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Abstract. We prove that the asymptotic cone of every complete, connected, non-compact
Riemannian manifold of roughly non-negative radial curvature exists, and it is isometric to the
Euclidean cone over their Tits ideal boundaries.

0. Introduction.

Throughout this paper, I& be a complete, connected and non-compact Riemannian man-
ifold with a base poinb € M. We say thatM has the asymptotic coriethe pointed Gromov-
Hausdorff limit of ((1/t)M,0) ast — o exists, and it is isometric to a Euclidean cone. The
existence of asymptotic cones has been shown for manifolds with restricted sectional curvature,
and then we see that the cone is generated by the Tits ideal boundary. In the cas#&lvidere
a Hadamard manifold, Gromo|[ has shown thaM has the asymptotic cone if its Tits ideal
boundary is compact. M is non-negatively curved, thévi has the asymptotic cone, and its Tits
ideal boundary is an Alexandrov space with curvature bounded beldlw 6y the other hand,
Gromov [L1] and Abresch ]] have studied manifolds of asymptotically non-negative curvature,
and their topologies, and Kasu#7] has introduced the ideal boundary of such a manifold and
has given its compactification. However, Dre&§][pointed out a gap in the argument df7]

(cf. 1 and the end of 4 in10]). Without smoothing the gap, Kasue’s compactification is not

yet completed. The main purpose of the present paper is to show the existence of asymptotic
cones for a class of manifolds with restricted radial curvature. Our class includes the class of all
manifolds of asymptotically non-negative curvature.

Some notions are needed for the statements of our resulmodel surfacgM, &) with
radial curvature function K [0,0) — R atd is a surface of revolution with the metric

ds’ = dt® + f(t)?d6? (0.1)

in the geodesic polar coordinatésf) € (0,) x S centered afl € M. Heref : [0,0) — [0, )
denotes the unique solution of the following:

/() + K@) F(t)=0, f(0)=0, f(0)=1, f>00n(0,). 0.2)

Obviously, the Gaussian curvatugp) at € M is equal tok (d; (6, §) ). We say that theadial
sectional curvature at o of M is bounded below by [R,) — R if along every minimizing
geodesig/: [0,a) — M, a€ [0,e), emanating frono, the sectional curvatuiéy on M satisfies

Km (¥(t),v) > K(t)
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for anyt € [0,a) and for any vectov € T,)M perpendicular to the tangent vectgit). We
then assign tl a model surfacéM, 6) whose radial curvature dtis K. If the functionK is
non-positive, we then say théi¥, 0) is dominated by the CH (Cartan-Hadamard)-model surface
(M,8). TheM is by definition amanifold of roughly non-negative radial curvatuife(M, o)

is dominated by a CH-model surfa¢hl, ). Here(M,6) is assumed to admit the finite total
curvature

c(M) = Mgﬁe(p)dm > —o, (0.3)

With the notions above, we state our main theorem:

THEOREMO.1. Every manifold M of roughly non-negative radial curvature has the
asymptotic cone.

In Section 2, we introduce the ideal bounddy of M as equivalence classes on ray$/in
and we then provide a way to equip the intrinsic distance i¢o called theTits distance The
M. equipped with the Tits distance is called the Tits ideal boundai cind the asymptotic
cone in Theorem 0.1 is generated by the Tits ideal bounlliaryWe also state in Section 2 that
every connected componentMt, is a geodesic space whose Hausdorff dimension is not greater
thandimM — 1.

The existence of the asymptotic cone itself imposes restrictions on the topolddyy\oe
prove in Proposition 2.8 that the distance function from the base pd@ralmost regular outside
a bounded set, and hence the set of all critical points of the distance function fednounded.
ConsequentlyM has thdinite topological typethat is, there exist® > 0 such thaM \ B¥(R) is
homeomorphic tdBY (R) x [0, »), whereBY (R) is theR-distance ball centered aanddBM (R)
is the boundary oBM(R).

COROLLARY 0.2. Let M be a manifold of roughly non-negative radial curvature dom-
inated by a CH-model surfad\a‘l; Then M has the finite topological type, and there exists a
universal upper bound N N(c(M),dimM) for the number of ends of M.

REMARK 0.3. Machigashira20] has proved the same results as described in Corollary
0.2. In the present paper, we give an alternative proof.

We now mention manifolds of asymptotically non-negative curvature (§eeWe say that
M is amanifold of asymptotically non-negative curvatifrehere exists a monotone increasing
and negative functioK: [0,0) — (—o0,0) with

/Oth(t)dt > —m (0.4)

such that the sectional curvatures at eyeeyM are bounded below uy(dM (o, p)) for all plane
sections ap. Then the condition (0.4) induces a curvature decay condition

tlithK(t) =0 (0.5)
(see Remarks 1.2 irl]). Furthermore, the integral condition (0.4) implies the condition (0.3)
for the CH-model surface. To see this, consider the solutiofD, «) — [0, ) of (0.2) for the
function K above, and lefM, 6) be the CH-model surface with the metric (0.1). According to
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Zhu's result (see Lemma 2.1 i8%)), f satisfiesf (t) < et for b:= — [y"tK(t)dt, which means
c(M) > 2m(—b)e P > —w. Therefore, as a corollary to Theorem 0.1, we obtain the following:

COROLLARY 0.4. Every manifold M of asymptotically non-negative curvature has the
asymptotic cone.

REMARK 0.5. The sectional curvature & is said to befaster than quadratic decaiy
there exist a constaf > 0 andd > 0 such that the sectional curvaturespat M are bounded
below by —C/dy (0, p)?+? for all plane sections gb (see R8]). Such a manifold is of asymp-
totically non-negative curvature. Petrunin and Tuschmann stafjmfithout proof that every
manifold with the sectional curvature of faster than quadratic decay has the asymptotic cone.

We discuss the structure of the asymptotic cones of manifolds of asymptotically non-
negative curvature via the geometry of Alexandrov spaces with curvature bounded below (cf.
[2], [8], [7]). We see that the number of connected componenk.ois finite sinceM,, is com-
pact (see Section 2). L&, o be a connected componentMf,, and denote by oneM, o the
Euclidean cone ovevl., o with the vertexo®. Since the sectional curvatulg, )y on (1/t)M
satisfiesK(1/y)m = t?Ky for all plane sections, the curvature decay condition (0.5) implies that
ConeM., o \ {0*} is an Alexandrov space with curvature bounded belowObyin particular,

dim_, ConeM., o is an integer not greater than = dimM, anddim Mo is an integer not
greater thamn— 1. Heredimy denotes the Hausdorff dimension.

COROLLARY 0.6. Let M be as in Corollary.4, and M, o be a connected component of
the Tits ideal boundary of M. The@oneM«o \ {0*} is an Alexandrov space with curvature
bounded below b9, anddim_» M., ¢ is an integer not greater thadimM — 1. More precisely,
the following hold

(1) If dim,» M« o = 1 and if the diameter of Mo is not greater tharr, thenConeM,, g itself
and M, o are Alexandrov spaces with curvature bounded beloW agd 1, respectively.

(2) If dimy Moo > 2, then ConeMw o and M. are Alexandrov spaces with curvature
bounded below b§ and 1, respectively. In particular, the diameter otdd is not greater
than.

We remark that there actually exists a complete, open suNaoé asymptotically non-
negative curvature such that its asymptotic cone is isometric to a circle whose circumference is
greater thar2m, and in particular, the cone is not an Alexandrov space with curvature bounded
below (see Example 1.6).

Furthermore, we observe the relation between the Hausdorff dimenshg ahd the vol-
ume growth of manifolds of asymptotically non-negative curvature:

COROLLARY 0.7. LetM be an m-dimensional one as in Coroll&y. Thendim_, M, =
m— 1 if and only iflim;_ volBM(t) /t™ is bounded away fror. Here,volBM(t) denotes the
volume of & (t).

In Section 3, we show Corollaries 0.6 and 0.7 stated above.
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1. Preliminaries and examples.

Throughout this paper, the following conventions are used in any geodesic space: (1) Every
geodesic is parameterized by arc-length. (2) For two geodgsicemanating from the same
point x = y(0) = g(0), we denote bylx(y,o) the angle ak betweeny andg. (3) We mean
by A(x1,x%2,X3) a geodesic triangle whose vertices are three paints, xz in the space, and by
XiXi+1 the edge ofA(x1,x%2,X3) for i mod 3 All of the edges are minimizing geodesics unless
otherwise stated. We then denoteBgx _1xX+1) the angle ak between the edgesx1 and
XiXj_1 fori mod 3

1.1. Generalized Toponogov comparison theorem.

Let (M,0) be a manifold whose radial sectional curvatureoais bounded below by
K: [0,0) = R, and(M,ﬁ) the model surface with the metric (0.1) determined by the solution
of (0.2) for theK. Itokawa, Machigashira and Shiohama established the following comparison
theorem on such a manifold:

THEOREM1.1 ([15], [16], [20]). Let(M,0) and(M,6) be as above.
(I) For every geodesic trianglé\(x,y,0) in M, there exists a geodesic triangle(X, ¥, 6) in M
(the edge&ty is not necessarily a minimizing geodgsiach that

(1) dgz(6,%) = dm(0,x) and d; (6,9) = dm(0,y).
(2) The length oRY = dwu (y1(9), ¥o(t)).
3) D(xyo) > O(%96) and 0 (yx0) > L (§%6).

() Lety:[0,a] =M ando : [0,b] — M be two minimizing geodesics emanating frors o
y(0) = g(0). For any(t,s) € (0,a] x (0,b], consider a geodesic triangl&(y(t),o(s),0) in M,

and take the corresponding geodesic triangléy(t), &(s),6) to A(y(t), o(s),0) satisfying(1)—

(3) in (I). Then, if the edge(t)5(s) is a minimizing geodesic for evefy,s) € (0,a] x (0,b],

the anglel](¥(t)66(s)) is monotone non-increasing ast and s increase. In particular, we have

O(y(t)oo(s)) = D(y(t)65(s)).

1.2. Onthe geometry of Hadamard surfaces.

Throughout this subsection, Ieﬁ 0) be a Hadamard surface satisfying the condition (0.3).
We here recall the ideal boundary and its properties: Let us dendve, liie ideal boundary of
M, which is obtained as the asymptotic classes of rayd irquipped with the angle distance
oM,

We denote byZs the set of all rays emanating froth(hence it consists of all geodesics
emanating frond). Remark that there exists a natural bijection betwilenand %s. Fix any
two raysy, & € %s, and fort,s € (0,) consider the geodesic triangle(y(t), d(s),6) whose
vertices arey(t), d(s) andd. We then take a corresponding Euclidean trianglg/(t), a(s),0)
to A(¥(1), 6(s),0) such thatdge(Y(t), 0(s)) = dyg(¥(), 5(s)), dge(0(s),0) = dyj(5(s),6) and

dg2(¥(t),0) = dz(¥(t),6). Then it follows from the Cartan-AIexandrov—Toponogov theorem
that the angléﬂ( y(t)oo(s)) atois monotone non-decreasingtaandsincrease, and we have

OM(7,6) = lim O((t)60(s)). (1.1)

t,s—0

For anya, b > 0, by replacing andsin (1.1) withat andbt, respectively, we obtain the following:
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me:(a2+b2 2abcos¥ (7,5)) "2 1.2)

To see (1.2), we observe thattas:  the (1/t)-scaled triangle of\(y(at), o(bt),0) converges
to a Euclidean triangle whose two edges have lengthsind makes the angle, o"?( g) ato(cf.
4.4in [9], also 11.4.4 in f]).

The symboIDTlts denotes thdits distanceon Mw, which is the intrinsic distance induced
from DM The ideal boundarMoo equipped with the dlstancrET,tS is called the Tits ideal bound-
ary of M (see pJ). Sincec(M ) is finite, we can show the following proposition (c29):

PROPOSITIONL.2. If a sequencej}i in Zs converges td/ as i — o in the standard
topology (the uniform convergence on bounded ketisen we havéim_... OM(#%.9) =0. In
particular, Mo, is compact with respect ", and with respect tal%..

In our case, the Tits ideal bounda(yl., I%..) is isometric to a circle of lengtBrr— c(M)
(cf. [26]). Once we establish the compactness of the Tits ideal bouridaryit follows that
(M, 8) has the asymptotic cone over the Tits ideal boundaty, OM.) (cf. Proposition 2.2 in
[30)). Therefore we summarize as follows:

PROPOSITION1.3. M has the asymptotic cone over a circle of circumferezwe- c(M).

REMARK 1.4. In more general situation, Shioy2d] has investigated the ideal boundaries
of open Riemannian surfaces admitting total curvatures.

Observing the cosine formula (1.2) combined with Propositions 1.2 and 1.3, we obtain the
following:

PROPOSITIONL.5. Let{Gs}s>0 be any convergent sequenceZi such thatds — 0., as
s— o, andy any ray in%s. Then

dy (V(at), Gs(bt))
t

; (a2 n2 Mo =~ \\1/2
Jim = (a®+b®— 2abcosTY (, 5x))

holds for any ab > 0.

1.3. Examples.

We here provide an example of a manifold of roughly non-negative radial curvature but not
of asymptotically non-negative curvature. This example also indicates that there exists a surface
of asymptotically non-negative curvature whose asymptotic cone is not an Alexandrov space
with curvature bounded below (recall Corollary 0.6).

EXAMPLE 1.6. Take a monotone increasing and negative fundfarf0, «) — (—,0),
and consider the unique solutidn [0, ) — [0, ) of the Jacobi equation (0.2) for tikeabove.
Here we assume

/Om FOK (t)dt > —oo. (1.3)

We then obtain an-dimensional manifolo!l\ﬁ",c")) equipped with the metric
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ds’ = dt? + f(t)°dO? (1.4)

in the geodesic polar coordinatéis®) € (0,00) x S'~1 centered ab. Hered®? indicates the
metric on the(n— 1)-dimensional standard unit sphes& . We call theM" ann-dimensional
model

Let  be a point withd (6, §) = t, and take any plane section @twith an orthonormal
basisx+v andw. Herex is a horizontal (radial) direction andw are vertical directions (hence
[X||2+ |IV]|?> = 1 holds for the normj| - || determined by the metric (1.4)). Then by the Bishop-
O'Neill formula [6], the sectional curvaturég (x+v,w) of the plane section is calculated as

1-f/(t)?

oM

K (X-+v,w) = K (t)[[X]|* +

Since [y’ f(t)K(t)dt=1—Ilim_e f'(t) > —oo, we havef’(c) := lim;_.. f'(t) < w. Furthermore
it holds thatl — /() < 0 and

| e (1P 1 (@)
2 - 2 =
tlmt KM (V,W) = tlmt < f(t)2 ) - f/(OO)Z <0.

Hence the condition (0.5) in the Introduction is not satisfied, Ads not a manifold of asymp-
totically non-negative curvature if > 3. It is obvious that the radial sectional curvaturedat

is the functionK. Thus then-dimensional modeM" is a manifold of roughly non-negative
radial curvature dominated by ttfedimensional mode{M2,6). Note that the total curvature
c(M?) is finite sincec(M?2) = 271 [ f(t)K (t)dt > —co. We see that the Tits ideal boundaryhaf

is isometric to thgn— 1)-dimensional round sphere each of whose great circle has the length
21— ¢(M?) (cf. Proposition 1.3).

On the other hand, tH2dimensional model1? is a surface of asymptotically non-negative
curvature. Indeed, the comparison theorem of solutions of (0.2) imfii¢% t for anyt € [0, ),
and hencefy tK(t)dt > —co holds. Furthermore, the Tits ideal boundaryMdt is a circle of
length2rr— c(M?) > 271,

2. The asymptotic cones of manifolds of roughly non-negative radial curvature.

Throughout this section €M, 0) be a manifold of roughly non-negative curvature domi-
nated by a CH-model surfa¢#l, 6).

Hereafter, we use the following conventions: (1) I¢tdx) be a metric space. We denote
by B (R) the metric ball centered atc X with radiusR > 0, and denote b (R) theR-distance
sphere{y € X | dx(X,y) = R}. (2) The symbol, (¢) indicates a positive function iasuch that
limg_o03q(g) = 0for afixeda.

2.1. The ideal boundaryM.,.

Let Z, denote the set of all rays M emanating frono. For any two rays, o € %,, by
using Theorem 1.1, we define the angle distangéy, o). Fix a rayy € %5 in the CH-model
surface(M, ). We observe from Theorem 1.1 that, for ange (0,), there exists a rag s in
s such that:

(i) dy(¥(t), Gts(s) = dm(¥(t), o (9)).
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(i) Os(V,Grs) is monotone non-increasing s — o, andd; s converges to a rag. € %s
ast,s— oo,

We then define thangle distancél.(y, o) as
De(y, 0) == 0%(¥, 6. (2.1)

The value in (2.1) does not depend on the choicg, @ s and G sinceM is rotationally sym-
metric around.
The following is an immediate consequence of Proposition 1.5:

PROPOSITION2.1. For anyy,o € %, and for any positive numbersla> 0, we obtain
the following

im du (y(at), o (bt))

t—oo t

= (a2 + b2 — 2abcosa(y, 0)) 2. (2.2)
In particular, O is a pseudo-distance o#,.

REMARK 2.2. (2.2) also implies that the value in (2.1) does not depend on the choice of
the CH-model surfachl.

We thus define thaleal boundary M of M as the metric spadde. := %o/,,—o €quipped
with the distancél,. The symboly] € M., denotes the equivalence class containirgZ,.

PROPOSITION2.3. M, is compact with respect Q.

PrROOF.  For any sequencé[y]}i in M«, by taking a suitable subsequence if necessary,
there exists a ray € %, such that,(y,y) — 0 asi — «. Recall the definition of the angle
distancel. (¥, y): For a fixed rayy € %5 and for anyt,s € (0,), let § s be a ray inZs such
that:

(i) dyi(¥(t), #.s(s)) = dm(¥(1), % (9))-
(i) Os(¥, ¥.s) is monotone non-increasing Bs — o, and s converges to a ray; » in %Zs
ast,s— o

ThenOw (Y, Y) = Do'\?()”/.vm, ¥) holds for each. Theorem 1.1 implie§ls(¥.«, ¥) < Oo(%,y), and

we havels(¥ ., ) — 0asi — . Hence Proposition 1.2 implies thiat, (i, y) = Do'\?(V.,oo, y) —
Oasi — o, O

2.2. Convergence to the asymptotic cone.

In this subsection, we prove Theorem 0.1. For simplicityCetenote the Euclidean cone
over (Mw, ) with the vertexo*. We first prove that the pointed Gromov-Hausdorff limit of
((1/t)M,0) ast — o is isometric to(C, 0*), and at the end of this subsection, we introduce the
Tits distance oM.

A pointed metric spacgY,oy) is by definitiona pointed Gromov-Hausdorff limit of pointed
metric spacegX, o) as t— o if for any fixed R > 0 and for givene > 0O, there exist9r(€)-
Hausdorff approximationih Bé(R) — BEY(R) (not necessary a continuous map) satisfying the
following (1)—(3) for any sufficiently large> 0 (cf. [12], [13)]):

(1) |dy (he(x1),he(x2)) —dx (x1,%2) | < Or(€) for everyx;, x. € BE(R).
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(2) By, (R) is contained in thér(&)-neighborhood ofy (B (R)). In other wordsh (B (R))
is 9r(€)-dense irBY (R).
@) he(or) = ov.

Let us begin the proof of Theorem 0.1. Fix any- 0. Then from Proposition 2.3, we can
take a finites-dense sef(yf]}1=12..  iN (Mw, ). Define

See = {y(ket) € (/)M | k=0,1,2,...,[R/e], 1< 1 <L},

We first prove the following:
CLAIM 2.4. g is adr(g)-dense setin g/t)M (R) for any sufficiently large t> 0.

Assume the validity of the claim. We then obtain a map
h : B (R) — BS.(R)

defined byh (q) := (ke, [yf]) € C = [0,%) X Mw/ 0y xm.,» Where the pair of numbex, 1) corre-
sponds to the poing (ket) € Az which is a nearest point tq It follows from Proposition 2.1
that the maph satisfies properties (1)—(3) &k(&)-Hausdorff approximations.

PROOF OFCLAIM 2.4. Suppose that the claim is not true fBg(e) = 4¢ + 4Rsin2s +
4Rsin|(g/4m)(2m—c(M))]. Then there are a sequenfg} C M and a monotone divergent
sequencét;} such that

@) x € Bs"MR),

(2) dim(Xj, vi(ketj)) > Ir(e) for any v (ketj) € Ay, and
(3) di1/t;m(0,x)) € [ke, (k+ 1)) for somek > 1.

Let g; be a minimizing geodesic joiningandx;. From (3) above, we may assume tlgtcon-
verges to aray € %o in M asj — o. Defines; :=ket;, yj := 0j(sj) andz; := o (s;) for simplic-
ity. Obviously,d<1/tj),v|(xj,yj) < €. Since{[y]} is ane-dense set iMs, we havell,(yf,0) < €
for somey in {[y]}i—12,. L. This together with (2.2) yields thalgl/tj)M(w(sj),zj) < 2RsinZe
for all sufficiently largej. By showing

LT E ~
daym (%32 < 2Rsin| 2~ (21— c(M))] (2.3)
we obtain a contradiction to (2):

diaem(Xj, ¥ (Sj)) < 2€ + 2Rsin 2 + 2Rsin [%T(Zn— c(l\ﬁ))} .
We next verify (2.3). Letd be a fixed ray in the CH-model surfacﬂ,ﬁ) starting froma.
Consider the comparison triangle(Jj,Zj,6) C M such thag; = &(s;), dg (;,2;) = dw(Y;.Z;)
andy; = Gj(s;) for somed; € #s. Then Theorem 1.1 implieS5(Gj,0) < Uo(0j,0) < € for
all sufficiently largej. Hence we havel¥ (6;,8) < (g/2m)(2m—c(M)) sinceM is rotationally
symmetric (cf. Proposition 1.3). Therefore it follows from the Cartan-Alexandrov-Toponogov
theorem thatl 1, m (Y}, 2j) = d(l/tj>m(yj .%j) < 2Rsin|(g/4m)(2r—c(M))]. This completes the
proof. O
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We have shown that the pointed Gromov-Hausdorff limit (/t)M,0) ast — o is iso-
metric to (C,0*). We denote by+is the intrinsic distance, called thEts distance induced
from 0. For our last goal, we discuss a way to introduce the Tits distanceMptoSince
the Gromov-Hausdorff limit of geodesic spaces is again a geodesic space, th€€caes a
geodesic space, and so is any connected componbhi.dfiore precisely, for anjy], [0] € M«
with O ([y], [0]) < 1, there exists &l,-minimizing geodesic iMMs joining [y] and[g], and we
then havelqis([y], [0]) = O ([Y],[0])- In this way, we have completed the proof of Theorem
0.1. O

We here summarize the properties of the Tits ideal bounklary

THEOREM2.5. The Tits ideal boundaryM., Otiis) of M as in Theoren®.1 satisfies the
following:

(1) (Mo, OTits) is compact.
(2) Every connected component of 4 a geodesic space. In particular[rs([y],[0]) < 7
for [y], (0] € Mw, then we havéltis([y], [0]) = U ([Y], [0])-

2.3. Proof of Corollary 0.2.
In this subsection, we use thedimensional modglM", 6) with the metric (1.4). Note then
that the functionf in (1.4) is the solution of (0.2) for the radial curvature functif M.

THEOREM2.6. Let M be an m-dimensional one. Then there exists an expanding map
D 1 (Moo, Oeo) — (MT, OM).

In particular, we haveZ™1(M,) < 2™ L(MT) anddim M, < dim_ > M? = m— 1, where
#%(-) denotes the k-dimensional Hausdorff measure.

REMARK 2.7. The authors do not know whether or not the connected componég of
admits a locally uniform dimension (compare to Corollary 0.6).

PROOF OFTHEOREM2.6. We here give an outline of the proof. Consider a composition
map

@ = expsol olog, : (1/t)M — (1/t)M,

whereexp; denotes the exponential map on tHgt)-scaled spacél/t)M, | : ToM — TsM is a
linear isometry identifyingloM with TsM, andlog, : (1/t)M — ToM is the map satisfying for
anyp,qe (1/t)M
(i) expy(logs(p)) = P,

(i) the norm||log,(p)|| measured ir{1/t)M equals tad4)m (0, p), and

(i) O(logy(p),log,(a)) = O(pog) for some minimizing geodesiayp andog.
Then it follows from Theorem 1.1 (II) (the hinge comparison) tiatis an expanding map.
Denote by(C,5*) the Euclidean cone ovéM.,, 0Y). We here denote b§* the vertex ofC. We
now know that((1/t)M,0) and((1/t)M,6) converge a$ — « to the conesC, o) and(C, "),
respectively. Hencé converges as— o to an expanding ma@ : Bg* (2) — Bg* (2) such that
P (0°) = 6" andds(Pe(0), Pe(U)) = dc (0", u) for everyu € BS.(2). Thus the map



64 Y. MAsHIKO, K. NAGANO and K. OrSukA

Pl (1) (1) =~ K (1)

restricted on thel-distance spher&, (1) gives the desired expanding map if we identify
. (1) with Me,, andS§, (1) with M.

We should note the following: We first construct an expanding map from a finite subset
in BS, (2) to BS. (2) in the same manner as above. Next, we make the finite subsets denser and
denser ing (2), and as a result, we obtain an expanding map from a countable and dense subset

in BS.(2) to Bg (2) (we then use the diagonal argument). The mfapis then obtained as its
extension to the wholBS, (2). O

We denote by, the distance function from the base panfA point p € M is, by definition,
acritical point of p, if for each unit vectov € ToM there is a minimizing geodesjc [0, po(p)] —
M joining p = y(0) ando = y(po(p)) such that(v,y(0)) < /2. Letdp, be the directional
derivative of thep,. For p € M, we denote bylp,(p) the set of all unit vectors € ToM such
thatdpo(v) = maxdp,, wheremaxis taken over all unit vectors ifi,M. Fore > 0, the function
Po IS, by definition,e-almost regular at pe M if

O(v,y(0)) >m—¢

holds for any € Opo(p) and for any minimizing geodesie: [0, po(p)] — M joining p = y(0)
ando = y(po(p)). We say that the, is e-almost regular on a subset A in M p, is e-almost
regular at each point € A. With these notions, we state:

PROPOSITION2.8. For givene > 0, there exists R> 0 such thatp, is €-almost regular
outside B'(R).

PROOF. Lett > 0 be sufficiently large against> 0, and choose ang € /(). Then by
Theorem 0.1, we can find a poigte S'(2t) such that

D(CW) 2 nm—g,

where (opq) denote the angle gb of a corresponding Euclidean triangle(o,p,q) to a
geodesic trianglé\ (o, p, q) satisfyingdgz (0, p) = dw (0, p), dg2(0,q) = dm (0,q) anddgz(p,q) =
dw(p,q). For the/A(o, p,q), we take the corresponding geodesic triangled, p,§) in M2 sat-
isfying the conditions in Theorem 1.1 (1). SinM? is a Hadamard surface, we haiépog) <
O(poq) < €. This means that\(6, p,§) is contained entirely in a sect& which is bounded by
two rays inZs and makes an angkeat 6. We then have(A (6, ,§)) > ¢(S) = (g/2m)c(M?3),
wherec(A(6, p,§)) andc(S) are the total curvatures df(6, p,§) andS, respectively. Moreover,
by a comparison theorem due to Alexandrov and Zalgaller (see Theorem 6 in Chapte3j)) of
we have

A U £ ~
D(opa) > 0(6p6) > 0(0P) + (A (6, B, 6)) > 11— o - (27— c(M?)).
Hence this together with the first variation formula implies the almost-regulariby.of O

PROOF OFCOROLLARY 0.2. If € > Ois sufficiently small in Proposition 2.8, there exists
no critical point ofp, outside the balBY (R). Hence by the isotopy lemma id]], we conclude
thatM has the finite topological type. Thus, the remainder of the proof is the estimate of the
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number of ends. Suppose that there exist two fagse %, tending to the distinct ends. Then
we havell.([y],[0]) = m, and hence by Theorem 2.6, we haw¥d (®([y]), ®([o])) = mand

¥ (@(1Y), (o)) = .

Consequently, the number of enddwfs not greater than the largest possible number of pairwise
disjoint (11/2)-balls inM. O

3. The structure of the asymptotic cones of manifolds of asymptotically non-negative
curvature.

Throughout this section, |&d be a manifold of asymptotically non-negative curvature.

3.1. Alexandrov spaces with curvature bounded below.

We first recall the definition of Alexandrov spaces with curvature bounded below. Refer the
basic tools and facts of Alexandrov spaces with curvature bounded bel@}y k8][ [7].

Let N2 be the simply connected, complete model surface with constant Gaussian curvature
K. We say that a metric spadeéis anAlexandrov space with curvature bounded belowkky
the following condition (A) holds (cf. Definition 2.5 ir8]):
(A): Every pointp € N has neighborhoods, O V, such that:

(1) Any two points inV, are joined by a minimizing geodesiclifp.
(2) For any/A(x,y,z) with vertices inV,, everyw on the edgeyz satisfies the inequality
dn(x,w) < dN% (X,w). Herew is the point on the edggZ of the corresponding geodesic

triangle A (X, ¥,2) € N2 to 2A(x,Y,2) such thaty (y,w) = dN,'g‘ (§,W). If kK >0, we need an
additional assumption: the perimeterafx,y,z) is < 2m/\/K.

If N is al-dimensional manifold ang > 0, then we assume in addition that the diameter
of N is not greater tham//k.

For example, complete Riemannian manifolds whose sectional curvatures are not smaller
thank are Alexandrov spaces with curvature bounded below .by

3.2. Proofs of the corollaries.

Let M., o be any connected componentMf, with respect to the Tits distanderys, and
defineCy := ConeM., o. As is stated in the Introductio \ {0*} is an Alexandrov space with
curvature bounded below by. In particular,dim_ - Cp\ {0*} is an integer not greater than
m=dimM, anddim_» M o is an integer not greater tham— 1 (see §6, §8 ing]).

PrROOF OFCOROLLARY 0.6. First, note thaM. ¢ satisfies the condition (A) if its cone
itself is not a ray. This is obtained by the same argument as the one that appeared in the proof
of Proposition 4.2.3 in§] sinceCyp \ {0*} is an Alexandrov space with curvature bounded below
by 0.

If dim,~Cp\ {0*} =2, thenCy\ {0*} is a2-dimensional topological manifold possibly with
boundary, and, o is a 1-dimensional topological manifold possibly with boundary (12.9.3 in
[8]). Hence if the diameter d¥l. o is not greater tham, thenM,, g is an Alexandrov space with
curvature bounded below Hy

If dim,»Co\ {0*} > 3, thenM, o is not al-dimensional manifold. Furthermor®l. o is
an Alexandrov space with curvature bounded belowlbyn particular, from Theorem 3.6 and
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Proposition 4.2.3 ing], we see that the diameter bf. o is not greater tharm, and thaCy is an
Alexandrov space with curvature bounded belowdby O

Next, we show Corollary 0.7. We explain some notations needed in the proofXLey )
be a metric space. (1) Fore X, Ry > R, > 0, we define the metric annuIdﬁf(Rl,Rz) =
BX(R1) \ BX(Rz). (2) LetA be a bounded set . Therough dimensiorim, A of Ais defined
as

dim; A:=inf{a | limsupe®Ba(e) = 0} = sup{a | limsupe?Ba(€) = o},

£—0 £—0

wherefa(€) is the largest possible number of poimtss A satisfyingdy (xi,X;) > & fori # j.

PROOF OFCOROLLARY 0.7. We here assume thd,. has the unique connected com-
ponent. For the more general case whiglke does not necessarily have the unique connected
component, we can similarly prove the corollary.

Let us take sufficiently large numbeds< R < T so thatT?K(T) > T2K(R) > —1. Then,
Aél/T)M(l, R/T) converges tcBSE(l) asT — o with respect to the Gromov-Hausdorff distance
preserving the lower curvature bound. We also note that

, . IBM(R
TI|m volrBSY "M(R/T) = lim volBs (R)

fim =22 —0, (3.1)

wherevoly denotes the volume measured iy T)M.
First, we assume thaiim M., = m— 1, or equivalentlydim Cy = m. Then, it is inde-
pendently known by§], [27], and [29] that

lim volr ASY M (1 R/T) = ™ (B (1)) > 0.

This together with (3.1) implies

i volBM(T)

Jim ==02=> — Jim volrBg” M (1) = (B (D)) > 0.

We next assumdim ,»Co < mandlimt_.(volBY (T)/T™) > 0. We lead a contradiction
from the estimate of the rough dimensidim, ATM (1L,R/T).
For simplicity, definef, := AélmM(L R/T). Note then that thd andR in A, vary satis-

fying the conditions stated at the beginning of the proof. From (3.1), we find a positive constant
V > 0 such thawoly A; > V. For a given sufficiently smalt > 0, let

e ca
be a maximal set of points i, satisfyingd1,tyw(pi, pj) > € fori # j. Note that the point§p; }
is a(2¢)-net of A, that is,A, C U?ﬁ'i(£> B%}/T)M(z‘s). Then, by the Bishop volume comparison
theorem, we have
Bao (€)
V < volrA < Zx volr BR/ ™M (2¢)
i=

Bro (€)
< ZI w™ (2€) < consky- £MBa, (€),
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where w™, (2¢) denotes the volume of a ball of radi@s in the m-dimensional model space
of constant curvature-1, and cons, is a positive constant depending only om Let
Pe /10 Bf,lmM(l) — Bgf(l) be an €/10)-Hausdorff approximation. Then,

{he/lo(Pi)}iA‘i<£)
is ane-discrete set iriBgE(l) = BE}?(Z). Hence, we have

V < const,- emBBc9<2)(e).

Since Cp \ {0*} is an Alexandrov space with curvature bounded below, we have
dimy BSE(Z) =dimy BgE(Z) = dim;»Cy < m(see 6.4 in@]). Hence, we obtain

. -
im, & Beco ) (&) =0

which yields a contradiction.
In this way, we conclude Corollary 0.7. O
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