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Abstract. A rigged Hilbert space formalism is introduced to study Fock space oper-
ators. The symbols of continuous operators on a rigged Fock space are characterized in
terms of Bargmann-Segal spaces and complex Gaussian integrals. In particular, charac-
terizations of bounded operators and of operators of Hilbert-Schmidt class on the middle
Fock space are obtained. As an application we establish an operator version of chaotic
expansion (Wiener-It6 expansion) and describe a relation to the Fock expansion in terms
of the Wick exponential of the number operator. As another application we discuss regu-
larity property of a solution to a normal-ordered white noise differential equation gener-
alizing a quantum stochastic differential equation.

1. Introduction.

A rigged Hilbert space approach [3], [13], widely accepted in various fields of math-
ematics and mathematical physics, is a powerful tool also in the study of operators on a

(Boson) Fock space, e.g., [4], [5], [15], [24]. [25], [39], [40]. In particular, a nuclear
rigging (or also called a Gelfand triple) of a special type:

W < (Hc) W™

has been studied under the name of white noise theory or Hida calculus [17], [19], [26],
[27], and much attention has been attracted also to the white noise operators & (%", #*)
in connection with quantum stochastic calculus and infinite dimensional harmonic anal-

ysis, see e.g., [34].
An important contribution of white noise theory is found in a series of charac-
terization theorems of the S-transform:

de(é) = <<¢7 ¢£>>7 De W*v
and of the operator symbol:
E(En) = (5 4,y S L0 07,
where ¢ is an exponential vector (or also called a coherent vector) and is defined by
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In fact, many variants of characterization theorems for the S-transforms and for the
operator symbols have been obtained with a common feature: they are characterized as
entire holomorphic functions on an infinite dimensional vector space having certain
growth rates, see e.g., and references cited therein for the S-transform; [10], for
the operator symbol; and for a unification. However, since these characterizations
depend heavily on the nuclearity of ¥, elements in the Fock space I'(#(¢) itself or
bounded operators on I'(#¢) have not been characterized in terms of growth rates.
A similar characterization for operator symbols is obtained in [40], where another type
of rigged Fock space is constructed from entire vectors but is still a nuclear rigging.

Meanwhile, the complex Gaussian analysis has received some new understanding in
connection with coherent state representations [37], and the Bargmann-Segal space
129], [43], see also for a historical survey and recent topics on loop spaces. In
connection with the characterization theorems, a relation between the S-transform and
the Segal-Bargmann transform was first pointed out in and has been studied to some
extent, see also [28]. Among others, the work of Grothaus, Kondratiev and Streit
should be drawn considerable attention: the S-transform of different classes of vec-
tors are characterized by means of the Bargmann-Segal space and the complex Gaussian
integrals. Their discussion is based on a more general rigging. Given a certain self-
adjoint operator K acting in a Hilbert space #¢, we first construct a rigged Hilbert
space:

Yy =projlim Z,c---c 2, c---

pP— 0

cYy=Hcc-cD p,c---cindlimP_,=9. (1.1)

P
Then, taking the Boson Fock space over the above Hilbert spaces, we obtain a rigged
Fock space:

Yy =projlm¥%,c---c%,=I(2,) <---

p—o0

cY% =1(Hc)c- Y ,=1(9_p))c---cindlm¥_,=%,. (12)

p—©

These riggings are not necessarily nuclear so that their result contains a charac-
terization for the S-transform of I'(#¢). Interesting examples of a non-nuclear rigging
have been also discussed in [21], [31], [42].

It is therefore very natural to extend the idea of Grothaus, Kondratiev and Streit
and to characterize the symbols of several different classes of operators in the Fock
space. We first note that the symbol ® = 5 of 5 e & (9,,9,) is uniquely extended to
an entire function on ¥, x ¥_,, where p,q € R. Thus, the question is to find additional
condition for an entire function @ : ¥, x Z_, — C to be the symbol of an operator. In
fact, we describe such condition in terms of the complex Gaussian space (.4, v) and the
Bargmann-Segal space E*(v). The main theorem (Theorem 3.2) claims that such an
entire function @ is the symbol of some operator = e ¥(%,,%,) if and only if there
exists a constant C > 0 such that

(1.3)

k
Zai@(fiaKq‘)
i=1

k
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for any k> 1 and any choice of ;€ %, and a;€ C, i=1,...,k. Usefulness of our
main theorem is illustrated with two applications, where condition (1.3) is verified
with no difficulty. Moreover, the symbol of an operator of Hilbert-Schmidt class
Ze $(%,,%,) is also characterized in this line (Theorem 6.2).

As a first application of our main theorem we prove that each operator = e
£(%,,%,) admits an (operator version of) chaotic expansion or Wiener-Ité expansion:

Z= i I (Kim), (1.4)

where 1; ,,(K; ;) is determined by

Il.,m(Kl.,m>A(éu 77) = <Kl,mé®m7 77®[>'

On the other hand, as is well known [34], the Fock expansion of Z is given by

Z Z1m(Lim) (1.5)

m:
where = ,,,(L;,,) is determined by

Erm(Lim) (En) = <Ll,mf®m,l’/®l>e<f”7>‘

It is noteworthy that the above two expansions (1.4) and (1.5) are related through the
Wick (normal-ordered) exponential of the number operator N in such a way that

Il,m(Kl,m) = WCXp(-N) % Elym(Kl\,m)‘

Moreover, with this formula the chaotic expansion (1.4) becomes

0 n

_ -1 o n fwnd

L = E %dnﬂ,nm([@ ® Kl,m)a =€ g(gpa gq) (16)
1,m,n=0 ’

The precise statements are given in [Theorem 8.3 and its corollaries. The expansion
(1.6) is a generalization of Attal [2], where only operators of Hilbert-Schmidt class are
discussed as a quantum analogue of a multiple Wiener-It6 integral, see also [30].

The second application of our main theorem (Theorem 35.2)) is found in a study of
quantum stochastic differential equations. Along with our approach it is more natural
to consider a normal-ordered white noise differential equation:

)
dt

—_

=Lo&, Z0)=1I, (1.7)
where L, is a given quantum stochastic process and ¢ stands for the Wick product (or
normal-ordered product). The solution =, should be found in a space of white noise
operators. If

L,=La,+ Lza + L3a a; + L4l ,

where a; and a; are the annihilation and creation operators at a time point ¢, equation
(1.7) becomes equivalent to a quantum stochastic differential equation:

= (Ll dAt+L2dA:+L3dA,+L4)E, E(O) =1,
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for generalities see e.g., [32], [41]. A normal-ordered white noise differential equation
(1.7), allowing to include more singular quantum noises such as higher powers of quan-
tum white noises, is thus regarded as a natural generalization of a quantum stochastic
differential equation. In a series of papers [8], [9], [35], we proved several unique
existence results, and in the recent paper we sharpened the characterization theo-
rem for operator symbols and found a weighted Fock space in which the solution acts.
Now our characterization theorem (Theorem 5.2) offers a new method of examining
regularity properties of a solution. For a particular coefficient L, we verify condition
(1.3) and see that the solution lies in ¥ (%9,,%_,) for some ¢ > 0. In other words, the
solution is grasped as (unbounded) operators acting in the Boson Fock space %_,, which
is different from the original I'(#¢) = %, unless ¢ = 0. This result (Theorem 9.4) is
also interesting for being free from the nuclearity of #~ that is required in the former
works.

This paper is organized as follows: In Section 2 we review the basic construction
of riggings of Fock space after [3], [13]. In Section 3 we mention the definitions of an
exponential vector, S-transform and operator symbol. In Section 4 we introduce the
Bargmann-Segal space after and recall relationship between the S-transform and the
duality transform (or Segal-Bargmann map). In Section 5 we prove characterization of
a continuous operator in £ (%,,%,), p,q € R, in terms of the operator symbol and the
Bargmann-Segal space. In Section 6 we investigate characterization of an operator of
Hilbert-Schmidt class %>(9,,%,), p,q € R. In Section 7 an operator-version of chaotic
expansion (Wiener-Itd expansion) is established with detailed argument of convergence.
In Section 8 we mention relationship between the chaotic expansion and the Fock expan-
sion. In Section 9 we study a normal-ordered white noise differential equation as an
application of our main result.

ACKNOWLEDGEMENTS. The second named author would like to express his grat-
itude to Professor D. M. Chung for his kind invitation to Sogang University in February
2001, where most part of this work was completed. The authors thank the referee for
several comments that improved this paper.

2. Construction of riggings of Fock space.

Let o be a real separable Hilbert space with norm |- |, and inner product {-,->.
The complexification is denoted by #¢ = # + i# whose norm is denoted by the same
symbol. According to our convention, the inner product <-,-)> is extended to a C-
bilinear form so that |& |§ = (&, &) for e H#¢. Throughtout, to avoid confusion we do
not use a specific symbol for the hermitian inner product of a complex Hilbert space.
The Fock space over #¢, denoted by I'(#¢), is by definition the space of all sequences
¢ = (f)~, where f, is a member of the n-fold symmetric tensor power #2" and

o0
2 2
Igllo =D nllfalg < oo

n=0

We denote by (-,-)» the canonical C-bilinear form on I'(#¢) defined through {-,-).
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By means of the standard method (see e.g., [3], [13]) we shall construct riggings
of #¢ and of I'(#¢). Let K be a selfadjoint operator in #¢ with domain Dom(K)
satisfying

(K1) inf Spec(K) > 1.

For each p > 0 the dense subspace Dom(K?) < #¢ becomes a Hilbert space equipped
with the norm

i<l, = |K”¢ly, &€ Dom(K”).

This Hilbert space is denoted by %, = Z,(K). From infSpec(K) >1 we see that
€], < €], for 0 < p < g, and hence 7, = 9, = Dy = #Hc. We then define a countable
Hilbert space by

Dy = 95(K) = projlim 2,(K) = (| Z,(K). (2.1)

P p=0

In other words, Z.,(K) is the space of C*-vectors for K topologized in a natural way.
For p>0 let Z_, be the completion of #¢ with respect to the norm |¢|_, =

|K~7&|,. Then, we have #c =%y Z_, < P_, for 0 < p <gq, and set
D =9 _4(K)= ir})dloiom 7_,(K) =) 2_,(K). (2.2)

- p=0

By the Riesz theorem the dual space of J#¢ is identified with itself. More precisely, for
f € H¢ there exists a unique 7, € #¢ such that f() = <y, &) for ¢ € #¢, and the map
J ¥ n, gives rise to an isometric isomorphism from #¢ onto #c. By extending this
isomorphism we identify the dual space of &, with Z_,. The canonical C-bilinear form
on ¥_, x ¥, 1s denoted by <-,-) for the compatibility. Moreover, it is known that the
strong dual space of %, denoted by &, is identified with &Z_, together with their

o0

topologies. Thus we come to a rigged Hilbert space:

YDy =projlim 7,(K) c 2,(K) c #c < Z_,(K) < indlim Z_, = Z. (2.3)
p— 0 p—x©
We also note that for any p,q € R the operator K?~7 is naturally considered as an
isometry from Z,(K) onto Z,(K).
We next construct a chain of Fock spaces over the rigged Hilbert space (2.3). For
simplicity we set
%, = I(2,) = I[(%,(K)), peR.

By definition, %, is the space of sequences ¢ = (f,) where f, € @[(?” (n-fold symmetric
tensor power of the Hilbert space Z,) such that

o0 o0

ol =D nllfuly = D nll(KE" fulg < o0 (2.4)

n=0 n=0

Then %, becomes a Hilbert space with the norm defined in (2.4). Viewing an obvious
inclusion relation: 9, c 9, c Yy =1 (#Hc) <9, <9, for 0 < p <gq, we set

Y, =projlim¥%,= (%, 9% ,=indllm% ,=1)%,. (2.5)
p—o p=0 P =0
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Clearly, 9, becomes a countable Hilbert space equipped with the Hilbertian norms
defined in (2.4), and %, the strong dual space of %, is identified with ¥_,,. Thus we
come to a rigged Fock space:

Yy I'(Hc) <9, (2.6)

We use the same symbol (-, -» for the canonical C-bilinear form on 4 x %,. Then,

<<d55¢>>zzn'<Fn7ﬁ'l>7 QDZ(Fn)eg;J ¢:(ﬁ1)eg007

n=0
and the Schwartz inequality leads to:

K@, 3] < |2, I,
We note that the norm of %y = I'(#¢) is given by H¢H3 =Ko, 4.

PROPOSITION 2.1.  The countable Hilbert space 9., defined in (2.1) is nuclear if and
only if K™" is of Hilbert-Schmidt class for some r > 0. Only in that case 9., defined in
(2.5) is a nuclear space.

REMARK 2.2. If the selfadjoint operator K satisfies the conditions: (i) inf Spec(K)
> 1; and (ii) K" is of Hilbert-Schmidt class for some r > 0, then the rigged Fock space
is called the Hida-Kubo-Takenaka space and provides the most prototype in the
white noise distribution theory, see [26]. In this paper we do not assume these condi-
tions, therefore, nuclearity of %, is not assumed.

3. [Exponential vectors, S-transform and operator symbol.

In general, a (formal) vector of the form:

£®? ge"
¢: = <176777"'777"'>

is called an exponential vector or a coherent vector. From an obvious identity:

o0

1 2

2 2 14

||¢f||p: E E|é|pn:e|.‘p’ pER,
n=0"""

we obtain the following

LemmA 3.1. Let pe R. An exponential vector ¢: belongs to %4, if and only if ¢
belongs to Z,. In particular, ¢: belongs to I'(Hc) if and only if & belongs to Hc.
Moreover, ¢: belongs to 4, (resp. 4.) if and only if & belongs to 9., (resp. Z,).

Moreover, by a standard argument we have

LemMA 3.2, The exponential vectors {¢:;&€ D} span a dense subspace of 9.,
hence of 9, for all pe R and of 9.

Thus each @ € % is uniquely specified by its values for the exponential vectors.
We set
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which is called the S-transform of @ [26]. For @ = (F,) € 4, we have
B 0 é@ﬂ B 0 on
SPE) =) nl{ Fpim) =) (Ful®, e (3.2)
n=0 ’ n=0

Similarly, a continuous linear operator = € £ (9., %) is uniquely specified by its matrix
elements with respect to the exponential vectors. We set

E’A‘(fvrl):<<5¢§"7¢q>>7 f,l’]e@w (33)

This C-valued function = defined on %, x %, is called the symbol of = [33]. The
symbol is related to the S-transform in an obvious manner:

E(&n) = S(54e)(n) = S(E*$,)(E), &ne P

Now we note the following result, which is immediate from [Lemma 3.1 and basic
properties of entire functions on a Hilbert space.

ProrosiTiION 3.3. Let p,q € R.

(1) The S-transform of ® € 9, is uniquely extended to an entire function on Z_,.

(2) The symbol of E € £(%,,9,) is uniquely extended to an entire function on
Dy X D_y.

4. Bargmann-Segal space.

We shall introduce the Bargmann-Segal space after Grothaus, Kondratiev and Streit
(16]. In addition to (K1) we assume that the selfadjoint operator K satisfies:
(K2) K is a real operator, ie., K(Dom(K)N#) < #;
(K3) there is a real nuclear space ./~ which is densely and continuously imbedded
in ,,N# and is kept invariant under K.
Thus we have
N Dy H D, <N, (4.1)

where the bilinear form on 4™ x A" is denoted by <-,-) again. Let p;,, be the
Gaussian measure on ./* whose characteristic function is given by

1 : p
exp{—1<f75>} = ‘[/V* el<x’g>,u1/2(dx), e

Define a probability measure v on A = A" +iA"" in such a way that
v(dz) = pyp(dx) X i pp(dy), z=x+1iy, x,ye N7

Following Hida the probability space (4,v) is called the (standard) complex
Gaussian space associated with (4.1).

The Bargmann-Segal space, denoted by E?(v), is by definition the space of entire
functions ¢ : #¢ — C such that

91 = supj 19(P2)[*v(dz) < oo, (4.2)
Pe? ,/V'C*
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where 2 is the set of all finite rank projections on # with ranges contained in ./
Note that P e 2 is naturally extended to a continuous operator from ./ into #¢ (in
fact into .#¢), which is denoted by the same symbol. The Bargmann-Segal space E?(v)
is a Hilbert space with norm || - ||z, see also [28]. For ¢ = (/)2 € I'(#c) define

& =) ¥ S, Ee e, (4.3)
n=0

where the right hand side converges uniformly on each bounded subset of #¢. Hence
J¢ becomes an entire function on #¢. Moreover, it is known (e.g., [14], [16], [28]) that
J becomes a unitary isomorphism from I'(#¢) onto E*(v). Here we check only that
J is isometric. By definition

< (P2)®", f,> Z<z®",P®"fn>, ze N,
n=0 =
Then, using the orthogonal relation [18, Chapter 6], we easily obtain
2 - 2 2
| wsePuian = S mipen s = eyl (44)
'//C

n=0

from which we see that J: I'(#¢) — E*(v) is isometric; in fact,
17811520y = SUBHF(PWHé =gl ¢ eI (Hc).
PEY

Here we record a useful formula which follows from (4.4) and a simple identity
Ko, pp.y =JPp(Pz) for ¢ e I'(#¢) and z e N.

LemmA 4.1. For ¢pe I'(H¢) and Pe P it holds that

J . . 0nPia) = i

Moreover,
sup [ 1€0. 4> (a2 = 1915
Pe? J g
The map J defined in (4.3) is called the duality transform and is related with the
S-transform (3.1) in an obvious manner:
J¢‘@x:S¢7 ¢€F(%C)7
which follows from (3.2) and (4.3).

THEOREM 4.2 ([16]). Let peR. Then a C-valued function g on 9., is the S-
transform of some ® € 9, if and only if g can be extended to a continuous function on & _,
and go K” € E*(v).
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PrROOF. Suppose we are given a C-valued continuous function g on &_, such that
go K? € E*(v). In fact, g is entire on Z_, since K” is an isometry from #¢ onto Z_,.
By the duality transform there exists (f,) € I'(#¢) such that

go K (&) = (&%, fi>, Ee e
n=0

Then, changing variables, we have

g(&) =Y LK), &8, (e,

n=0

Define @ = ((K7)®"f,). Then by definition @ € 4, and S®(&) = g(¢) for & e ., see
(3.2). Namely, g|, is the S-transform of @ e %,. The converse assertion is readily
clear. 0

During the above proof we have already established the following

PrOPOSITION 4.3. Let pe R and ® € %,. Then S® admits a continuous extension
10 9_, and S® o K? € E*(v). Moreover,

1@, = ISP o K[| g2

5. Characterization of bounded operators.

The symbols of continuous (equivalently, bounded) operators from ¥, into ¥, are
characterized by means of the Bargmann-Segal space.

LemMa 5.1. Let Ee€ %(9,,9,) and put O =ZE. Then, for any k> 1 and any
choice of &€ Y, and a;e C, i =1,2,...,k, it holds that

k k
> a0, KN =D aFe, (5.1)
i=1 E2(v) i=1 q
Proor. We first observe
k 2 k 2
> a0, K| =sup | |> aO(&, KIPz)| v(dz)
i=1 E2(v) Pez ¢ i=1
v 2
ZIS)UI; Zai<<5¢g’,->¢Kqu>> v(dz), (5.2)
e?JI N |i=1

which follws from the definitions and (4.2). For simplicity we put y = S, aife .
Then becomes

sup J . |<<E!P7¢quz>>|2v(dz) = sup I . |<<F<Kq)5¢7¢pz>>\2v(dz)

Pez Pez
= IT(K)Zyl5 = 1215, (5.3)
where is used. Then (5.1) follows from and (5.3). H
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THEOREM 5.2. Let p,ge R. A C-valued function © on 9., X Y, is the symbol of
some = e L(9,,%9,) if and only if

(i) © can be extended to an entire function on %, x I_;

(i) there exists a constant C >0 such that

<C

k
Z ai@<éi7 Kq)
i=1

k
> aide,
i=1 p

for any k> 1 and any choice of &€ 2, and a;e C, i=1,... k.
In that case || Z|qpp < C.

E2(v)

PROOF. Suppose that @ = £ with = e £(%,,%,). As was mentioned in Propo-
sition 3.3, condition (i) is obviously satisfied since @(¢,77) = Z¢;, ¢, is well-defined for
ceZy,andne P, Asfor (i), we take C > 0 such that [|Z¢[|, < C||¢[|,. This choice
is possible by assumption of Ze ¥#(9,,%,). Then (5.4) follows by [Lemma 35.1.

We next prove the converse. Given ¢ € &, we define a function F: : ¥_, — C by

Fe(n) =0(&n), ne?,
Then by condition (i) the function F: is entire on Z_,. Moreover, F: o K€ E*(v); in
fact, by (i) we have
1Fz 0 K9 g2y = [0(E, K| g2y < Cllgell, < 0.
Then by Theorem 4.2, there exists a unique @: € %, such that F: = S®, i.e.,

SDP:(n) = Fe(n) = O(<,n). (5.5)

Since the exponential vectors are linearly independent, a linear operator = is uniquely
specified by

Ep: = De, €Dy (5.6)

Then we see from (5.5) that ® = Z. Hence, to our goal, we need to show that =
is extended to a continuous operator in £ (%,,%,). Let k>1 and take {; € Z, and
aieC, i=1,2,....,k. By [Lemma 4.1 we have

k 2 k
‘ :<Z"i¢éi> I'(K7) Zai@q’f)
i=1 i=1 0

k
= Su I Kq al‘ds’_ 7 )
Pe.l’;uvyc* << ( )<; Gi ¢P_>>

f 2
= sup << E ai¢§,-;¢1<qu>> v(dz)
Pez2J > i=1

2
v(dz)

2

[

2
v(dz)

k
—sup [ [SaoE kP
i=1

Pe? I NF

2

k
Zai@(fiaKq')
i=1

E2(v)



A role of Bargmann-Segal spaces on Fock space 321

Consequently, by (5.4) we have

k k
A (Z ai¢¢,> Z aide.
i=1 i=1

which proves that there exists & € ¥(%,,%,) characterized by (5.6) since the exponential
vectors {¢:;¢ € Z,} span a dense subspace of %,. O]

Y

P

<C
q

THEOREM 5.3. A C-valued function © defined on 9, x D is the symbol of an
operator Z € £ (9,,%) if and only if there exists some p e R such that

(i) O can be extended to an entire function on Z, x Zy;

(i) there exists a constant C >0 such that

k

> a0, K7

i=1

<C
()

k
Z a’¢fi
i=1

Jor any k >1 and any choice of {;e 2, and a;e C, i=1,... k.

P

ProorF. We see from general theory of countable Hilbert spaces that

g(gomgo*o) = U g(gpvg—p)-

p=0

Then the assertion is immediate from [Theorem 3.2, ]

THEOREM 5.4. A C-valued function @ on 9, x D4 is the symbol of a bounded
operator on I'(#¢) if and only if

(i) O can be extended to an entire function on H¢ X Hc;

(i) there exists a constant C >0 such that

k k
Zai@(fn ) Zai¢g,.
i=1 i=1

for any k >1 and any choice of &, € #¢c and a;e C, i=1,... k.
ProorF. Immediate by specializing parameters in as p=q=0. O

<C

E2(v) 0

Similarly the spaces ¥ (9.,%,) and ¥(9,,%,) are characterized as follows.

THEOREM 5.5. A C-valued function © on 9., X 9 is the symbol of an operator
Ze L(9.,%,) with g € R if and only if there exists p € R satisfying conditions (i) and (ii)
in Theorem 5.2. In particular, O is the symbol of an operator E € ¥ (9, %) if and only
if for any q >0 there exists p € R satisfying conditions (1) and (ii) in Theorem 5.2.

6. Characterization of operators of Hilbert-Schmidt class.

Denote by %»(9,,9,) < ¥(9,,9,) the space of operators of Hilbert-Schmidt class.
The Hilbert-Schmidt norm is denoted by || - |44 4, or by |- |lzs When there is no
danger of confusion.
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LemMAa 6.1. Let peR and let 5 e L(9,, I (Hc)). If suppcn||I'(P)E||ys < o0,
then Z belongs to £5(%,,I'(#c¢)) and

1Z]las = sup [[17(P)E]|ys- (6.1)
Pe?

Proor. Let {P,},,_ , =2 be an increasing sequence of orthogonal projections
converging strongly to the identity operator on #¢. Obviously, {||I'(Pn)Z|ys} is an
increasing sequence, and by assumption lim,, .|| (P,)Z|s < 0. Let {w,} be a
complete orthonormal basis of %,. Then, by the monotone convergence theorem we
have

: 2 O 2 NS e 12 2
fim 17 Sl = Jim ST Zenlf = S 1500l = 121 (62
Hence = e %5 (9, I'(#c)). Furthermore, since ||I'(P)Z|ys < [I'(P)|opllZllus <
| Z|lgs, (6.1) follows from (6.2). O

THEOREM 6.2. Let p,gqe R. A C-valued function @ on 9, X Y, is the symbol of
an operator = € %>(%,,%9,) if and only if

(i) O can be extended to an entire function on %, x I_,;

(ii) there exists a non-negative, locally bounded function g on 2, satisfying

M? = supJ g(K™PPz)*v(dz) < o0 (6.3)
Pe? 1”C*
and
10, K ) g2y < 9(E), €Dy (6.4)

PrOOF. Suppose that @ = = for some = € %(%,,%,). Then condition (i) is obvi-
ous, see also [Theorem 5.2 On the other hand, from [Lemma 5.1 we see that

10, KD ) [ p2) = 15¢¢lly € € Zp-

It is sufficient to show that g({) = [|Z¢||, > 0 has the desired property. Since Z e
L(%,,%,), there exists C >0 such that

1
(&) = 124, < Cliel, = Cenp (5165 ).

Hence ¢ is bounded on every bounded subset of Z,. We thus need only to show (6.3).
Let Pe 2 and we take a complete orthonormal basis of ¥_,, say {w,},_;. Then,

_ 2 —
g(KPPz)" = ||Edg-rp.

2 =N K Ebgrp on)
n=1

Z|<<F K 0, ¢, ze N

Integrating over /¢ and applying [Lemma 4.1, we come to
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o0 o0
— 2 — D\ % 2 —% 2 —% (2
}S)llI;J1 g(KPP2)*w(dz) = Y (IN(K?)Z wullg = Y IIZ wal?, = 12" s, (6-5)
€Y ,//'g n=1 n=1

which is finite since Z* € £ (9_,,9_,).
We next prove the converse. By a similar argument as in [Theorem 5.2, for each
¢ e P, there exists a unique ¢ € 9, such that F: = SP¢, ie.,

<<¢§?¢n>>:S¢f(’7>:@(é)}7)> éegﬁﬂﬂe‘@*Q‘

Moreover, from |[Proposition 4.3 and (6.4) we see that

[Pelly, = [1SPe 0 K| g2y < 9(E), €2
Now, we fix ¢ € 4_, and define a C-valued function G4 on ¥, by

G¢(§) = <<@§7¢>>7 é € @p-
We shall show that Gy0 K7 € E*(v). In view of

Gg o KP(&)] = [« Bx-re, 4]
< [ Bx-rcll I,
< 9K, Ee e, (6.6)

we see by assumption (6.3) that
supJ Gy 0 K7 ()| v(dz) < Mg, < . (6.7)
Pe? JNS

In order to prove that &+ GjzoK7(&), &e H¢, is entire it is sufficient to verify
that 4 — G4(A& +¢&') is holomorphic on C for any &,&" € 2, since Gyo K7 is locally
bounded by [6.6), see e.g., [12]. Let V be a space spanned by the exponential vec-
tors {¢,;n€ 2 4. Then, obviously, 1+ Gy(A&+¢&') is holomorphic for any choice
of peV, ¢ €9, For an arbitrary ¢e %_, choose an approximating sequence
{¢} = V. Since ¢ is bounded on every bounded subset of Z,, we can easily see that
the functions Gy, (A& +¢&') of 2 e C converge to Gy(A¢ + ¢') uniformly on every com-
pact subset of C. Therefore 2 — G4(A&+ &) is holomorphic on C, and consequently,
G¢ oK™?Pe E2<V).
By there exists a unique ¥y € ¥_, such that G, = S¥, ie.,

KW, dey = SY(E) = Gy(&) =K De, 9, €Dy (6.8)
Moreover, by (6.7) we have
1511, =[Gy o K7l g2y < M|9][ -

In other words, ¢ — ¥, is a continuous linear operator from %_, into ¥_,. Its adjoint
operator is denoted by = e #(%,,%,). Then it follows from (6.8) that Z¢. = ®: and
O = Z. We shall verify that = € %5(%,,%,), or equivalently Z* € (% _,,%9_,). Let
{w,} be a complete orthonormal basis of ¥_, and Pe 2. Then,
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o0

ZJ KT (K)E o, by Pv(d >=ij [K@n, Epg-op-Y I v(d2)

n=1 n=1

| 1Ebnlintd) = | sl

N N

< J g(K™PPz)*v(dz) < M?,
i

Vb
Ve

and, with the help of we obtain
|F(P)(KT)E ng G, T(HC)) Z |1I(P)T(K™7)E"w, Ho <M.
Therefore, by [Lemma 6.1, I'(K?)Z* € %»(9_,,I'(#c¢)) and hence 5 € £(9_4,9_,).

Ll
ProposITION 6.3. If 5e€ %(9,,9,), we have

— 2
IZ1s = sup | 158kcop.l30(ae)

Pez JNg

= sup supJ J |Z(K P Pz, KI0w)|*v(dw)v(dz).
pe? Qe oz )
Proor. The first equality is immediate from (6.5). Let {Q,} = £ be an increas-
ing sequence of orthogonal projections converging strongly to the identity operator on
H#c¢. Then we can easily prove that

) = sup | IO KN E . liv(a

[ET

e

\Y

Jim [ 10@T K2
e

SRR
N
where we used the monotone convergence theorem for the last equality. It follows that

| 1zpcomnliv@ = sup [ IR@r&nDZpe v

N ez )iy

Hence in view of [Lemma 4.1 the second equality holds. O

7. Chaotic expansion of operators.

Let m >0 and pe R. Let S, denote the projection (symmetrizing operator) from
@®m onto @®’”. Furthermore, we define an injection 1, € $(@}?’” ) by

InFy = (0,...,0,F,,0,...), FE,ec2®" 7.1
14
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where F,, stays at the m-th position. The symbols S, and I, are used commonly for all
peR. We denote by I the operator in g(%,@?’") defined by

L(Fo,... . Fy_1,Fp,...) = m\F,,. (7.2)
Obviously, each @ = (F,,) € ¥, admits an expression:

0

& = Zlmqu

m=0

which is referred to as the chaotic expansion or the Wiener-1té decomposition of @.
In this section we study its operator version.
We start with the following

ProposITION 7.1.  Let p,qe R. For each K; ,, € & (@1?;%’ @?l ) there exists a unique
operator 1 ,,(K; ) € L(%,,%,) such that

Il,m(KLm) (67 77) = <Kl,mé®mar/®l>7 677/ € '@CO (73)
In this case, |11 m(Kim)llop < VIIMY|Kimllop-

Proor. For simplicity we denote the right hand side of by ©(&,n). Obvi-
ously, @ is naturally extended to an entire function on ¥, x Z_,. To show condition
(ii) in take &€ Z,, a;€C, i=1,...,k. By definition we have

2
y(dz). (7.4)

k

k
Zai@(fiaKq')
i=1

= sup J
Pe2 J g

For simplicity we put ¢ = sz: 1 dife,.  Using the identity:

a;0(&;, K1Pz)
1

i=

2
E2(v)

2
= | KKy L5, breap DI

k
> 46(&, K'Pz)
i=1

— KK LKy i, ¢p. ),

which is verified by direct computation, we see that becomes

= \D(KY K m Iy llo = 1Ky w5

k
Zai@(éiqu')
i=1

2
E2(v)
In view of (7.1) and (7.2) we have

KLl = DKy Dbl < D Kemllopl Ll < 1| Kol lop 101

Consequently,

k
> a6 KT < VIl Ky mllopl1¥1],-
i=1

E2(v)

Then the assertion is immediate by application of [Theorem 5.2 O
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Lemma 7.2. If K, € $(@§"ﬂ9§”), it holds that

1 *
Kl,m = —I] Il7m(Kl7m)Im-

['m!

Proor. It is sufficient to show that

<Kl mé®ma’7®l> - <I] Il m(Kl m) mé®m7’7®l>u 6777 € @007

which is immediate from [7.3). O

For a general K; ,, € & (9}?'",@?1) we may define 7; ,,(K; ,,) by the same formula
(7.3). However, in that case the uniqueness of K; ,, is not guaranteed; in fact, we have
ILm(KLm) = [l,m(SlKl,mSm)-

For each m > 0 define a map by

[
My =—dly: (Fo.Fi,. o Fy ) (0,0,...,0, F,0,0).

Obviously, 11, is an orthogonal projection on %, for all pe R. Note also that
I;1, =m!. Given 5e %(%,,%,), we define

1
Tl Ely Lm0, (7.5)

Kl,m
Then K;,, € ff(@?m,@?l ) and by symbol calculus we have
Lw(Ky ) = ME1,,. (7.6)

Since Y I, =1 converges with respect to the strong operator topology of
£(%,,%,), we can deduce the chaotic expansion of = given as in (7.7) below.

THEOREM 7.3. For any Z e %(%,,9,) there exists a unique family of operators
Kime L(T2", @5)1), I,m >0, such that

0
E= Z (K m) (7.7)

where the series converges weakly in the sense that

EpUy =S DKoy, $e %y hev,

[, m=0

Since 2, is not necessarily a nuclear space (it is so if and only if K7 is of Hilbert-
Schmidt class for some p > 0),

98" = ) 28"

p=0

1s taken as definition. With these notation we have
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COROLLARY 7.4. Let € ¥(9,,%9.) with the chaotic expansion as in (7.7). Then,
Kime 3(@@)’” (9@)1) ). If E belongs to £(%.,%) or to L(%4,%,) for some p e R,
then Ki,, belongs to L(2%™ 2%") or to 3(@%’”,@?1), respectively.

We next consider operators of Hilbert-Schmidt class.

Lemma 7.5, Let Kl./meg(@f)m,@?l) for some p,qeR. Then K;,e€
32(9?'”,@?1) if and only if 1) ,,(Kim)€ L2(9%,,%,). In that case |Ij (Kim)|us =
VIl K| gs-

Proor. Let {w;} and {{;/} be complete orthonormal bases of @@)’” and 9@)1

respectively. Then {(m!)” 12 Ly} and {(I')” l/zllék/} become complete orthonormal
bases of 11,,%, and II;%_,, respectively. By definition

2m (K lizs = ; it | B (K ) T T D
On the other hand, by we have
1
1K mllis = > 1<K, Ierd]* = Zﬁ | Ty n (K ) Ioie, TG D).
k, k' k, k' (lm)
Therefore, ||7;,m(Ki,m)llus = VI'm!||Kjm|lgs < o0 [
THEOREM 7.6. Let p,qe R. Given 5 € %>(9,,%9,) let

o0
= Z I (Ko m) (7.8)

be the chaotic expansion. Then K, € 32(@]?’",@?1) and the right hand side of (7.8)
converges in £>(9,,%,).

ProoF. Since = is of Hilbert-Schmidt class, so is [; ,,(K; ) by (7.6). Then it
follows by [Lemma 7.3 that K, € Qz(c@(@"’ @®’). Since {/1,,} is a resolution of the
identity, in view of (7.6) we have

I121hs = Z 11120 [y = Z 1, (K ) s

1,m=0 1,m=0

This shows that the chaotic expansion (7.8) converges in %»(%,,%9,). O

8. Relation with Fock expansion.

In this section, in stead of (K1) we assume a stronger condition:

(K4) infSpec(K) > 1, ie., p=||[K Yop < 1.
We first modify the definition of an integral kernel operator according to our
present framework. Let p,q € R and suppose we are given K; ,, € & (9;?’”,@?1). For
¢ = (fu) define El,m(Kl,m>¢ = (gn) by

gn = 07 0<n< l; Ji+n = (—;—WZ)SZJrn(Kl m ® I >ﬁ1+m7 nz 07
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where S;,,, stands for the symmetrizing operator. By virtue of direct norm estimates
similar to [34, Section 4.3] we obtain
—r/2

(lI4+m)/
= rm=1/2) 70, m\1/2( P "~
120Kl < Killope”™ 20 (L) il 61

where pvg=max{p,q}, r>0 is arbitrary. Therefore, =i ,,(Kim)€ L(Ypvq)+rYq)-
Such an operator = ,,(K; ) is called an integral kernel operator. The symbol is given
by

Elvm(Klvm) (57}7) = <Kl,mé®mar/®l>e<£’n>.

For € #(%,,%;) an expression of the form

o0
E= Z Elmz(KLm)

I, m=0

is called the Fock expansion and has been studied in the context of white noise theory
[6], [7], [34], where nuclearity is important. Here we do not go into this direction.

The famous number operator N is uniquely specified by the relation NI, = ml,, for
m > 0, or equivalently by the action

N : (F(),Fl,Fz,...,Fm,...) = (O,F1,2F2,...,mFm,...),
and admits a simple form of an integral kernel operator:
N =Z,,1(I), I: identity operator on Z,.

The number operator N is not a bounded operator on any %, but a continuous operator
from %,,, into %, for any pe R and ¢ > 0.

We next consider the Wick exponential of —/N. In general, for two integral kernel
operators =y, (K) and Zp, ,,, (L) their Wick product or normal-ordered product is
defined by

Enm (K) < Elz-,mz(L) = El b, m+m; (K ® L)'
With these notation the Wick exponential of —N is introduced:
I’l

o0 1 0
o ®n
wexp(— Z;— Z n! Eun(I%). (8.2)

Lemma 8.1. For any p e R and q > 0 with p?/*/(—qlogp) < 1 the series (8.2) con-
verges absolutely in £ (9,.4,%,). In particular, wexp(—N) € L (9, %.,). Moreover,
for all p,q e R, the Wick exponential wexp(—N) is extended to an operator in £»(%,,%9,).

Proor. Note first that N* = &, ,(I®") and observe from (8.1) that for any p e R
and g > 0,

pl?
IN"¢||, <n"p qﬁ(m) 1B1l+q-
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Then, using n" < e"n! we easily check the convergence of (8.2). We next note that

o0 o0

WCXp( N Z I’l' <<‘—’n n([®n ¢g7¢ >>

n=0 n=0

®n>e<€ M — 1.

Since a constant function obviously fulfills the conditions in [Theorem 6.2 the last
assertion follows immediately. ]

In other words, there exists an operator = e ¥(%;,%,) such that
E¢n =1, El, e (9,%), pqeR,
and = admits the Fock expansion as in (8.2) converging in ¥ (%,,,,%,). Remark that
N"=E,,(I®")=NN-1)(N—-2)---(N—n+1).
Note also that N, n > 1, is not a bounded operator on any %,, p € R.

PROPOSITION 8.2. Let p,qe R and K;,, € 3(959’”,@5)1). Then

I’l

0
Il,m(Kl,m) - WeXp(_N> Hl m Kl m = Z En+l,n+m(1®n ® Kl,m)7 (83)

|
=0 n!

where the series converges in L (9, g1ry %) for any r >0 with (2p"?)/(—rlogp) < 1.
Hence,
El,m(Kl,m) = wexp(N) <>Il7m(Kl,m)- (84)

PrOOF. As was mentioned at the beginning of this section, £, (K .)€

g(g(pvq)—i-m gq) for any r > 0 and 7®" & Kl,m € g(@?\,(’;_m) @@(n—i—l)). Then in view of

inequalities n” < e"n! and (n+m)! < 2"""n!m! we see that for any ¢ € YGpyq)+r

_ Zpr/Z n
Hﬁszrl,ner(I@n ® Kl,m)¢Hq < Cl,mn! (—rlogp H¢||(PV‘1)+”’

where

/ 2p_r/2 (1+m)/2
Crm=VIm| K, morf2 (T
o = VI K opp™ (22 )

Therefore, for any r > 0 with (2p"/%)/(—rlogp) <1 we have

0

S e (1% @ K, < Crnldll Z U R
= nl ’ ’ (pva)tr “rlogp )

from which the assertion follows. For we need only to note that wexp(N)o
wexp(—N) = wexp(0) =1 and [ is also the identity for the Wick product. ]

Inserting (8.3) into the chaotic expansion (7.7), we obtain

— - _l)n — ®n
E= Y —FuinmI® @ Ky m). (8.5)
L= n!

As for the convergence, we mention the following
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THEOREM 8.3.  Let Z€ X(%,,%,) with some p,q € R, and let Z =3/, o 11 m(Kim)
be the chaotic expansion. Then the expansion (8.5) converges in L(%, gy+r» Gq-s) fOr
any r >0 and s> 0 satisfying p"/(—rlogp) <1 and p°/(—slogp) < 1.

ProOOF. From (7.5) we see that

| S
1K, mllop < \/l—'WH‘:’”OPJ

On the other hand, by a standard way similar to [34, Section 4.3] we see that for any
r,s >0 and €Y, g

I,m>0. (8.6)

1Z b (T®" ® Kpm)ll s < ||Kpmllopp” ™ =492

(DN (e mp N
—2selogp —2relogp (pva)+r

Therefore, by we have

||En+l.,n+m(1®n ® Kl,m>¢Hq*s

s (n+1)/2 r (m+n)/2
< I+s)/2 I P P
1=Z]lop — — 191l (o gy er
slogp rlogp

Hence

o0

Z ”‘—’n-H n+ln(l®n ® K m)¢||l] s

l,m,n= 0

< 1Zloplgll g™

K} 1/2 pr m/2 ps pr ”/2
- ,%:0<—slogp) (—rlogp) {(—slogp) (—rlogp>}

where the last series converges by assumption. Thus, the right hand side of (8.5)
converges in  L(Y(,y4+r Y4-s) for any r,s>0 satisfying p"/(—rlogp) <1 and
p*/(—slogp) < 1. ]

CoRrOLLARY 8.4. If 5 belongs to ¥(%,%,) for some pe R, then the expansion
(8.5) converges in (%, %,,) for any r >0 satisfying p"/(—rlogp) < 1.

CoROLLARY 8.5. If & belongs to ¥ (%..,%;) or to L (9+,%), then the expansion
(8.5) converges in the respective spaces.

An expansion of the form (8.5) is a generalization of the quantum analogue of
multiple Wiener-It6 integrals due to Attal [2], where only operators of Hilbert-Schmidt
class are considered by means of Maassen-Meyer kernel calculus [32]. Moreover, in
quantum stochastic calculus we start with a particular Hilbert space, for example,
Hc = L*(R,dt) where R stands for a time axis. Then, operators discussed above admit
more descriptive expressions and comparison with the multiple Wiener-Ito integrals |2] is
more straightforward.
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Take #c = L*(R,dt) and K=A=1+1>—d?/dt*>. Then Z.,(A4) = %(R), the
Schwartz space of rapidly decreasing functions. In this case we usually write (E) = 9.
For each 7€ R the annihilation operator @, is uniquely specified by a;¢: = {(7)¢,
¢eZ,(A), and becomes a continuous operator in ¥ ((E), (E)). The creation operator
a*e Z((E)",(E)") is its adjoint. Then an integral kernel operator is expressed in a
formal integral:

*

El,m(Kl,m> = J . K‘[ﬂm(sl, R Y A T .,lm)asl ---a;atl ceedy, dS] -~~dS[dll -~-dlm,
R m

where x; , is the kernel of the operator K; ,,, for more details see e.g., . Similarly,
we may write

En+l,n+m (1®n ® Kl,m)

51

* * £
=J / Kim(Sty .81t tm)a ceagNay -+~ ag,, dsy -+ - dsidty - - - dby,
R+II1
and

Sn n

NOHZJ a;...ai‘asl...as dS]"'dSn.
On the other hand,

I (Kpm) = J . Kim(Sty 385t tm)ag - ag Iloay, - ay, dsy - - dsydty - - - dty,
R m

where 11, is the vacuum projection. A similar expression appears also in [20].

9. Normal-ordered white noise differential equations.

In this section we take #¢ = L*(R,dt), /" = % (R) and a selfadjoint operator K
satisfying conditions (K2)—(K4). In general, a normal-ordered white noise differential
equation takes a form:

d=

= _LoeZ F(0)=1 ©.1)
where {L,} is a quantum stochastic process defined over a time interval 7" containing 0,
ie., L, is an operator acting in the Boson Fock space I'(#¢). To give a definite
meaning to (9.1) we need a particular rigged Fock space, for example, a CKS-space
is convenient:

Wo = I(Hc) =W,

where o is a certain weight sequence. A quantum stochastic process is by definition
a continuous map ¢+~ L, e L (W,,W,"). Moreover, it is known that the Wick pro-
duct introduced in the previous section is extended to a separately continuous bilinear
map from L(W,, W,") x LWy, W,") into L (W, #,"). Thus equation (9.1) is given a
definite meaning.
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Since the Wick product is commutative and (9.1) is a simple linear equation, a
formal solution is given by the Wick exponential:

t 0 t on
Z, = wexp (J L ds) = l' (J L ds) ) (9.2)
0 =0 \Jo

It is known that there is a unique solution to (9.1) in &Z(#}, #;") with a suitable choice
of another weight sequence f. It occurs generally that #; < #, and L (W,, W)
L (W, ”//ﬁ*) Roughly speaking, unique existence of a solution is guaranteed always in
the sense of “distributions.” In fact, we have obtained further detailed properties of a
solution, see and references cited therein. The methods so far employed are, how-
ever, rather limited: by direct norm estimates of (9.2) or by the characterization theorem
for operator symbols in terms of growth rates and its refinements.

We now illustrate how our characterization theorem (Theorem 35.2)) gives a third
method of finding a space in which the solution acts as an operator; in other words,
regularity property of a solution (9.2) which makes already sense as a ““distribution.”
First note that the symbol ©, = &, of (9.2) is given by

0.(Cn) = P exple” SV M(E )}, Ene D, (9:3)

where

t
M, =J Lyds, teT.
0

Then, applying Theorem 3.3, we obtain the following

PROPOSITION 9.1. A4 solution =, to (9.1) lies in £(9%.,,%,) with some g€ R, if 0,
defined in (9.3) satisfies the following conditions:
(1) there exists pe R such that ©, can be extended to an entire function on
Dy X D_y;
(i) there exists a constant C >0 such that

<C (9.4)

k
Zai@z(fi;Kq‘)
i=1

k
Z a’¢5i
i=1

Jor any k> 1 and any choice of &€ 2, and a;e C, i=1,... k.

E2(v) p

To discuss a more concrete example we need some preliminaries. For each x € 2
there 1s p >0 such that k€ Z_, and the map K : ¢ +— <{x,¢) becomes a continuous
operator from &, into C, that is, K € ¥(Z,,C). Then, according to the definition in
Section 8 we define an integral kernel operator = ;(K), denoted also by =y ;(x), which
is characterized by

Z0,1(Kk)¢e = 1, ¢ = (K, L€ Dy,

This integral kernel operator = ;(K) = Zy (k) is called an annihilation operator. Now
consider
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W = §j—uomw>¢ §j Z0n(K®" g, Py, 9.5)

where K®" is the tensor power of K € #(2,,C). Applying the norm estimate (8.1)
and [|K®"|op = [|K]lop, We see that (9.5) converges in any norm || - ||, and bounded by
141y g+ With arbitrary r> 0. Thus, the map ¢ — e1X)¢ is a continuous operator
from %, into itself. In short,

LemMA 9.2. For ke @) the exponential ¢®) defined in (9.5) belongs to
L(Gy Y.

We next need multiplication operator My, associated with ¢ = (g,) € I'(#¢). For
¢ = (fu) we define My¢p = (h;) by

h = Z Zkl(m:k)(n—}i(—k)gm%@kﬁl%, (9.6)

m-+n=I[ k=0

where ®) is the right contraction, for details see [34]. This M, is called the multi-
plication operator by . In fact, employing a Gaussian realization through the Wiener-
Ito-Segal isomorphism, M, is nothing but a multiplication operator by y which corre-
sponds to a C-valued function on a Gaussian space.

LemMA 9.3. For (e Hc and T € L (D, Hc), My I'(T) is extended to a continuous
operator from %, into I'(H¢).

PrROOF. We use similar argument as in the proof of [34, Theorem 3.5.6]. Let
¢ = (fu) €%y and set My I'(T)$ = (h;). Then, by definition (9.6) we have

k k ® (m+k)
=2 Zk'<m+ )(nz )(Cerk) ® (TC"fk)

m—+n=I k=0

—ZZMM@W®UWM> 9.7)

m—+n=I[ k=0

Fix p > 0 satisfying T € £ (Z,, #¢) and let ||T| be the operator norm in ¥ (Z,, #c).
Choose « > 0 such that max{|{|,||T||,[|T]|} <p~*. (Recall condition (K4).) Then we
have

C2 ) @ (T i)l < 100 TR
m-+k n-+k
< [ NTN T foskd,

k k
< DTN ™ Sl

=< ‘C‘(’)nlfnJrklerw

and hence for any f >0,

|€®(n1+k) &, (T®(n+k)fn+k>|0 < |C|6npﬂ("+k)|ﬁz+k|p+a+ﬂ- (9.8)
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We are now in a position to estimate the norm. Combining and (9.8), we obtain

My T(T)gllg = Nl
[=0

2
- < (14 )
< Zn( > el Z%pﬁ%%%w) (99
k=0 ’

=0 m+n=I

By the Schwartz inequality and an obvious inequality (n 4 k)! < 2"**nlk! for n, k > 0,
we have

1/2
L (n+ k)| (1 K)!
> Unstlpsass < Wi | 2 o

k=0 k=0

2
< Vnl2"2er H¢Hp+a+/)"

With this (9.9) becomes

2
|My I (T)gl5 < Zﬂ(Z o' ﬁ'1m2"/2eﬂ2”||¢||,,ﬂ+ﬂ)

m+n l

. 2
<47 I!( <16 (V2p") ) . (9.10)
m +ﬁ; nﬁLan \/_‘ ’

Here we note two obvious inequalities:

(m+n)! - (m+n)!
mln! = m!n!

’

1 -2 2
(glmo)m < ¢t 1Gl /27
vm!

where ¢ >0 and m,n > 0. Then (9.10) becomes

o0
2 2% 2100214112 21
1My D(T)gllg < € e Y| gl g > (e + V20P)

1=0
The last sum becomes finite when f >0 and ¢ > 0 are chosen in such a way that
&+ \@pﬁ < 1, and we obtain the desired estimate. ]

THEOREM 9.4. Consider a quantum stochastic process

L= Z01(I1,1) + E1,0(,0) + Z11(15,) (9.11)

defined on a time interval containing 0, where t — I, ;e N5, t— L ,e N and t— Lz, €
L(Ne, NE) are continuous.  Put

t
JiJ:J 11'7st, [20,i=1,2,3.
0

If there exists q > 0 such that J1,€ 9., J», € D_4 and J3 , € L (D, D), then the solu-
tion to the equation (9.1) with coefficient {L,} given in (9.11) lies in L (%, %9_,).
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Proor. We apply [Proposition 9.1 with ¢ being replaced with —¢g. Put

{
M, = J Lids = Z01(J1.¢) + E1.0(J20) + Z11(J3,0)
0

and consider
0,(¢,n) = e exple” " M, (&, 1)}
= exp{(f,n} + <J1,ta é> + <J2,t77l> + <J3,té7’7>}

= e<J1‘h6><<¢J2‘r+(‘l3.z+1)é’ ¢’7>>

Condition (i) in [Proposition 9.1 is obviously fulfilled. We shall check condition (ii)
therein. By definition, we have

k 2 k 2
Z a;0,(&, K™") = sup J Z 4;0(&;, K1Pz)| v(dz)
i=1 E2(v) Pe? J AN |i=1
i 2
= Z“i€<J1”’éi>¢Jz.,+(Ja.,+1)éf
. 2
= Zal‘€<J11héi>¢[("1(]2.,+(.]3,,+[)§;) . (912)
i=1 0

Using the formula ¢;,, = e << ¢.4,, we see that

_ XK, KTU(J5, +1)E;
Br-o(ss rome = € K P RIBIDD G Bra e

For simplicity we set

k
K:Jl,z—(J3,t+1)*K72qJ2,t, W:¢Kquz<,> ¢:Zai¢§i-
i=1

Then, noting that

=

euo,l(lc)¢é _ e<K’¢>¢é, ¢K*q(J3,,+I)¢ — F(K_q(«]3,t + [))¢£,

we obtain
k —
Zai€<J1’”6">¢K*q(12,t+(h,,+l))c’,- = MyI'(K (], + 1))y,
i1

It follows from Lemmas and that there exist p > 0 and C > 0 such that

k

Ji,6,&
Zaie< Loé >¢K*4(J2‘,+(J3Az+1))€yt

i=1

< Cli4ll,-
0
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In other words, is estimated as follows:

k k

Zai@z(fi,K_q') <C Zai¢f,

i=1 E2(v) i=1 P
This is condition (ii) that should be verified. Consequently, the unique solution =, to
(9.1) given by (9.2) lies in L (9., %9_,). O

REMARK 9.5. It is worthwhile to note that nuclearity is not required during the
above argument. If K" is of Hilbert-Schmidt class for some r > 0, or equivalently, if
94 (K) = P is nuclear, then ¥(Z,,,7_4) = 9_, ® 2, by the kernel theorem. In this
case, coincides with the statement of [10, Theorem 4.1] with 0 <n < 1.

ReEMARK 9.6. If we choose

I = ()0, b= f(1)0, L= f:(0)],

where f;(¢) is a continuous function, then the normal-ordered white noise differential
equation (9.1) is equivalent to the quantum stochastic differential equation:

dZ, = (fi(t)dA; + f(t)dA™(t) + f3(t)dA,) 5, E(0)=1.

In this sense extends the traditional scheme and gives a method of inves-
tigating solutions to quantum stochastic differential equations. Moreover, in a normal-
ordered white noise differential equation the coefficients are not necessarily assumed to
be adapted. For example, let y >0 and w e R be constants and consider

e st _ e—(iw+y)t

") ==+

Then, I, € /¢ for any te R and an equation involving the integral kernel operator
Zo,1(I;), which appears in a study of dissipative quantum systems, stays within our
framework.
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