A[T7:

H (T(m,n)+8 Z xm’aT(m,n)—a)ai,m

meMy a€l,(m,n)]
Oéiﬁm,>0

— (m,n) (m,n)—a\y—aim
(T + s Tm,oT )

meM, a€l,(m,n)]
i m<0

and moreover the following conditions hold:

Tma =0Ym € My, \ {1} Va €1, {m, n)]

Lpa = 0Va e [[1’ <:U7 TL>H \ {b}
Tup = 1.

Now, expanding the above polynomial relations in A, it is easy to see that condition C

is equivalent to the following property: for every a € [0, max (m, n) — 1], for every
meMs

p € MF, ., there exists a solution (Zy, (m ny—a) mem, Wwith valuesin Q to the linear

o,n,a’
a<(m,n)—1
system with constraints

xm,(m,n}—azo ifme M;n,a \ {,u} .

Z Qi T, (m ,ny—a =0, 1 €1 and { 1

meM,
a<(m,n)—1

Lp(p,n)—a

(6.2)
Since M, , is a Q-basis of M ®z Q, there certainly exists 7 € N ®z Q such that

~ — . +
{<<7Z’ Zi _(1) ifm e M"’”’“\{'M}. Let m’ € M, such that (m', n) < a+ 1. Let us show

that (m’, n) = 0. Assume that (m’, 71) # 0. Then

{m}mGMg,n\{;L} U {m/}

is a family of elements of 0 N M which constitute a Q-basis of M ®z Q. But since
(m',n) <a+1<{u,n), one has
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<m’+ Z m,n><< Z m,n>
meMg n\{p} meMg

which contradicts the definition of M, ,,. Thus for every m € M, such that (m, n) < a+1
one has (m, n) = 0. In particular, for every ¢ € I, one has

0= Z Qi m (M, R = Z a;m (M, 1)

meM, meM,
a<(m,n)—1
hence (Zpm,(m ,ny—a) := ({m, 7)) provides an adequate solution to the system with con-
straints (6.2).

(2) Let us now assume that n is indecomposable and show that dim(%;,) = 0. It
suffices to show that for every k-extension K, the set Y, (K) is a singleton. So let

{Pm.a} mem, Dbe afamily of elements of K by an element of Y,,(K). In particular,
a€fl,{m,n)]
we have p,,1 = 0. For every m € M,, we set

T (T) =T 4 N~ py [T ™70 € KT,
a€ll,(m,n)]

Let « be a root of my,,, in an extension of K. For every m € M,, let p,,(x) be
the multiplicity of x as a zero of m,, ,(T'). In particular one has, for every m € M,,
wm(z) < (m, n), and, for every i € I,

Z O‘i,mﬂm(x): Z O‘i,mﬂm(x)~

meMs meM,
a; m >0 a;,m<0

By Subsection 5.3, one may find n(z), n2(z) € o0 N N such that, for every m € M,,

(m, ni(2)) = pm(x), (m, na(z)) = (m, n) — pm(z).

In particular, we deduce that n = nj(z) + na(z). Since n is indecomposable and
(mo, n1(x)) = fmg(z) > 0, one necessarily has ny(z) = n; hence, pm(z) = (m, n) =
deg(mmn(T)) for every m € M,. In other words, the element x is a zero of maximal
multiplicity of every polynomial 7, ,,(T). So, we conclude that 7, ,(T) = (T — z){™>™
for every m € M,. Since p,,,1 = 0, one necessarily has z = 0; hence, for every m € M,,
T (L) = T{m.n) Tg implies that all the p,, ,’s are zero. This shows the second assertion
of the theorem.

(3) Next we study the dimension of the irreducible components of %;,. It suffices

to study the dimension of the minimal prime ideals of A := k[(pm.a) mem, /Iy,
a€ll,(m,n)]
contained in m4 = (Pp,a)-

Let B be an integral k-algebra. A morphism ¢: A — B corresponds to the datum
of a family of polynomials
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Prm(T) =T ™ 4 3" o(py, o) T ™™ € BIT].
a€fl,(m,n)]

such that @(pm,,1) =0 and

[T pone@ = T pmne@™, iel
meM, meM,

;i m>0 i m<0
Let K be an extension of Frac(B) splitting all the polynomials {pp, n,(7)}. Then there
exists a finite subset K(©) of K and a unique decomposition Dec(p) := (n,),cx© of n
such that, for every z € K©) and every m € M,, the multiplicity of x in DPrmn,o(T) 18
(m, n,) and, for every z € K \ K(© and every m € M,, the element z is not a root of
Pmon,o(T). Note that the set Dec(y) does not depend on the choice of the extension K.
Let D be a decomposition of n and

Bp = k[(XV)VED]/<Z <m0’ V> XV)'

veD

Let us denote by pp the kernel of the unique morphism of k-algebras ¢p: k[(pm.qa)] = Bp
mapping py,,q to the T(m.n)=a_coefficient of HVGD(T—X,,)<m '), By the very definition,
the ideal pp is a prime ideal containing Iy, and contained in m 4. In the sequel, we will
identify pp with its image in .A. Moreover, if v € D and m € M, is such that (m, v) # 0,
the image of X, in Bp is a root of the monic T-polynomial [], (T — Xl,)<m V) whose
coefficients are the ¢p(pm,q). Thus Bp is an integral extension of pp(A). In particular,
dim(A/pp) = dim(Bp) = card(D) — 1. Moreover the polynomial py, , ,p splits over
Frac(Bp) and one has Dec(¢p) = D.

We claim that, for every integral k-algebra B and every morphism ¢: A — B, the
ideal Ker(p) contains pp if and only if one has D < Dec(p). First assume that Ker(y)
contains pp. Pick a prime ideal q of the B-algebra Bp ®,,(4) B (which is integral over
B) whose trace on B is (0), and note that the polynomials {p, n} split in the Frac(B)-
extension K := Frac((Bp ®y,,(4) B)/q). Moreover, denoting by x,, the image of X, in
K for v € D, one has in K[T

P (1) = [ (@ =) .
veD

By the definition of Dec(¢p), this shows that D < Dec(y).
Now assume that D < Dec(y). In particular, there exist an extension K of Frac(B)
and a family {z,},ep of elements of K satisfying

pm;n,go(T) = H (T - xlj)<m,u>
veD

for every m € M, and ) 5 (mo, v)z, = 0. Now consider the morphism A — K
obtained by composing ¢p with the morphism Bp — K mapping X, to z,: its kernel
contains pp, its image is contained in B and the induced morphism A — B is ¢.

Let D, D’ be two decompositions of n. Let us now show that D < D’ if and only if
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pp C ppr. First assume D < D'. If pp pr is the morphism Bp — Bps mapping X, to
X, where v/ is the unique element of D’ containing v, it is clear that ¢p = vp DD
hence pp C ppr. Now assume pp C pps. Then D < Dec(pp/) = D’.

In particular for every decomposition D of n one has pp C py,; = my and the
minimal prime ideals of A contained in my4 are exactly the pp where D is a minimal
decomposition of n. This shows that the irreducible components of Spf (Z,: ) are in one-
to-one correspondence with the minimal decompositions of n; the irreducible component
corresponding to the minimal decomposition D has dimension card(D) — 1.

Let us assume that propery P, holds, in other words that the supremum of the
minimal decompositions of n is {n}. This property implies that

Z PD = P{n} = Mm4.

D minimal

On the other hand if one had an isomorphism Zm\A > C[[T]], the variable T" would not
contained in the sum of the minimal prime ideals of Zn: , in other words the intersection
of all the irreducible components would be of dimension > 1. Hence Spf(zn; ) is non-
cancellable. O

7. Minimal formal model of monomial curves singularities.

7.1. Let N > 2 be an integer, (d;);je,n] be an increasing sequence of coprime
positive integers, with d; > 2, 7 be the kernel of the k-algebra morphism k[(X;)]jeqi,n7 —
k[T] sending X; to T%. We set ¢ := Spec(k[(X;);eq1,n7]/Z). We then observe that
the origin o of AY is a singular point of ¢, and that k[(X;)jep,ny]/Z — K[T] is the
normalization morphism. In particular, one has mult(%,0) = d; (see Subsection 3.4)
and (T%);cq1,n7 is a primitive arc of the germ (¢,0). The germ (%, 0) is called a germ
of monomial curve (see, e.g., [27]).

Let I be a finite set and (a;) € (ZY)! be a finite collection of nontrivial integral
linear relations between the d;’s, that is to say, for every i € I,

Y aigd; =0, (7.1)
JE[L,N]
such that moreover
{ H XJ('va - H Xj_am} (7.2)
JEL,N] J€lL,N] il
Qg j >0 Qg <0
is a set of binomial generators of Z. Upon enlarging I, one may and shall assume that,

for every integer j € [2, N], this set of generators contains ij — Xj‘-h.

REMARK 7.1.  Let (v;);eq,ny be a family of integers such that, for every i € I, we
have
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E Q; V5 = 0.

J€[1,N]

Then, by our assumption, we conclude that, for every integer j > 2 one has d;v, = dyv;.
Let p be a prime divisor of 4 and r be the p-adic valuation of v4. Since the (d;) are
coprime, there exists j > 2 such that p does not divide v;. Hence p” must divide d;. We
conclude that vy divides dy, and finally that d; divides v; for every j € [1, N].

7.2. Let us state and prove the main theorem of the section.

THEOREM 7.2. Keep the notation of Subsection 7.1. Assume that the base-field k
has characteristic zero. Let v be a primitive k-parametrization of € at 0. Let

e (e (I 11 5) )
i€l

JE[L,N] jelt,N]
Oci,j>0 Oti,j<0
and % be the completion of Y along the origin o. Then, the formal k-scheme % is

the minimal formal model of v. It is of dimension zero and of embedding dimension
mult(%,0) — 1.

PRrROOF. The first assertion is proved using the same kind of argument than in the
proof of Theorem 5.2.

o Let us show the assertion on the embedding dimension. Recall that the k-scheme
Y is the closed subscheme of

Spec(k[(pj,a) jeqi,n])
a€[l,d;]
whose ideal Iy is generated by p;; and all the coefficients with respect to the variable
T in the polynomials

IT vi@ = I v (7.3)

g, ;>0 Jrai ;<0

for every ¢ € I, where

pj(T) = de + Z pj,ade_a-
a€l,d;]

Moreover % = Spf(k[[(pj.«)]]/Iy) =: Spf(B) is the completion of ¥ along the origin.
We claim that the maximal ideal mp is generated by the classes of the elements of
the set P := {p1,a}ac]2,4,]- Indeed, for every j € [2, N], Lemma 6.1 and the fact that

ij — le1 is in the set (7.2) allow to eliminate the variables {p; o }ac[1,4,]-
Let us now show that the classes of the elements of P constitute a basis of mz/m%,
which will prove the claimed statement about the embedding dimension, since d; =

mult(%,0). Arguing similarly as in the toric case, we see that it boils down to show the
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following: for every integer ag € [2,d;], there exists a solution (z;,q) jep,n] With values

a€l1,d;]
in Q to the linear system
> irja=0, i€l, ac[di,max(d))] (7.4)
JElL,N]
dj2a
with constraints
T1,a9 = 1
. . 7.5
{ xl,a:O ifa € [[1,d1]]\{a0} ( )

Thanks to (7.1), such a solution is given as follows: for j € [1, N], set x4, = (d;)/(d1)
and take all the other variables x; , equal to zero. Here we use that di = min(d;), thus
in particular for every j one has ag < dj; if it were not the case, in case dy > ag > d; for
at least one j, the non-trivially solvable part of the above system with constraints would
read

> iwja, =0, i€l (7.6)
JelL,N]
dj>ao

and the above solution does not work due to the restriction d; > ao.
o Let us show that dim(%#") = 0. Arguing similarly as in the toric case, we see

that it suffices to show that for every family (7;(T));cp1,n7 of monic polynomials with
coefficients in a field satisfying deg(w;) = d; and

[[ =@ = T[ =),

Jrai >0 Jyoi, ;<0

and for every root x of the polynomial 71, then for every j € [1, N] the multiplicity
wi(x) of z in m;(T') is d;. But under the previous assumptions one has for every integer
J € [1, NJ, the inequality u;(z) < d,;, and, for every i € I, the formula

Z ai’j,uj(x) =0.

J€E[1,N]

Now, since p1(z) > 0, we deduce by Remark 7.1 that p;(z) = d; = deg(w;(T)) for every
integer j. O

ExXAMPLE 7.3. Let k be a field of characteristic zero, Let us consider the affine
plane cusp ¢ = Spec(k[Xo, X1]/(X§ — X?) and ~(T) = (T?,T3). Using Theorem 7.2,
one may check that the minimal formal model is Spf(k[[po,0]]/(P§ 0))-

EXAMPLE 7.4. Let k be a field of characteristic zero. Let ¥ be the k-curve de-
fined by the datum of the polynomials X% — Xy X2, X3 Xo — X§ and X3 — X2 X in
k[Xo, X1, X2], 0 be the origin of A} and 7 be the primitive arc (T3, 7%,7°). Note that
the monomial curve singularity (%, 0) does not satisfy the Gorenstein relation, thus it
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is not plane. Using Theorem 7.2, we deduce after performing suitable eliminations that
the minimal formal model is isomorphic to Spf(k[[po,0. po,1]]/ (P50, P3 15 Po.0P0,1))-

8. Further comments, examples and problems.
We conclude the article by various comments, examples and problems.

8.1. If one puts no particular restriction on the dimension of the varieties under
consideration, a variant of a construction of Drinfeld in [12] shows that there exist
rational non-degenerate arcs the minimal formal model of which has arbitrarily large
dimension (see [2]). Using Corollary 6.4, one can obtain the following new result: there
exist rational non-degenerate arcs the minimal formal model of which has arbitrarily
large dimension, even when restricting to arcs on 3-dimensional (toric) varieties. Indeed,
let us consider N = Z3, D be a positive integer and o be the cone generated by (1,0, 1),
(1,2,1), (0,0,1) and (D, 1,0). One checks that (1,0,1), (1,1,1), (0,0,1) and (D, 1,0)
are indecomposable elements of the semigroup ¢ N N. Let n be the primitive element
(D,1,D). Since

n=(D,1,0)+ D(0,0,1) = (1,1,1) + (D — 1)(1,0, 1),

property P, holds and ¢(n) > D + 1. Thus by Corollary 6.4 the minimal formal model
7 is of dimension ¢(n) — 1 > D.

8.2. Ifn € o N N is a primitive element such that P, holds, one saw that the
minimal formal model ., is of dimension ¢(n) — 1 and may be obtained from the formal
model #;, (defined by formula (5.4)) by the cancellation described by Lemma 5.1. Note
that in case one has £(n) > 2, the arguments show in particular that the minimal formal
model .%, is not irreducible. More generally, it may happen that P,, does not hold (even
if n is a minimal element of Sing(c) N N) but one still obtains .#, from #; by the
cancellation described by Lemma 5.1 (and in particular the embedding dimension of .7,
will still equal the Mather discrepancy f(n), on the other hand, .#,, may be irreducible
even if it has positive dimension. Let us give a specific example in N = Z3. We consider
the cone o generated by (1,0,0), (0,1,0), (0,0,1) and (—1,1,2). One checks that these
four elements generate the rays of ¢ and form a Hilbert basis of the semigroup ¢ N N.
One also checks that Sing(o) = ¢°, that n := (0,1,1) is the unique minimal element
of Sing(c) N N and that n = (0,1,0) + (0,0,1) is the only decomposition of n. In
particular property P, does not hold. On the other hand, a presentation of the toric
Variety V((T) is Spec(k[Xo, )(17 Xg, )(37 X4}/<XZ — X()Xg, X()X2 - X1X4, X1X3 - X2X4>)
and (T) := (T,T,T,T,T) satisfies ord(y) = n. Thus, after the cancellation of #;,
corresponding to T' — T + p4, we obtain a finite formal model of v whose presentation
in Spf(k[[po, p1, 2, p3]]) is given by the T-coefficients of the polynomials

T? = (T+po)(T+ps), (T+po)(T+p2)—(T+p1)T and (T+p1)(T+ps)—(T+p2)T.

One easily eliminates po and p3 and obtains that the latter model is isomorphic to
% = Spf(k[[po,p1]]/ (P8, pop1). It is thus irreducible of dimension 1. Let us show
that it is non cancellable, in other words that # = .¥,. If one has an isomorphism
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0: k[[po,p1]]/(p3,pop1) = Al[u]], one may assume after a k-linear transformation on u
that 8(pg) = u or 6(p1) = u. But this contradicts the fact that u is not a zero divisor in

Alfu]].

8.3. As a matter of fact, for a general primitive element n of ¢ N N, the minimal
formal model .#,, may not always be obtained from the formal model %, (defined by
formula (5.4)) by the cancellation described by Lemma 5.1. One obvious obstruction is
the existence of a non-trivial toric splitting, that is to say, denoting by 7 the minimal
face of o containing n, the existences of non-trivial lattices N1, Ny and cones 7 in Ny,
and 75 in Ny such that N N Vect(7) =2 N3 X Ny and 7NN =273 NNy X 75 N Ny. In this
case, one reduces to a computation on each factor thus one may perform at least two
cancellations described by lemme 5.1. Note however that such a situation can not occur
when n is a minimal element of Sing(c) N N. It would be interesting to know whether
%, may always be obtained from the formal model #;, by a single cancellation in case n
is a minimal element of Sing(o) N N (which would imply in particular that in this case
the embedding dimension coincides with the Mather discrepancy K n)-

8.4. On the other hand, let us give an example showing that even when there is
no non-trivial toric splitting, it may happen that at least two cancellations (or more)
are necessary to obtain ., from #;; in particular the embedding dimension of .#,, no
longer coincides with the Mather discrepancy K,. Let us consider N = Z2. q a positive
integer, o be the cone generated by (1,0) and (1,2) and n := (g,1). One has V(o) =
Spec(k[Xo, X1, X2] /(X0 X2 — X?)) and y(T) = (T, T?,T?171) satisfies ord(y) = n. Thus,
after the cancellation of %, corresponding to T' +— T 4+ pg we obtain a finite formal
model of v whose presentation in Spf(k[[p1,0,---,D1,g-1,P2,0,---sD2,24—1]]) is given by
the T-coefficients of the polynomial

2q—1 g—1
r (w s pzm> . (Tq . Zpl,m‘)
i=0 =0

One easily eliminates the py; and obtains a finite formal model isomorphic to
Spf(k[[pl,o,...,pl’q,l]]/<pi0>) which s cancellable; the minimal formal model is

Spf (k[[p1,0l/(P% 0))-

2
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