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Abstract. We determine the indecomposable characters of several
classes of infinite dimensional groups associated with operator algebras, in-
cluding the unitary groups of arbitrary unital simple AF algebras and II1
factors.

1. Introduction.

One of the most fundamental tasks in representation theory is to classify irreducible
representations of a given group. For a locally compact group G, this is known to be
equivalent to classifying irreducible representations of the group C∗-algebra C∗(G). The
classical Mackey–Glimm dichotomy (see [29]) says that there is no hope to accomplish
it if the group possesses a non-type I representation. This is a consequence of the fact
that if a C∗-algebra A has a non-type I representation, the set of pure states P (A) of A

modulo the natural action of the unitary group U(A) of A does not have a reasonable
Borel structure. However, we still have a hope to classify finite factor representations
because the tracial states of A form a nice Choquet simplex T (A), on which U(A) acts
trivially. A tracial state of the group C∗-algebra C∗(G) corresponds to a character of G

as we introduce now.

Definition 1.1. Let G be a (not necessarily locally compact) topological group.
A character χ of G is a positive definite continuous function χ : G → C satisfying
χ(hgh−1) = χ(g) for any g, h ∈ G, and χ(e) = 1. We denote by Char(G) the set of
characters of G. The character space Char(G) is a convex set, and an extreme point of
Char(G) is said to be indecomposable. We denote by exChar(G) the set of indecompos-
able characters of G.

The classification of finite factor representations of G, up to quasi-equivalence, is
equivalent to that of exChar(G), even when G is not locally compact (see [15, Theorem
B]).

The first classification result of exChar(G) for a non-type I group was obtained by
Thoma [32], who gave an explicit description of the indecomposable characters of the
infinite symmetric group S∞, the inductive limit of the symmetric groups Sn. Thoma’s
description of ex Char(G) involves infinitely many parameters, whose interpretation in
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terms of infinite paths on Young diagrams was given by Vershik–Kerov [33]. These works
opened up a totally new field in asymptotic representation theory (see [21]).

The first classification result for a non-locally compact group was obtained by
Voiculescu [36], who worked on the infinite unitary group U(∞), the inductive limit
of the unitary groups U(n) (see [35] too, which was in fact written after [36]). More
precisely, he gave a concrete list of indecomposable characters, now called the Voiculescu
characters, and its completeness was later observed by Vershik–Kerov [34] and Boyer [4]
independently (see [26] too).

There are more examples of groups whose indecomposable characters are explicitly
classified (see [30], [6], [16], [17], [18], [8], [9], [12] for example), but they are restricted
to inductive limits of compact groups (and their completion in some topology). One of
the purposes of this paper is to classify the indecomposable characters of a large class
of infinite dimensional groups coming from operator algebras, and indeed some of them
are not in the category of topological groups mentioned above. We first classify the
indecomposable characters of the unitary groups of simple unital AF algebras. Although
such an attempt was already done for the CAR algebra by Boyer [6], his proof does
not seem to be adequate. While Boyer studied the structure of the Stratila–Voiculescu
AF algebra [31] of the inductive limit group U(2∞) = lim−→U(2n), we employ Okounkov–
Olshanski’s approach in [26] based on the Vershik–Kerov ergodic method [33].

Using the classification result for the unitary groups of unital simple AF algebras,
we deduce classification results for broader classes of groups. For any group G in these
classes, the product of two indecomposable characters is again indecomposable, and
exChar(G) is a multiplicative semigroup. For example, we see that every indecomposable
character of the unitary group U(Aθ) of the irrational rotation algebra Aθ is of the form
ψτpτ q, where ψ is a character of the K1-group K1(Aθ) ∼= Z2 and τ is the unique trace
of Aθ. Thus we have a semigroup isomorphism exChar(U(Aθ)) ∼= T2 × Z2

≥0.
To state our main results, we introduce the notation for AF algebras now. The

reader is referred to [7] for the basics of AF algebras. An AF algebra A = lim−→An is an
inductive limit, in the category of C∗-algebras, of an inductive system {An}∞n=1 of finite
dimensional C∗-algebras. Throughout this note, we assume that the connecting map
from An to Am is an embedding for any n < m, and it is unital whenever A is unital.
We consider two infinite dimensional groups associated with the AF algebra A: the full
unitary group U(A) of A (if A is not unital, we set U(A) = {u ∈ U(A+C1); u−1 ∈ A})
equipped with the norm topology, and the inductive limit group U→(A) = lim−→U(An)
equipped with the inductive limit topology. When A is not unital, we embed U(An)
into U(A) by u 7→ u + 1 − 1An

, and hence the above inductive limit makes sense in
U(A). The group U→(A) is identified with a dense subgroup of the unitary group U(A),
and the inductive limit topology of U→(A) is stronger than the relative topology of the
norm topology of U(A). Note that the isomorphism class of U→(A) as a topological group
depends only on the isomorphism class of A, which justifies the notation U→(A), because
Elliott’s classification theorem [10] says that isomorphic AF algebras have isomorphic
algebraic inductive limits.

The difference between the two groups U→(A) and U(A) could be very subtle from
the view point of representation theory. Indeed, when A = K, the set of compact opera-
tors on a separable infinite dimensional Hilbert space, the group U→(K) is isomorphic to
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U(∞) mentioned above. While U(∞) has uncountably many type II1 factor representa-
tions as shown by Voiculescu, Kirillov [23] showed that U(K) is a type I group with only
countably many irreducible representations.

We introduce the notion of determinant associated with ϕ ∈ Hom(K0(A),Z). For
the K-theory of C∗-algebras, the reader is referred to [2]. We denote by Proj(A) the set
of projections in A. For u ∈ U(An), let u =

∑k
i=1 ziei be the spectral decomposition

with zi ∈ T and ei ∈ Proj(An). We set detϕu =
∏k

i=1 z
ϕ([ei])
i , where [ei] ∈ K0(A) is the

K0-class of ei. Then detϕ : U→(A) → T is a well-defined map, which is continuous and
multiplicative on U(An) for any n, and hence on U→(A).

Theorem 1.2. Let A be an infinite dimensional unital simple AF algebra. Then
(1)

exChar(U→(A))

=
{

detϕ

( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
; τi, τ

′
j ∈ ex T (A), p, q ≥ 0, ϕ ∈ Hom(K0(A),Z)

}
.

(2)

exChar(U(A)) =
{( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
; τi, τ

′
j ∈ ex T (A), p, q ≥ 0

}
.

It is known that any metrizable Choquet simplex can be realized by T (A) for a
unital simple AF algebra A (see [2, Theorem 7.4.3]).

We can generalize Theorem 1.2 to a broader class of C∗-algebras as follows (see
Section 6 for details).

Theorem 1.3. Let A be a separable infinite dimensional unital simple exact C∗-
algebra with tracial topological rank 0 and torsion-free K0(A).

(1) Let U(A)0 be the connected component of 1A in U(A). Then

exChar(U(A)0) =
{( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
; τi, τ

′
j ∈ ex T (A), p, q ≥ 0

}
.

(2) Let K̂1(A) = Hom(K1(A),T) be the dual group of K1(A). Then

exChar(U(A)) =
{

ψ

( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
; τi, τ

′
j ∈ ex T (A), p, q ≥ 0, ψ ∈ K̂1(A)

}
,

where we identify ψ ∈ K̂1(A) with the homomorphism U(A) 3 u 7→ ψ([u]) ∈ T.

For a stable AF algebra A, we denote by TW (A) the set of densely defined lower
semi-continuous semifinite traces on A. All the traces in TW (A) have a common dense
domain, called the Pedersen ideal of A (see [29, Proposition 5.6.7]), and TW (A) is
closed under addition and multiplication by positive numbers. Since An is included in
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the Pedersen ideal of A for any n, the function U→(A) 3 u 7→ τ(u− 1) is continuous for
any τ ∈ TW (A). For τ, τ ′ ∈ TW (A) and u ∈ U→(A), we set χτ,τ ′(u) = eτ(u−1)+τ ′(u∗−1).
The function τ(u−1)+ τ ′(u∗−1) is conditionally positive definite in the following sense:
for any complex numbers c1, c2, . . . , cn with

∑n
i=1 ci = 0 and u1, u2, . . . , un ∈ U→(A), we

have

n∑

i,j=1

(τ(u−1
j ui − 1) + τ ′((u−1

j ui)∗ − 1))cicj = τ(x∗x) + τ ′(yy∗) ≥ 0,

where x =
∑n

i=1 ci(ui − 1), y =
∑n

i=1 ci(u∗i − 1). Thus χτ,τ ′ is a character of U→(A)
thanks to the well-known Schoenberg theorem.

Theorem 1.4. Let A be a stable simple AF algebra not isomorphic to K. If TW (A)
is finite dimensional,

exChar(U→(A)) = {detϕχτ,τ ′ ; τ, τ ′ ∈ TW (A), ϕ ∈ Hom(K0(A),Z)}.

As easy consequences of our main results (and their proofs), we are able to determine
the indecomposable characters for the unitary groups of arbitrary type II1 factors, and
for a family of subgroups of the unitary groups of arbitrary type II∞ factors.

Theorem 1.5. Let R be a type II1 factor with a unique tracial state τ . We equip
the unitary group U(R) of R with the strong operator topology. Then

exChar(U(R)) = {τpτ q; p ≥ 0, q ≥ 0}.

Moreover, every χ ∈ Char(U(R)) is uniquely decomposed as

χ =
∑

p,q∈Z≥0

cp,qτ
pτ q, cp,q ≥ 0.

Let M be a type II∞ factor with separable predual. We denote by τ∞ the unique
(up to scalar multiple) normal semifinite trace of M . For 1 ≤ p < ∞, we set

U(M)p = {u ∈ U(M); ‖u− 1‖p < ∞}.

where ‖x‖p = τ∞(|x|p))1/p. Then U(M)p is a Polish group with an invariant metric ‖u−
v‖p for u, v ∈ U(M)p. For a, b ≥ 0 and u ∈ U(M)1, we set χa,b(u) = eaτ∞(u−1)+bτ∞(u∗−1).
For u ∈ U(M)2, we set χa(u) = e−a‖u−1‖22 , which was discussed in [1] (cf. [3]). For
1 ≤ q < p, we have the inclusion relation U(M)q ⊂ U(M)p, and we have χa,a(u) = χa(u)
for u ∈ U(M)1.

Theorem 1.6. Let the notation be as above.

(1) ex Char(U(M)1) = {χa,b; a, b ≥ 0}.
(2) ex Char(U(M)p) = {χa; a ≥ 0} for 1 < p ≤ 2.
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(3) ex Char(U(M)p) = {1} for 2 < p.

In view of Theorems 1.2, 1.3, and 1.5, it would be tempting to conjecture that any
χ ∈ exChar(U(A)) is of the form

χ = ψ

( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
, τi, τ

′
j ∈ ex T (A), ψ ∈ Hom(U(A),T),

for any simple unital C∗-algebra A. The first test case beyond the class of C∗-algebras
discussed here is the Jiang–Su algebra Z (see [20]), which is left as an open problem.
Another possible challenge for the future is to determine ex Char(U→(A)) for natural non-
simple AF algebras, such as the gauge invariant CAR algebra. Since the GICAR has a
quotient isomorphic to K+C1, the classification list should be considerably complicated.

The authors would like to thank Benoit Collins for informing them of the formula
Lemma 3.6, (2), and Dan Voiculescu for informing them of the reference [35].

2. Preliminaries.

2.1. Characters and representations.
A representation (π,H) of a topological group G consists of a continuous homomor-

phism π from G to the unitary group U(H) of a Hilbert space H equipped with the
strong operator topology. We often call π a representation, and H the representation
space of π, which is sometimes denoted by Hπ. A cyclic representation (π,H,Ω) of G is
a representation (π,H) with a unit vector Ω ∈ H such that π(G)Ω is a total set in H.

For a character χ ∈ Char(G), there exists a unique (up to unitary equivalence)
cyclic representation (πχ,Hχ,Ωχ) of G satisfying χ(g) = 〈π(g)Ω,Ω〉. We call it the
cyclic representation of G associated with χ. The von Neumann algebra M = πχ(G)′′ is
always finite, and τ(x) = 〈xΩχ,Ωχ〉 gives a faithful normal tracial state on M . The von
Neumann algebra M is a factor if and only if χ ∈ exChar(G).

If (π,H) is a representation of G generating a finite von Neumann algebra M =
π(G)′′ with a faithful normal trace τ , then χ(g) = τ ◦π(g) gives a character χ ∈ Char(G),
and π is quasi-equivalent to πχ.

We often use the following well known fact without mentioning it.

Lemma 2.1. Let G be a topological group, let H be a closed subgroup of G, and
let χ ∈ Char(G). Then the restriction πχ|H of πχ to H is quasi-equivalent to the cyclic
representation πχ|H associated with the restriction χ|H of χ to H.

Proof. Let M = πχ(G)′′, N = πχ(H)′′, K = NΩχ, and let p be the projection
from H onto K. Then p ∈ N ′, and πχ|H is unitarily equivalent to (pπχ|H ,K). Since Ωχ is
a separating vector for M , we have N ′K ⊃ M ′K = Hχ. Thus the map N 3 x 7→ px ∈ pN

is an isomorphism, which shows the statement. ¤

2.2. Stratila–Voiculescu AF algebras.
Let G = lim−→Gn be an inductive limit of second countable compact groups with

G0 = {e}. The main purpose of this section is to show that exChar(G) has a Polish
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topology and every ω ∈ Char(G) has an integral expression ω =
∫
ex Char(G)

χdν(χ) with
a unique Borel probability measure ν on ex Char(G). This was first proved by Voiculescu
[36] for U(∞). Olshanski [28] gave a new proof to Voiculescu’s result, which in fact works
in the general case. The main technical problem here is that Char(G) is not compact
in general, and Olshanski gave a nice compactification, which is a Choquet simplex. We
give another proof using the Stratila–Voiculescu AF algebra A(G) of G, whose tracial
simplex T (A(G)) is essentially the same as Olshanski’s compactification.

For the relationship between locally compact groups and C∗-algebras, the reader
is referred to [29]. The group C∗-algebra C∗(Gn) is the universal C∗-algebra of the
Banach ∗-algebra L1(Gn). Let λ(n) be the left regular representation of Gn on L2(Gn).
We concretely realize C∗(Gn) as the C∗-algebra generated by λ(n)(f) =

∫
Gn

f(g)λ(n)
g dg

for f ∈ L1(Gn), where dg is the Haar measure of Gn. The group von Neumann algebra
L(Gn) is the von Neumann algebra generated by λ

(n)
Gn

, the weak closure of C∗(Gn) too,
which coincides with the multiplier algebra of C∗(Gn). For a Radon measure ν on Gn,
we denote λ(n)(ν) =

∫
Gn

λ(n)dν(g) ∈ L(Gn). Let Ĝn be the unitary dual of Gn. Then
C∗(Gn) (resp. L(Gn)) is isomorphic to the direct sum

⊕
π∈cGn

B(Hπ) in the category of
C∗-algebras (resp. von Neumann algebras). Since every representation of C∗(Gn) is a
direct sum of irreducible representations, it uniquely extends to a normal representation
of L(Gn).

Since the restriction of λ(n) to Gk for k < n is quasi-equivalent to λ(k), we have
a natural embedding C∗(Gk) ⊂ L(Gk) ⊂ L(Gn), which is given by

∫
Gk

f(h)λ(k)
h dh 7→∫

Gk
f(h)λ(n)

h dh for f ∈ L1(Gk). Thus
∑n

k=0 C∗(Gk) makes sense as a ∗-subalgebra of
L(Gn), and we denote by An(G) its norm closure. We define A(G) by the inductive
limit C∗-algebra lim−→An(G) of the inductive system {An(G)}∞n=0. Since An(G) is an AF
algebra for each n, so is A(G).

For every representation of G, its restriction to Gn induces a normal representation
of L(Gn), which further induces a representation of A(G). On the other hand, every
factor representation π of A(G) is induced by either a factor representation of G as
above, or by an irreducible representation of Gn, with possibly multiplicity, for some n

in the following sense. Let Jm be the closed ideal generated by
⋃∞

k=m+1 C∗(Gk), and
let n be the smallest integer with π|Jn = 0. Then π factors through A(G)/Jn, which is
isomorphic to An(G), and it comes from an irreducible representation of Gn ([31]).

For any character χ of G, we can associate a normal tracial state trχ,n of L(Gn) by
the relation trχ,n(λ(n)(ν)) =

∫
Gn

χ(g)dν(g). Since trχ,n is normal, the restriction of trχ,n

to C∗(Gn) is a state too. Then trχ,n is compatibly with the above inductive system,
and we obtain a tracial state trχ of A(G). The cyclic representation (πχ,Hχ,Ωχ) of G

associated with χ and the GNS cyclic representation (πtrχ
,Htrχ

,Ωtrχ
) of A(G) associated

with trχ are identified via

∫

Gn

πχ(g)f(g)dg = πtrχ
(λ(n)(f)), f ∈ L1(Gn).

For x ∈ A(G), we denote by x̂ the continuous function on T (A(G)) defined by x̂(τ) =
τ(x). The topology of T (A(G)) is the weakest topology making x̂ continuous for any
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x ∈ A(G). We identify Char(G) with a subset of T (A(G)) by the correspondence χ 7→ trχ,
and introduce the relative topology (and Borel structure) of T (A(G)) into Char(G). Then
the topology of Char(G) is the weakest topology making χ 7→ ∫

Gn
χ(g)f(g)dg continuous

for any f ∈ L1(Gn) and any n, that is, the relative topology of σ(Cb(G),
⋃∞

n=0 L1(Gn))
(cf. [15]). The inclusion Char(G) ⊂ T (A(G)) provides us a nice compactification of
Char(G), which allows us to apply Choquet theory.

We denote by A(G)∗∗ the second dual of A(G), which is known to have a natural
von Neumann algebra structure (see [29]). For a closed ideal J of A(G), we denote by zJ

the unit of the weak closure J ′′ ⊂ A(G)∗∗ of J , which is a central projection in A(G)∗∗.
In concrete terms, it is obtained as the strong limit in A(G)∗∗ of an approximate unit
{uk}∞k=1 of J . We define a lower semicontinuous function ẑJ on T (A(G)) by the pointwise
limit of {ûk}∞k=1, which does not depend on the particular choice of the approximate unit
{uk}∞k=1.

Lemma 2.2. Let G = lim−→Gn be an inductive limit of second countable compact
groups, and let A(G) be the Stratila–Voiculescu AF algebra for G.

(1) Char(G) is a Gδ subset of T (A(G)), and in particular it is a Polish space.
(2) ex Char(G) = Char(G) ∩ ex T (A(G)).
(3) For any character ω ∈ Char(G), there exists a unique probability measure ν on

exChar(G) satisfying

trω(x) =
∫

ex Char(G)

trχ(x)dν(χ), ∀x ∈ A(G).

Moreover, we have

ω(g) =
∫

ex Char(G)

χ(g)dν(χ), ∀g ∈ G.

Proof. (1) Recall that Jn is the closed ideal of A(G) generated by⋃∞
k=n+1 C∗(Gk). Let zn = zJn ∈ A(G)∗∗. Then we have 0 ≤ ẑn ≤ 1 and {ẑn}∞n=0

is a decreasing sequence. We claim

{trχ ∈ T (A(G)); χ ∈ Char(G)} =
∞⋂

n=0

{τ ∈ T (A(G)); ẑn(τ) = 1}. (2.1)

Since

{τ ∈ T (A(G)); ẑn(τ) = 1} =
∞⋂

m=1

{
τ ∈ T (A(G)); ẑn(τ) > 1− 1

m

}
,

and ẑn is lower semicontinuous, the claim would imply that Char(G) is a Gδ subset of
T (A(G)).

Assume that τ0 ∈ T (A(G)) does not belong to the right-hand side of (2.1), and let n

be the smallest integer with ẑn(τ0) 6= 1. Let τ1(x) = limk→∞ τ(x− xun,k)/(1− ẑn(τ0)),
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where {un,k}∞k=1 is a quasi-central approximate unit of Jn. Then τ1 is in T (A(G)) that
factors through A(G)/Jn, and the GNS representation πτ1 is contained in πτ0 . Since
πτ1 |Jn = 0, the representation πτ1 does not come from a representation of G, and neither
does πτ0 . Hence the trace τ0 does not belong to the left-hand side.

Assume that τ2 ∈ T (A(G)) belongs to the right-hand side of (2.1) now. Since
T (A(G)) is a Choquet simplex, there exists a unique probability measure ν on ex T (A(G))
satisfying τ2 =

∫
ex T (A(G))

τdν(τ). By monotone convergence theorem, we have

1 = ẑn(τ2) =
∫

ex T (A(G))

ẑn(τ)dν(τ).

Thus ν is supported by

C =
∞⋂

n=0

{τ ∈ ex T (A); ẑn(τ) = 1}.

For any τ ∈ ex T (A), the GNS representation πτ comes from either an irreducible repre-
sentation of Gn for some n or a finite factor representation of G. For τ ∈ C, the former
case does not occur, and there exists a unique character χτ satisfying τ = trχτ

. Let
{fn,k}∞k=1 be an approximate unit of C∗(Gn), and let τ2,n be the normal extension of
τ2|C∗(Gn) to L(Gn). Then by the bounded convergence theorem, we have

τ2,n(λ(n)
g ) = lim

k→∞
τ2(λ(n)

g fn,k) = lim
k→∞

∫

C

τ(λ(n)
g fn,k)dν(τ) =

∫

C

χτ (g)dν(τ).

We denote by χ(g) the function on G defined by the last integral. The bounded conver-
gence theorem implies that χ is continuous, and hence it is a character of G. Now we
have trχ = τ2.

(2) Assume χ ∈ exChar(G) and trχ = (1 − t)τ1 + tτ2 with τ1, τ2 ∈ T (A(G)) and
0 < t < 1. Then (1 − t)ẑn(τ1) + tẑn(τ2) = 1 for all n, and ẑn(τ1) = ẑn(τ2) = 1. This
shows that τ1 and τ2 come from characters of G, and χ = τ1 = τ2.

(3) is already shown in the proof of (1). ¤

The restriction χ|Gn
of χ ∈ Char(G) to Gn is decomposed as

χ(g) =
∑

π∈cGn

cn,π
Tr(π(g))
dimπ

,

with non-negative numbers cn,π satisfying
∑

π∈cGn
cn,π = 1. We set Sn,χ = {π ∈

Ĝn; cn,π 6= 0}.

Lemma 2.3. For χ ∈ Char(G), the closed ideal Jχ = kerπtrχ of A(G) depends
only on the sets Sn,χ, n ≥ 0. If Sn,χ is a finite set for any n, then the quotient algebra
A(G)/Jχ is identified with the AF algebra
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lim−→
⊕

π∈Sn,χ

B(Hπ).

For σ ∈ Sn−1,χ and π ∈ Sn,χ, the connecting map from B(Hσ) to B(Hπ) is given by the
restriction π|Gn−1 .

Proof. Since A(G) is an inductive limit C∗-algebra, we have Jχ = lim−→(An(G)∩Jχ)
and A(G)/Jχ

∼= lim−→(An(G)/(An(G) ∩ Jχ)). Note that we have C∗(Gn) ⊂ An(G) ⊂
L(Gn). Since πtrχ |An(G) extends to a normal representation π

(n)
trχ

of L(Gn), and

πtrχ
(C∗(Gn)) = π

(n)
trχ

(L(Gn)) ∼=
⊕

π∈Sn,χ

B(Hπ),

we get

An(G)/(An(G) ∩ Jχ) ∼= πtrχ(An(G)) ∼=
⊕

π∈Sn,χ

B(Hπ). ¤

2.3. Vershik–Kerov ergodic method.
The Vershik–Kerov’s ergodic method introduced in [33] is a powerful tool to in-

vestigate ex Char(G) for an inductive limit group G, and it often provides an intuitive
explanation to parameters in exChar(G). It is an easy consequence of the backward
martingale convergence theorem (see [21]).

Theorem 2.4 (Vershik–Kerov). Let {Gn}∞n=0 be an inductive system of topological
groups with countable exChar(Gn) for any n. We assume that any ω ∈ Char(Gn) is
uniquely decomposed as

ω =
∑

χ∈ex Char(Gn)

cχχ

with non-negative cχ (and we say that ω contains χ if cχ 6= 0). Let G = lim−→Gn be
the inductive limit group. Then for any χ ∈ exChar(G), there exist characters χn ∈
exChar(Gn) such that the restriction of χn+1 to Gn contains χn for any n, and {χn}∞n=m

converges to χ uniformly on Gm for any m. We may further assume that χn is contained
in χ|Gn

for any n.

Assume that Gn is a second countable compact group for any n, and G1 = U(1),
e.g. G = U(∞). Let {χn}∞n=0 be a sequence of indecomposable characters with χn ∈
exChar(Gn) such that χn|Gn−1 contains χn−1. To apply Vershik–Kerov ergodic method
to a concrete situation, we have to figure out when the sequence {χn}∞n=0 converges to a
character of G.

The Fourier expansion χn(eit) =
∑

k∈ZM (n)(k)eikt of χn restricted to G1 gives a se-
quence of finitely supported probability measures {M (n)}∞n=1 on Z. Assume that {χn}∞n=0

converges. Then {M (n)}∞n=0 is a tight family. A crucial observation of Okounkov–
Olshanski in [26] says that more is true. Namely they showed that the second moment



1240 T. Enomoto and M. Izumi

sequence is bounded in the case of U(∞) by using the following easy, but nevertheless
crucial observation [26, Lemma 5.2]. For a natural number p, we denote

〈kp〉M(n) =
∑

k∈Z
kpM (n)(k),

if it exists.

Lemma 2.5. Let {M (n)}∞n=1 be a tight family of probability measures on Z having
4-th moments. If the second moment sequence {〈k2〉M(n)}∞n=1 diverges, then the sequence
{〈k4〉M(n)/〈k2〉2

M(n)}∞n=1 diverges too.

In the case where we have an estimate 〈k4〉M(n) = O(〈k2〉2
M(n)), the above lemma

implies that the second moment sequence {〈k2〉M(n)}∞n=0 is bounded whenever {χn}∞n=0

converges. For U(∞), Okounkov–Olshanski [26] used shifted Schur functions to obtain
the estimate. For the unitary groups of unital simple AF algebras, it is more convenient
to use the Harish-Chandra–Itzykson–Zuber integral instead (see Section 3.3).

3. The characters of the unitary group U(d).

In this section, we deduce properties of the characters of the unitary group U(d)
that are necessary for the proof of Theorem 1.2. In particular, we give several asymptotic
estimates of the characters of U(d).

For combinatorics associated with the representation theory of U(d), we use the
notation and convention in [25]. In particular we don’t specify the number of variables
for a symmetric homogeneous function f . We often identify a vector in Cd with the
corresponding diagonal matrix in Md(C). For a diagonal matrix A ∈ Md(C), we denote
f(A) = f(A11, A22, . . . , Add). More generally, if A ∈ Md(C) is a diagonalizable matrix
with eigenvalues α1, α2, . . . , αd, we denote f(A) = f(α1, α2, . . . , αd).

A signature Λ = (Λ1,Λ2, . . . ,Λd) is a tuple of integers satisfying Λi ≥ Λi+1 for any
1 ≤ i ≤ d − 1. It is well known that the set of the equivalence classes Û(d) of the
irreducible representations of U(d) is naturally in one-to-one correspondence with the
set of signatures (see [37]). For Λ, we denote by (πΛ,HΛ) the corresponding irreducible
representation. We recall the Weyl character formula and Weyl dimension formula:

Tr(πΛ(x)) =
det(xΛj+d−j

i )i,j∏
1≤i<j≤d(xi − xj)

, x = (x1, x2, . . . , xd) ∈ Td,

dimπΛ =
∏

1≤i<j≤d

Λi − Λj + j − i

j − i
.

We set

χΛ(U) =
Tr(πΛ(U))

dimπΛ
.
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When there is a possibility of confusion, we use the notation π
(d)
Λ and χ

(d)
Λ instead of πΛ

and χΛ. In what follows, we identify Û(d) with the set of signatures (of length d). Then
we have ex Char(U(d)) = {χΛ}Λ∈Û(d)

.
A signature Λ is characterized by a pair of partitions, or Young diagrams, as fol-

lows. We choose p, q ∈ N satisfying Λp > 0 ≥ Λp+1 and Λq−1 ≥ 0 > Λq. Then
λ = (Λ1,Λ2, . . . ,Λp) and µ = (−Λd,−Λd−1, . . . ,−Λq) are partitions, and Λ is uniquely
determined by the pair (λ, µ) and d. Following [22], we use the notation {µ;λ} for Λ too.
When the negative part µ is empty, we have χ{∅;λ}(U) = sλ(U)/sλ(1d) for U ∈ U(d),
where sλ is the Schur polynomial.

3.1. Branching rules.
We regard U(d1)× U(d2) as a subgroup

{(
u 0
0 v

)
; u ∈ U(d1), v ∈ U(d2)

}

of U(d1 + d2).

Lemma 3.1. Let the notation be as above.

(1) Let {µi;λi} ∈ Û(d) for i = 1, 2, 3. If π{µ3;λ3} is contained in π{µ1;λ1} ⊗ π{µ2;λ2}, we
have |λ3| ≤ |λ1|+ |λ2|, |µ3| ≤ |µ1|+ |µ2|, and |λ3| − |µ3| = |λ1|+ |λ2| − |µ1| − |µ2|.

(2) Let {µ;λ} ∈ , and let {µi;λi} ∈ Û(di) for i = 1, 2. If π{µ1;λ1} × π{µ2;λ2}
is contained in the restriction of π{µ;λ} to U(d1)× U(d2), we have |λ1|+ |λ2| ≤ |λ|,
|µ1|+ |µ2| ≤ |µ|, and |λ1|+ |λ2| − |µ1| − |µ2| = |λ| − |µ|.

Proof. (1) follows from [22, (3.4), (3.5)], and (2) follows from [22, (5.12)]. ¤

Repeated use of the above lemma implies the following.

Lemma 3.2. Let

A1 =
N1⊕

j=1

A1,j ⊂ A2 =
N2⊕

k=1

A2,k

be a unital inclusion of finite dimensional C∗-algebras with A1,j
∼= Md1,j

(C) and A2,k
∼=

Md2,k
(C). We identify U(Ai) with

∏Nj

j=1 U(di,j) for i = 1, 2. Let

πi = π{µ(i,1);λ(i,1)} × π{µ(i,2);λ(i,2)} × · · · × π{µ(i,Ni);λ(i,Ni)} ∈ Û(Ai).

If the restriction of π2 to U(A1) contains π1, then

N1∑

j=1

|λ(1,j)| ≤
N2∑

k=1

|λ(2,k)|,
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N1∑

j=1

|µ(1,j)| ≤
N2∑

k=1

|µ(2,k)|,

N1∑

j=1

|λ(1,j)| −
N1∑

j=1

|µ(1,j)| =
N2∑

k=1

|λ(2,k)| −
N2∑

k=1

|µ(2,k)|.

3.2. Asymptotic estimate.
We denote by pr the r-th power sum

∑
i xr

i .

Lemma 3.3. Let λ be a partition of a natural number n. Then there exist numbers
cλ
i1,i2,...,in

depending only on λ satisfying

sλ =
∑

i1+2i2+···+nin=n

cλ
i1,i2,...,in

pi1
1 pi2

2 · · · pin
n .

Moreover,

cλ
n,0,...,0 =

∏

1≤i<j≤l(λ)

λi − λj + j − i

j − i

∏

1≤i≤l(λ)

(l(λ)− i)!
(l(λ) + λi − i)!

.

Proof. It suffices to show the second statement. We consider the case where the
number of the variables d is sufficiently large. On one hand, we have

sλ(1d) = cλ
n,0,...,0d

n + O(dn−1), (d →∞).

On the other hand, the Weyl dimension formula implies

sλ(1d) =
∏

1≤i<j≤l(λ)

λi − λj + j − i

j − i

∏

1≤i≤l(λ)<j≤d

λi + j − i

j − i

=
∏

1≤i<j≤l(λ)

λi − λj + j − i

j − i

∏

1≤i≤l(λ)

(d + λi − i)! (l(λ)− i)!
(l(λ) + λi − i)! (d− i)!

= dn
∏

1≤i<j≤l(λ)

λi − λj + j − i

j − i

∏

1≤i≤l(λ)

(l(λ)− i)!
(l(λ) + λi − i)!

+ O(dn−1),

which shows the statement. ¤

Corollary 3.4. For a partition λ, there exist positive constants Cλ and C ′λ de-
pending only on λ such that for any U ∈ U(d) with l(λ) ≤ d we have

∣∣sλ(U)− cλ
|λ|,0,...,0 Tr(U)|λ|

∣∣ ≤ Cλd|λ|−1,

∣∣∣∣
sλ(U)
sλ(1d)

−
(

1
d

Tr(U)
)|λ|∣∣∣∣ ≤

C ′λ
d

.
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Lemma 3.5. For two partitions λ and µ, there exist positive constants Cλ,µ and
C ′λ,µ depending only on λ and µ such that for any U ∈ U(d) we have

∣∣ Tr(π{µ;λ}(U))− sµ(U)sλ(U)
∣∣ ≤ Cλ,µd|λ|+|µ|−2,

∣∣∣∣χ{µ;λ}(U)−
(

Tr(U)
d

)|λ|(Tr(U)
d

)|µ|∣∣∣∣ ≤
C ′λ,µ

d
.

Proof. Thanks to [22, (3.4)] and the Weyl dimension formula, we see that there
exists a positive constant Cλ,µ satisfying

∣∣ Tr(π{µ;λ}(U))− sµ(U)sλ(U)
∣∣ ≤ Cλ,µd|λ|+|µ|−2,

for any U ∈ U(d). Thus

∣∣∣∣χ{µ;λ}(U)− sµ(U)sλ(U)
sµ(1d)sλ(1d)

∣∣∣∣ =
|sµ(1d)sλ(1d)Tr(π{µ;λ}(U))− dimπ{µ;λ}sµ(U)sλ(U)|

dimπ{µ;λ}sµ(1d)sλ(1d)

≤ |sµ(1d)sλ(1d)− dimπ{µ;λ}||Tr(π{µ;λ}(U))|
dimπ{µ;λ}sµ(1d)sλ(1d)

+
dimπ{µ;λ}|Tr(π{µ;λ}(U))− sµ(U)sλ(U)|

dimπ{µ;λ}sµ(1d)sλ(1d)

≤ 2Cλ,µd|λ|+|µ|−2

sµ(1d)sλ(1d)
.

Now the second statement follows from Corollary 3.4. ¤

3.3. Moment formula.
Let {Eij}1≤i,j≤d be the canonical system of matrix units in Md(C). For an even

number 2 ≤ r ≤ d, we set

F =
r/2∑

i=1

Eii −
r∑

i=r/2+1

Eii,

Let Λ ∈ Û(d) be a signature. Since χΛ(e
√−1tF ) is a positive definite function on T, the

Fourier expansion

χΛ(e
√−1tF ) =

∑

n∈Z
M(k)e

√−1kt,

gives a probability distribution {M(k)}k∈Z on Z. For p ∈ N, we set
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m(Λ, r, p) = 〈kp〉M =
∑

k∈Z
kpM(k) =

1√−1
p

dp

dtp
χΛ(e

√−1tF )
∣∣∣∣
t=0

.

Note that the odd moments vanish as χΛ(e
√−1tF ) is an even function.

Our purpose in this section is to obtain the estimate m(Λ, r, 4) = O(m(Λ, r, 2)2) for
any r ≥ 2d/3 by using the following Harish-Chandara–Itzykson–Zuber integral.

Lemma 3.6. Let A,B ∈ Md(C) be Hermitian matrices with eigenvalues {αi}d
i=1

and {βi}d
i=1 respectively, and let dU be the normalized Haar measure of U(d).

(1) ∫

U(d)

e
√−1 Tr(UAU−1B)dU =

∏d−1
i=1 i!

√−1
d(d−1)/2

det(e
√−1αiβj )

∆(A)∆(B)
,

where

∆(A) =
∏

1≤i<j≤d

(αi − αj).

(2) Let n ∈ N.

∫

U(d)

Tr(UAU−1B)ndU =
∑

λ`n

dimΠλsλ(A)sλ(B)
sλ(1d)

,

where λ runs over all the partitions of n, and Πλ is the irreducible representation of
the symmetric group Sn corresponding to the partition λ.

Proof. (1) follows from [19, (3.4)] and (2) follows from [19, (3.27)]. ¤

We set

J(B, r, n) =
∫

U(d)

Tr(UFU−1B)ndU =
∑

λ`n

dimΠλsλ(F )sλ(B)
sλ(1d)

.

Let B̂ = B − (Tr(B)/d)1d. Since Tr(F ) = 0, we have J(B, r, n) = J(B̂, r, n).

Lemma 3.7. Let Λ ∈ Û(d) be a signature, and let

ρd = ((d− 1)/2, (d− 3)/2, . . . ,−(d− 1)/2).

Then

m(Λ, r, 2) = J(ρd + Λ̂, r, 2)− J(ρd, r, 2),

m(Λ, r, 4) = J(ρd + Λ̂, r, 4)− 6m(Λ, r, 2)J(ρd, r, 2)− J(ρd, r, 4).
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Proof. Lemma 3.6, (1) and the Weyl character formula (or [14, Theorem 2])
imply

χΛ(e
√−1A) =

∏

1≤i<j≤d

(αi − αj)/2
sin((αi − αj)/2)

∫

U(d)

e
√−1 Tr(UAU−1(Λ+ρd)) dU.

When Λ = 0, the left-hand side is 1. Thus we get

χΛ(e
√−1tF )

∫

U(d)

e
√−1t Tr(UFU−1ρd) dU =

∫

U(d)

e
√−1t Tr(UFU−1(Λ+ρd)) dU.

Differentiating the both sides by t, we get the statement. ¤

Easy computation shows

s(2) =
p2 + p2

1

2
, s(1,1) =

−p2 + p2
1

2
,

s(4) =
p4

4
+

p3p1

3
+

p2
2

8
+

p2p
2
1

4
+

p4
1

24
,

s(1,1,1,1) = −p4

4
+

p3p1

3
+

p2
2

8
− p2p

2
1

4
+

p4
1

24
,

s(3,1) = −p4

4
− p2

2

8
+

p2p
2
1

4
+

p4
1

8
,

s(2,1,1) =
p4

4
− p2

2

8
− p2p

2
1

4
+

p4
1

8
,

s(2,2) = −p3p1

3
+

p2
2

4
+

p4
1

12
,

and if Tr(B) = 0, we get

s(2)(B) =
Tr(B2)

2
, s(1,1)(B) =

−Tr(B2)
2

,

s(4)(B) =
Tr(B4)

4
+

Tr(B2)2

8
, s(1,1,1,1)(B) = −Tr(B4)

4
+

Tr(B2)2

8
,

s(3,1)(B) = −Tr(B4)
4

− Tr(B2)2

8
, s(2,1,1)(B) =

Tr(B4)
4

− Tr(B2)2

8
,

s(2,2)(B) =
Tr(B2)2

4
.

We also have

s(2)(1d) =
d(d + 1)

2
, s(1,1)(1d) =

d(d− 1)
2

,
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s(4)(1d) =
d(d + 1)(d + 2)(d + 3)

24
, s(1,1,1,1)(1d) =

d(d− 1)(d− 2)(d− 3)
24

,

s(3,1)(1d) =
(d− 1)d(d + 1)(d + 2)

8
, s(2,1,1)(1d) =

(d− 2)(d− 1)d(d + 1)
8

,

s(2,2)(1d) =
(d− 1)d2(d + 1)

12
,

dimΠ(2) = dim Π(1,1) = 1, dimΠ(4) = dimΠ(1,1,1,1) = 1, dimΠ(2,2) = 2, dimΠ(3,1) =
dimΠ(2,1,1) = 3. Thus we obtain the following lemma.

Lemma 3.8. When Tr(B) = 0 and d ≥ 4, we have

J(B, r, 2) =
r Tr(B2)
d2 − 1

,

m(Λ, r, 2) =
r Tr(2Λ̂ρd + Λ̂2)

d2 − 1
,

J(B, r, 4) = 3r
(d4 − 6d2 + 18)r − 2d(2d2 − 3)

d2(d2 − 1)(d2 − 4)(d2 − 9)
Tr(B2)2

− 6r
(2d2 − 3)r − d(d2 + 1)

d(d2 − 1)(d2 − 4)(d2 − 9)
Tr(B4).

We use the following easy lemma for our main estimate Lemma 3.10.

Lemma 3.9. Let a, b ∈ Rd be vectors satisfying ai ≥ ai+1 and bi ≥ bi+1 for any
1 ≤ i ≤ d− 1. If

∑n
i ai = 0, then

∑d
i=1 aibi ≥ 0.

Proof. Let S0 = 0 and Si =
∑i

j=1 aj . Then Si ≥ 0, Sd = 0, and

d∑

i=1

aibi =
d∑

i=1

(Si − Si−1)bi =
d∑

i=1

Sibi −
d−1∑

i=1

Sibi+1

= Sdbd +
d−1∑

i=1

Si(bi − bi+1) =
d−1∑

i=1

Si(bi − bi+1) ≥ 0. ¤

In particular, we have Tr(Λ̂ρd) ≥ 0, Tr(Λ̂3ρd) ≥ 0, Tr(Λ̂ρ3
d) ≥ 0.

Lemma 3.10. There exist positive constants C1, C2 > 0, independent of Λ, such
that whenever r ≥ 2d/3 and d ≥ 4, we have m(Λ, r, 4) ≤ C1m(Λ, r, 2)2 + C2m(Λ, r, 2).

Proof. Lemma 3.7 and Lemma 3.8 imply

m(Λ, r, 4) = J(ρd + Λ̂, r, 4)− J(ρd, r, 4)− 6m(Λ, r, 2)J(ρd, r, 2)
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= 3r
(d4 − 6d2 + 18)r − 2d(2d2 − 3)

d2(d2 − 1)(d2 − 4)(d2 − 9)
(Tr((Λ̂ + ρd)2)2 − Tr(ρ2

d)
2)

− 6r
(2d2 − 3)r − d(d2 + 1)

d(d2 − 1)(d2 − 4)(d2 − 9)
Tr((Λ̂ + ρd)4 − Tr(ρ4

d))− 6m(Λ, r, 2)
r Tr(ρ2

d)
d2 − 1

≤ 3r
(d4 − 6d2 + 18)r

d2(d2 − 1)(d2 − 4)(d2 − 9)
(Tr(2Λ̂ρd + Λ̂2)2 + 2Tr(2Λ̂ρd + Λ̂2)Tr(ρ2

d))

− 6r
(2d2 − 3)r − d(d2 + 1)

d(d2 − 1)(d2 − 4)(d2 − 9)
Tr(Λ̂4 + 4Λ̂3ρd + 6Λ̂2ρ2

d + 4Λ̂ρ3
d)

− 6m(Λ, r, 2)
r Tr(ρ2

d)
d2 − 1

.

Since the second term is negative, we have

m(Λ, r, 4) ≤ 3r2 (d4 − 6d2 + 18)
d2(d2 − 1)(d2 − 4)(d2 − 9)

×
(

(d2 − 1)2m(Λ, r, 2)2

r2
+

2(d2 − 1)m(Λ, r, 2)Tr(ρ2
d)

r

)
− 6m(Λ, r, 2)

r Tr(ρ2
d)

d2 − 1

≤ 3m(Λ, r, 2)2
(d2 − 1)(d4 − 6d2 + 18)

d2(d2 − 4)(d2 − 9)

+ 36m(Λ, r, 2)Tr(ρ2
d)r

d4 − 2d2 − 3
d2(d2 − 1)(d2 − 4)(d2 − 9)

.

Since Tr(ρ2
d) = d(d2 − 1)/12, we get

m(Λ, r, 4) ≤ 3m(Λ, r, 2)2
(d2 − 1)(d4 − 6d2 + 18)

d2(d2 − 4)(d2 − 9)
+ 3m(Λ, r, 2)

r(d4 − 2d2 − 3)
d(d2 − 4)(d2 − 9)

≤ 3m(Λ, r, 2)2
(d2 − 1)(d4 − 6d2 + 18)

d2(d2 − 4)(d2 − 9)
+ 2m(Λ, r, 2)

d4 − 2d2 − 3
(d2 − 4)(d2 − 9)

,

which shows the statement. ¤

4. Schur–Weyl duality for the hyperfinite II1 factor.

For a tracial state τ on a C∗-algebra or a von Neumann algebra, we denote ‖x‖τ =
τ(x∗x)1/2. When τ is unique, we denote ‖x‖2 = ‖x‖τ . The following is an analogue of
the Schur–Weyl duality theorem (cf. [23]).

Theorem 4.1. Let R0 be the hyperfinite II1 factor acting on L2(R0) with a cyclic
and separating trace vector Ω ∈ L2(R0), and let J be the canonical conjugation defined
by JxΩ = x∗Ω for x ∈ R0. For non-negative integers p, q with (p, q) 6= (0, 0),

{u⊗p ⊗ (JuJ)⊗q ∈ R⊗p
0 ⊗R′⊗q

0 ; u ∈ U(R0)}′′ = (R⊗p
0 )Sp ⊗ (R′⊗q

0 )Sq ,
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where the symmetric group Sp (resp. Sq) acts on R⊗p
0 (resp. R′⊗q

0 ) as the permutations
of tensor components. In particular, the above von Neumann algebra is isomorphic to
the hyperfinite II1 factor.

Proof. Since R0 is hyperfinite, there exists an increasing sequence of finite di-
mensional von Neumann subalgebras {An}∞n=1 whose union is dense in R0. We may
further assume that An = M2n(C). We set

P = {u⊗p ⊗ (JuJ)⊗q ∈ R⊗p
0 ⊗R′⊗q

0 ; u ∈ U(R0)}′′,
Pn = {u⊗p ⊗ (JuJ)⊗q ∈ R⊗p

0 ⊗R′⊗q
0 ; u ∈ U(An)}′′,

Q = (R⊗p
0 )Sp ⊗ (R′⊗q

0 )Sq ,

Qn = (A⊗p
n )Sp ⊗ ((JAnJ)⊗q))Sq .

Then
⋃∞

n=1 Pn is dense in P and
⋃∞

n=1 Qn is dense in Q. We have an obvious inclusion
Pn ⊂ Qn. To prove P = Q, it suffices to show the following statement: there exists a
decreasing sequence of positive numbers {an}∞n=1 converging to 0 such that for any x in
the unit ball of Qn there exists y in the unit ball of Pn satisfying ‖x− y‖2 ≤ an.

Let Hn = C2n

, and let Hn be its complex conjugate Hilbert space. We identify A⊗p
n ⊗

(JAnJ)⊗q with B(H⊗p
n ) ⊗ B(Hn

⊗q
). Let (Πλ,Kλ) be the irreducible representation of

Sp corresponding to the partition λ of p. Then we can make the following identification:

H⊗p
n ⊗Hn

⊗q
=

⊕

λ`p, µ`q

Hλ ⊗Hµ ⊗Kλ ⊗Kµ,

Qn =
⊕

λ`p, µ`q

B(Hλ ⊗Hµ)⊗ 1Kλ
⊗ 1Kµ

,

Pn =
{ ⊕

λ`p, µ`q

(πλ ⊗ πµ)(U)⊗ 1Kλ
⊗ 1Kµ ;U ∈ U(2n)

}′′
.

For a pair of partitions (λ, µ) with |λ| = p and |µ| = q, the irreducible representation
π{µ;λ} of U(2n) is contained in πλ ⊗ πµ with multiplicity 1, and it is not contained in
πλ′ ⊗ πµ′ with a different pair (λ′, µ′). Let eλ,µ ∈ B(Hλ ⊗ Hµ) be the projection onto
H{µ;λ}, and let

en =
⊕

λ`p, µ`q

eλ,µ ⊗ 1Kλ
⊗ 1Kµ .

Then enQnen ⊂ Pn. For x in the unit ball Qn, we have

‖x− enxen‖2 ≤ ‖x(1− en) + (1− en)xen‖2 ≤ 2‖x‖‖1− en‖τ ≤ 2‖1− en‖2.

Thus it suffices to show that the sequence {‖1− en‖2}∞n=1 converges to 0. Indeed, since
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‖1− en‖22 =
Tr(1− en)

2n(p+q)

=
1

2n(p+q)

∑

λ`p, µ`q

(sλ(12n)sµ(12n)− dimπ{µ;λ}) dimKλ dimKµ,

the convergence follows from Lemma 3.5. ¤

Remark 4.2. We see from Theorem 1.5 that for an arbitrary II1 factor R the von
Neumann algebra

{u⊗p ⊗ (JuJ)⊗q ∈ R⊗p ⊗R′⊗q; u ∈ U(R)}′′

is always a II1 factor. We show in Appendix that the assertion of Theorem 4.1 is true
for arbitrary infinite dimensional factors.

Theorem 4.3. Let A be a unital C∗-algebra, and let τ1, τ2, . . . , τm ∈ ex T (A)
be distinct extreme traces. Let (πi,Hi,Ωi) be the GNS triple for τi, and let Ji be the
canonical conjugation defined by Jiπi(x)Ωi = πi(x)∗Ωi. We assume that Ri = πi(A)′′ is
isomorphic to the hyperfinite II1 factor for every 1 ≤ i ≤ m. Let (pi, qi) ∈ Z≥0 × Z≥0 \
(0, 0), and let

π(u) =
m⊗

i=1

(πi(u)⊗pi ⊗ (Jiπi(u)Ji)⊗qi).

Then we have

{π(u);u ∈ U(A)}′′ =
m⊗

i=1

((R⊗pi

i )Spi ⊗ (R′⊗qi

i )Sqi ).

In particular, we have
∏m

i=1 τpi

i τi
qi ∈ exChar(U(A)).

Proof. Let zi ∈ A∗∗ be the central cover of the representation πi (see [29, 3.8.1]),
and let u ∈ U(A). Thanks to the Kaplansky density theorem, there exists a net {uα}α∈Λ

in U(A) converging to ziu + 1− zi in U(A∗∗) in the strong operator topology. Then we
have the following strong limit:

lim
α

πj(uα)⊗pj ⊗ (Jjπj(uα)Jj)⊗qj =

{
πj(u)⊗pj ⊗ (Jjπj(u)Jj)⊗qj , j = i,

1, j 6= i.

Thus the statement follows from Theorem 4.1. ¤

5. Unital simple AF algebras.

Throughout this section, we fix an infinite dimensional unital simple AF algebra
A = lim−→An, An =

⊕Nn

i=1 An,i with An,i
∼= Mdn,i

(C). We assume that An ⊂ An+1 is
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a unital embedding. Let Gn = U(An) and Gn,i = U(An,i) ∼= U(dn,i). Then Gn =
Gn,1×Gn,2×· · ·×Gn,Nn

, and U→(A) is the inductive limit of {Gn}∞n=1 We may assume
G0 = {e}.

It is easy to show the following two lemmas.

Lemma 5.1. Let mn = inf1≤i≤Nn
dn,i. Then limn→∞mn = ∞.

Lemma 5.2. Let {δn}∞n=1 be a sequence of continuous homomorphisms δn : Gn → T
such that the restriction of δn+1 to Gn is δn for any n ∈ N. Then there exists ϕ ∈
Hom(K0(A),Z) satisfying δn = detϕ|Gn

.

Proof of Theorem 1.2, (1). Thanks to Theorem 4.3, we already know that
the character detϕ(

∏p
i=1 τi)(

∏q
j=1 τ ′j) is indecomposable for any ϕ ∈ Hom(K0(A),Z) and

τi, τ
′
j ∈ ex T (A)
Let χ ∈ exChar(U→(A)). Then Theorem 2.4 shows that there exist indecomposable

characters χn ∈ exChar(Gn) for n ≥ 0 such that χn|Gn−1 contains χn−1 and

χ(U) = lim
n→∞

χn(U), U ∈ U→(A),

where convergence is uniform on Gm for every m. We denote by Qn,i the projection of An

onto An,i. Then there exists χn,i ∈ exChar(Gn,i) such that χn(U) =
∏Nn

i=1 χn,i(Qn,i(U)).
Identifying Gn,i with U(dn,i), we see that there exist signatures Λ(n,i) ∈ Û(dn,i) with
χn,i = χΛ(n,i) .

Thanks to Lemma 5.1, we see that An has a unital copy of either M2(C), M3(C) or
M2(C)⊕M3(C) for large n. Thus we may assume that A1 is of one of the above forms.
If A1 = M2(C), we set

F =
(

1 0
0 −1

)
∈ A1,

if A1 = M3(C), we set

F =




1 0 0
0 −1 0
0 0 0


 ∈ A1,

and if A1 = M2(C)⊕M3(C), we set

F =
(

1 0
0 −1

)
⊕




1 0 0
0 −1 0
0 0 0


 ∈ A1.

In any case, we have Tr(Qn,i(F 2)) ≥ 2dn,i/3, and the conclusion of Lemma 3.10 applies
to χΛn,i

(e
√−1tQn,i(F )).

As in Section 3.3, we define the p-th moments of the probability distributions on Z
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given by the Fourier expansions of χn(e
√−1tF ) and χn,i(e

√−1tQn,i(F )) by

m(n, p) =
1√−1

p
dp

dtp
χn(e

√−1tF )
∣∣∣∣
t=0

,

m(n, i, p) =
1√−1

p
dp

dtp
χn,i(e

√−1tQn,i(F ))
∣∣∣∣
t=0

.

Since χn,i(e
√−1tQn,i(F )) is an even function, we have

m(n, 2) =
Nn∑

i=1

m(n, i, 2),

m(n, 4) =
Nn∑

i=1

m(n, i, 4) + 6
∑

1≤i<j≤Nn

m(2, i, 2)m(2, j, 2).

Thus Lemma 3.10 and Lemma 5.1 show that when n is sufficiently large, we have

m(n, 4) ≤ C1

Nn∑

i=1

m(n, i, 2)2 + C2

Nn∑

i=1

m(n, i, 2) + 3m(n, 2)2

≤ (C1 + 3)m(n, 2)2 + C2m(n, 2).

Now Lemma 2.5 implies that {m(n, 2)}∞n=1 is bounded, say m(n, 2) ≤ C for all n ≥ 1,
and Lemma 3.8 implies that there exists n0 ≥ 1 such such for any n ≥ n0, we have

Nn∑

i=1

Tr(Λ(n,i)ρdn,i
)

dn,i
=

Nn∑

i=1

Tr(Λ̂(n,i)ρdn,i
)

dn,i
≤ C.

Let Λ(n,i) = (Λ(n,i)
1 ,Λ(n,i)

2 , . . . ,Λ(n,i)
dn,i

). When Λ(n,i)
1 = Λ(n,i)

dn,i
, we set ln,i = 0, and

otherwise we set ln,i = max{j; Λ(n,i)
j > Λ(n,i)

dn,i+1−j}. Then we have ln,i ≤ dn,i/2. For
n ≥ n0,

C ≥
Nn∑

i=1

Tr(Λ(n,i)ρdn,i)
dn,i

=
Nn∑

i=1

1
dn,i

ln,i∑

j=1

(
dn,i + 1

2
− j

)(
Λ(n,i)

j − Λ(n,i)
dn,i+1−j

)

≥
Nn∑

i=1

1
dn,i

ln,i∑

j=1

(
dn,i + 1

2
− j

)
≥

Nn∑

i=1

(dn,i − ln,i)ln,i

2dn,i
≥ 1

4

Nn∑

i=1

ln,i.

We choose n1 ≥ n0 so that for any n ≥ n1 and i we have 16C < dn,i. Assume
n ≥ n1. Then ln,i < dn,i/4 for all i. Let an,i = Λ(n,i)

ln,i+1. Then we have Λ(n,i)
j = an,i

for any ln,i + 1 ≤ j ≤ dn,i − ln,i, and there exist partitions λ(n,i) and µ(n,i) with ln,i =
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max{l(λ(n,i)), l(µ(n,i))} satisfying

χn,i(U) = (det U)an,iχ{µ(n,i);λ(n,i)}(U), U ∈ U(An,i).

Setting

δn(U) =
Nn∏

i=1

(detQn,i(U))an,i , U ∈ U(An),

χ′n(U) =
Nn∏

i=1

χ{µ(n,i);λ(n,i)}(Qn,i(U)), U ∈ U(An).

we get χn = δnχ′n. We have

C ≥
Nn∑

i=1

1
dn,i

ln,i∑

j=1

(
dn,i + 1

2
− j

)(
λ

(n,i)
j + µ

(n,i)
j

)

≥
Nn∑

i=1

1
dn,i

ln,i∑

j=1

(
dn,i + 1

2
− ln,i

)(
λ

(n,i)
j + µ

(n,i)
j

) ≥ 1
4

Nn∑

i=1

ln,i∑

j=1

(
λ

(n,i)
j + µ

(n,i)
j

)

≥ 1
4

Nn∑

i=1

(|λ(n,i)|+ |µ(n,i)|).

We set pn =
∑Nn

i=1|λ(n,i)| and qn =
∑Nn

i=1|µ(n,i)|, which are bounded by 4C.
We claim that the restriction δn+1|Gn of δn+1 to Gn coincides with δn for any

n ≥ n1, and in consequence the restriction χ′n+1|Gn
contains χ′n. Indeed, the restriction

χ′n+1|Gn
contains (δn+1|Gn

)−1δnχ′n as χn+1|Gn
contains χn. On the other hand, we have

pn + qn ≤ 4C and pn+1 + qn+1 ≤ 4C. Now the claim follows from Lemma 3.2 and
16C < dn,i.

Since δn+1|Gn = δn for all n ≥ n1, there exists ϕ ∈ Hom(K0(A),Z) satisfying
δn(U) = detϕU for any U ∈ Gn with n ≥ n1. Lemma 3.2 implies that two sequences
{pn}∞n=n1

and {qn}∞n=n1
are bounded and increasing, and hence eventually constants.

Thus there exist non-negative integers p, q, and n2 ≥ n1 satisfying pn = p and qn = q

for any n ≥ n2.
We assume n ≥ n2 and set In = {i; |λ(n,i)| + |µ(n,i)| 6= 0}. Then # In ≤ 4C. Let

C ′λ,µ be as in Lemma 3.5, and let C ′ = max{C ′λ,µ; |λ| ≤ p, |µ| ≤ q}. Let τn,i be the
normalized trace of An,i. Then Lemma 3.5 implies

∣∣∣∣χ′n(U)−
∏

i∈In

τn,i(Qn,i(U))|λ
(n,i)|τn,i(Qn,i(U))

|µ(n,i)|
∣∣∣∣ ≤

4CC ′

mn
,

for any U ∈ Gn. Thus for any U ∈ U→(A), we have
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χ(U) = detϕ U lim
n→∞

∏

i∈In

τn,i(Qn,i(U))|λ
(n,i)|τn,i(Qn,i(U))

|µ(n,i)|
.

Note that we can extend τn,i ◦Qn,i to a state of A. Thus there exist states ωn,j ∈ S(A),
ω′n,k ∈ S(A) for 1 ≤ j ≤ p, 1 ≤ k ≤ q whose restrictions to An are tracial states such
that

χ(U) = detϕ U lim
n→∞

p∏

j=1

ωn,i(U)
q∏

k=1

ω′n,k(U).

Since any cluster points of {ωn,j}∞n=n2
and {ω′n,k}∞n=n2

in the weak* topology are tracial
states, there exist τj , τ

′
k ∈ T (A) for 1 ≤ j ≤ p, 1 ≤ k ≤ q satisfying

χ(U) = detϕ U

p∏

j=1

τj(U)
q∏

k=1

τ ′k(U).

Since χ is indecomposable, we conclude τj , τ
′
k ∈ ex T (A). ¤

Lemma 5.3. Let ϕ ∈ Hom(K0(A),Z). Then detϕ extends to a continuous homo-
morphism from U(A) to T if and only if ϕ = 0.

Proof. For a projection e ∈ ⋃∞
n=1 An and z ∈ T, we have detϕ(ze + 1A − e) =

zϕ([e]). Thus if detϕ continuously extends to U(A), the set {ϕ([e]); e ∈ Proj(A)} is
bounded. Thus mn > sup{|ϕ([e])|; e ∈ Proj(A)} for sufficiently large n. Since ϕ([1An,i

])
is a multiple of dn,i, we have ϕ([e]) = 0 for any e ∈ Proj(An) for sufficiently large n,
which shows ϕ = 0. ¤

Proof of Theorem 1.2, (2). Since U→(A) is dense in U(A) and the embedding
map of U→(A) into U(A) is continuous, the statement follows from (1) and Lemma 5.3.

¤

Example 5.4. Let A be the CAR algebra. Then U→(A) is the group U(2∞)
discussed in [6]. In this case T (A) is a singleton {τ}, and Hom(K0(A),Z) = {0} as
K0(A) ∼= Z[1/2]. Thus

exChar(U(2∞)) = ex CharU(A) = {τpτ q; p, q ∈ Z≥0}.

Our argument also works for the inductive limit group lim−→SU(2n) with the inclusion
map

SU(2n) 3 U 7→
(

U 0
0 U

)
∈ SU(2n+1),

and the conclusion is the same.
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Example 5.5. For any irrational number 0 < θ < 1, there exists a unital simple
AF algebra Bθ with

(K0(Bθ),K0(Bθ)+, [1]) ∼= (Z+ θZ, (Z+ θZ) ∩ [0,∞), 1),

(see [7, VI.3]). In this case T (Bθ) is a singleton {τ}, and Hom(K0(Bθ),Z) ∼= Z2. Thus
we get ex Char(U→(Bθ)) ∼= Z2 × Z2

≥0 and exChar(U(Bθ)) ∼= Z2
≥0.

In the rest of this section, we discuss integral decomposition of characters in
Char(U(A)).

Lemma 5.6. Let p, q be non-negative integers, and let ϕ ∈ Hom(K0(A),Z). We
set

exp,q
ϕ Char(U→(A)) =

{
detϕ

( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
∈ Char(U→(A)); τi, τ

′
j ∈ ex T (A)

}
.

(1) Let χ ∈ exp,q
ϕ Char(U→(A)). An indecomposable character of Gn is contained in χ|Gn

if and only if it is of the form detϕ

∏n
i=1 χ{µ(n,i),λ(n,i)} ◦Qn,i with

Nn∑

i=1

|λ(n,i)| ≤ p,

Nn∑

i=1

|µ(n,i)| ≤ q,

Nn∑

i=1

|λ(n,i)| −
Nn∑

i=1

|µ(n,i)| = p− q.

(2) exp,q
ϕ Char(U→(A)) is a Borel subset of exChar(U→(A)).

Proof. (1) The statement follows from [22, (3.4)] and the fact that any trace in
T (A) is faithful as A is simple.

(2) Pick χ ∈ exp,q
ϕ (Char(U→(A))), and set Jp,q

ϕ = kerπtrχ
, which is a primitive ideal

of A(U→(A)). (1) and Lemma 2.3 show that Jp,q
ϕ does not depend on the choice of χ.

We claim

min{p,q}⋃

i=0

exp−i,q−i
ϕ Char(U→(A)) = {χ ∈ exChar(U→(A)); ẑJp,q

ϕ
(τχ) = 0}, (5.1)

which would imply the statement.
Let ω ∈ exp−i,q−i

ϕ Char(U→(A)). (1) implies the inclusion relation Jp,q
ϕ ⊂ Jp−i,q−i

ϕ ,

and hence 0 ≤ ẑp,q
ϕ ≤ ̂zp−i,q−i

ϕ ≤ 1. Since ̂zp−i,q−i
ϕ (trω) = 0, we get ẑp,q

ϕ (trω) = 0, and ω

belongs to the right-hand side of (5.1).
Assume that ω belongs to the right-hand side of (5.1) conversely. Then the trace τω

factors through the primitive quotient A(U→(A))/Jp,q
ϕ whose structure is described in

Lemma 2.3. Thus the Vershik–Kerov ergodic method gives a sequence of indecomposable
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characters ωn ∈ exChar(Gn) converging ω such that each ωn is as in (1). Now the proof
of Theorem 1.2,(1) shows ω ∈ ⋃min{p,q}

i=0 exp−i,q−i
ϕ Char(U→(A)). ¤

We set

ex0 Char(U→(A)) =
⋃

p,q≥0

exp,q
0 Char(U→(A)).

Lemma 5.7. A character ω ∈ Char(U→(A)) extends to a character of U(A) if and
only if there exists a probability measure ν on ex0 Char(U→(A)) satisfying

ω =
∫

ex0 Char(U→(A))

χdν(χ).

Proof. It is easy to see that ω∈Char(U→(A)) with a measure ν as in the state-
ment continuously extends to U(A).

Let ω be a character of U→(A) with the integral decomposition

ω =
∫

ex Char(U→(A))

χdν(χ) =
∑

ϕ∈Hom(K0(A),Z)

∑

p,q≥0

∫

exp,q
ϕ Char(U→(A))

χdν(χ),

with ν(exp,q
ϕ Char(U→(A))) > 0 for some ϕ ∈ Hom(K0(A),Z) \ {0} and p, q ≥ 0. For any

projection e in
⋃∞

n=1 An and z ∈ C with |z| = 1, we have

1−<ω(ze + 1− e) ≥
∫

exp,q
ϕ Char(U→(A))

(1−<χ(ze + 1− e))dν(χ).

We assume that ω extends continuously to U(A), and deduce contradiction.
Since ω is norm continuous, for any 0 < ε < ν(exp,q

0 Char(U→(A))), there exists δ >

such that whenever z ∈ T satisfies |z − 1| < δ, we have 1−<ω(ze + 1− e) < ε. For any
χ ∈ exp,q

ϕ Char(U→(A)), there exist τi, τ
′
j ∈ ex T (A) satisfying

χ(ze + 1− e) = zϕ([e])

p∏

i=1

τi(ze + 1− e)
q∏

j=1

τ ′j(ze + 1− e).

Thus there exists 0 < δ1 < δ, depending only on p and q, such that if |z − 1| < δ1, then

<
p∏

i=1

τi(ze + 1− e)
q∏

j=1

τ ′j(ze + 1− e) > 1/2.

Since ϕ is not trivial, we can find e and z satisfying |z − 1| < δ1 and zϕ([e]) = −1. For
such e and z, we have
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ε > 1−<ω(ze + 1− e) ≥
∫

exp,q
ϕ Char(U→(A))

dν(χ) = ν(exp,q
ϕ Char(U→(A))),

which is contradiction. ¤

Since U→(A) is dense in U(A) and the embedding U→(A) ⊂ U(A) is continuous, we
identify χ ∈ Char(U(A)) with its restriction to U→(A). Thanks to Lemma 5.7, we can
identify ex0 Char(U→(A)) with ex Char(U(A)), and regard the latter as a Borel space.

Corollary 5.8. For any character ω ∈ Char(U(A)), there exists a unique prob-
ability measure ν on exChar(U(A)) satisfying ω(g) =

∫
ex Char(U(A))

χ(g)dν(χ) for any
g ∈ U(A).

Proof. Lemma 5.7 shows that for any ω ∈ Char(U(A)), there exists a unique
probability measure ν on exChar(U(A)) satisfying ω(g) =

∫
ex Char(U(A))

χ(g)dν(χ) for
any g ∈ U→(A). Now the statement follows from the bounded convergence theorem. ¤

For later use, we set

exp,q Char(U(A)) =
{( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
; τi, τ

′
j ∈ ex T (A)

}
,

which is a Borel subset of exChar(U(A)).

6. Unital simple C∗-algebras of tracial topological rank 0.

Throughout this section, we fix a separable infinite dimensional unital simple exact
C∗-algebra A of tracial topological rank 0. The reader is referred to [24] for the definition
of tracial topological rank and the basics of this class of C∗-algebras. We recall that A

has real rank 0, stable rank 1, and that K0(A) is weakly unperforated. In consequence,
we can identify U(A)/U(A)0 with K1(A), and two projections in A have the same K0-
class if and only if they are Murray–von Neumann equivalent. Since A is exact, every
quasi-trace on A is a trace (see [13] for the proof), and the trace space T (A) is identified
with the state space of the scaled ordered group (K0(A),K0(A)+, [1]) (see [2, Theorem
6.9.1]).

When K0(A) is torsion-free, it is unperforated, and it is a simple dimension group
(see [24, Proposition 3.3.7, Theorem 3.3.18], [7, Theorem IV.7.2]). Thus there exists a
unital embedding of a unital simple AF algebra B into A that induces an isomorphism
of the K0-groups. The restriction map from T (A) to T (B) is a bijection.

Lemma 6.1. For any u ∈ U(A), there exists a sequence {un}∞n=1 in U(A)0 such
that the sequence {‖u− un‖τ}∞n=1 converges to 0 for any τ ∈ T (A).

Proof. We can choose a decreasing sequence of non-zero projections {en}∞n=0 in
A satisfying e0 = 1, and [en] ≥ 2[en+1] in K0(A) for any n. Indeed, this is possible
because enAen has tracial topological rank 0 too and has a subalgebra isomorphic to
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M2(C). Since A has tracial topological rank 0, there exist a projection pn ∈A, a finite
dimensional C∗-subalgebra Cn ⊂ pnApn with pn ∈ Cn, and vn ∈ Cn satisfying [1−pn] ≤
[en], ‖[u, pn]‖ < 1/n, and ‖pnupn − vn‖ < 1/n. We get a desired un by perturbing
1− pn + vn. ¤

Lemma 6.1 shows that for any finite factor representation (π,H) of A, the sequence
{π(un)}∞n=1 converges to π(u) in the strong operator topology. Since A is tracial AF, the
factor π(A)′′ is hyperfinite. Thus Theorem 4.3 shows the following.

Corollary 6.2. Let τi, τ
′
j ∈ ex T (A) for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Then

( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
∈ exChar(U(A)0).

Lemma 6.3. Assume that K0(A) is torsion free. Then for any ω ∈ Char(U(A)0),
we have ω(vuv∗) = ω(u) for any u ∈ U(A)0 and v ∈ U(A).

Proof. Let ω ∈ Char(U(A)0). We fix a unital embedding of a simple AF algebra
B into A that induces an isomorphism on the K0-groups. By [24, Theorem 4.2.8], for
any ε > 0 and any u ∈ U(A)0, there exists u′ ∈ U(A)0 with finite spectrum satisfying
‖u − u′‖ < ε. Let u′ =

∑n
i=1 zipi be the spectral decomposition of u′ with zi ∈ T and

pi ∈ Proj(A). Since K0(A) = K0(B), there exists a partition of unity 1 =
∑n

i=1 qi in
B consisting of projections satisfying [pi] = [qi], and there exists w ∈ U(A) satisfying
wpiw

∗ = qi for all i. Choosing a unitary v ∈ U(q1Aq1) with [v + 1 − q1] = −[w] and
replacing w with (v+1−q1)w if necessary, we may further assume w ∈ U(A)0. Therefore
there exist wn ∈ U(A)0 and un ∈ U(B) such that {‖wnuw∗n − un‖}∞n=1 converges to 0,
and so ω(u) = limn→∞ ω(un).

Since the restriction map from T (A) to T (B) is an affine isomorphism, any τ ∈ T (B)
has a unique extension τ̃ ∈ T (A). Let

ω|U(B) =
∫

ex Char(U(B))

χdν(χ) =
∑

p,q≥0

∫

exp,q Char(U(B))

χdν(χ)

be the integral decomposition of ω|U(B). For any χ ∈ exp,q(Char(U(B))), there exist
τi, τ

′
j ∈ ex T (B) for 1 ≤ i ≤ p, 1 ≤ j ≤ q satisfying χ = (

∏p
i=1 τi)(

∏q
j=1 τ ′j). We set

χ̃ = (
∏p

i=1 τ̃i)(
∏q

j=1 τ̃ ′j), whose restriction to U(A)0 is in ex Char(U(A)0). By bounded
convergence theorem, we have

ω(u) = lim
n→∞

ω(un) = lim
n→∞

∫

ex Char(U(B))

χ̃(un)dν(χ) =
∫

ex Char(U(B))

χ̃(u)dν(χ).

Since χ̃(vuv∗) = χ̃(u) holds for any u ∈ U(A)0 and v ∈ U(A), we get ω(vuv∗) = ω(u). ¤

In the above proof, the sequence {un}∞n=1 depends only on u, and it does not depend
on ω. This means that ω is completely determined by ω|U(B), and the integral expression



1258 T. Enomoto and M. Izumi

ω(u) =
∫

ex Char(U(B))

χ̃(u)dν(χ)

is unique. Therefore we get

Corollary 6.4. Assume that K0(A) is torsion free. Then

exChar(U(A)0) =
{( p∏

i=1

τi

)( q∏

j=1

τ ′j

)
; τi, τ

′
j ∈ ex T (A), p, q ≥ 0

}
.

Proof of Theorem 1.3. Let χ ∈ exChar(U(A)), and let (π,H,Ω) be the cyclic
representation of U(A) associated with χ. Let M = π(U(A))′′, and let tr(x) = 〈xΩ,Ω〉
for x ∈ M . Then M is a finite factor and tr is a trace on M . We first claim that
N = π(U(A)0)′′ is a factor too.

Let z ∈ Z(N) be a non-zero central projection. For u ∈ U(A)0, we set ω(u) =
tr(zπ(u))/ tr(z). Then ω ∈ Char(U(A)0), and we have ω(vuv−1) = ω(u) for any u ∈
U(A)0 and v ∈ U(A) thanks to Lemma 6.3. This implies

tr(zπ(u)) = tr(zπ(vuv−1)) = tr(π(v−1)zπ(v)π(u)),

and tr((z − π(v−1)zπ(v))π(u)) = 0. Note that z − π(v−1)zπ(v) ∈ N as v normalizes
U(A)0, and hence N . Since spanπ(U(A)0) is dense in N in the weak operator topology
and tr is faithful on N , we get z = π(v−1)zπ(v) for any v ∈ U(A). This implies that z

is in the center of M , and so z = 1. Thus N is a factor.
Since π|U(A)0 is a finite factor representation, we have χ|U(A)0 ∈ exChar(U(A)0),

and π|U(A)0 is quasi-equivalent to the cyclic representation associated with χ|U(A)0 ∈
exChar(U(A)0). Assume N = C. Then χ|U(A)0 is multiplicative, and Corollary 6.4
implies that χ|U(A)0 is trivial. Thus χ comes from

exChar(U(A)/U(A)0) = ex Char(K1(A)) = K̂1(A).

Assume N 6= C. Then Corollary 6.4 implies that there exist distinct extreme traces
τ1, τ2, . . . , τm ∈ ex T (A) and non-negative integers pi, qi with

∑m
i=1(pi +qi) 6= 0 satisfying

χ|U(A)0 =
∏m

i=1 τpi

i τi
qi |U(A)0 . Let (πi,Hi,Ωi) be the GNS triple for τi, and let Ji be the

canonical conjugation given by Jiπi(x)Ωi = πi(x)∗Ωi. For u ∈ U(A), we set

σ(u) =
m⊗

i=1

πi(u)⊗pi ⊗ (Jiπi(u)Ji)⊗qi .

Then π|U(A)0 and σ|U(A)0 are quasi-equivalent. Lemma 6.1 implies that σ(U(A)0)′′ =
σ(U(A))′′, which we denote by P . Then there exists an isomorphism θ from P onto N

satisfying θ ◦ σ(u) = π(u) for any u ∈ U(A)0.
For v ∈ U(A), we set γ(v) = θ ◦ σ(v−1)π(v). We claim that γ is a homomorphism

from U(A) to U(N ′ ∩M). Indeed, since U(A)0 is a normal subgroup of U(A), we have
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the following for any u ∈ U(A)0 and v ∈ U(A):

γ(v)π(u)γ(v)−1 = θ ◦ σ(v−1)π(vuv−1)θ ◦ σ(v)

= θ ◦ σ(v−1)θ ◦ σ(vuv−1)θ ◦ σ(v) = θ ◦ σ(u) = π(u),

which shows that γ(v) ∈ N ′ ∩ M . Let v, w ∈ U(A). Then we have γ(v)θ ◦ σ(w−1) =
θ ◦ σ(w−1)γ(v) as γ(v) ∈ N ′ ∩M and θ ◦ σ(w) ∈ N . Thus

γ(v)γ(w) = γ(v)θ ◦ σ(w−1)π(w) = θ ◦ σ(w−1)γ(v)π(w) = γ(vw),

which shows that γ is a homomorphism.
Since γ(u) = 1 for any u ∈ U(A)0, the homomorphism γ : U(A) → N ′ ∩M factors

through U(A)/U(A)0 = K1(A), and γ(U(A))′′ is commutative. Since M is a factor and
it is generated by N and γ(U(A)), we obtain γ(U(A)) ⊂ T. Thus there exists ψ ∈ K̂1(A)
satisfying γ(v) = ψ([v]) for any v ∈ U(A). Now we have

χ(v) = tr(π(v)) = tr(θ ◦ σ(v)γ(v)) = ψ([v]) tr(θ ◦ σ(v)).

Since tr ◦θ is a unique trace on P , we conclude

χ(v) = ψ([v])
m∏

i=1

τpi

i (v)τi(v)qi . ¤

Example 6.5. Let 0 < θ < 1 be an irrational number. The irrational rotation
algebra Aθ is the universal C∗-algebra generated by two unitaries u, v satisfying the
relation uv = e2π

√−1θvu (see [7, Chapter VI]). It is a separable nuclear simple C∗-
algebra with a unique tracial state and with K-theoretical data

(K0(A),K0(A)+, [1],K1(A)) ∼= (Z+ θZ, (Z+ θZ) ∩ [0,∞), 1,Z2).

Elliott–Evans [11] showed that Aθ is an AT algebra of real rank 0, and hence it has
tracial topological rank 0 (see [24, Theorem 4.3.5]). Thus exChar(U(Aθ)0) ∼= Z2

≥0 and
exChar(U(Aθ)) ∼= T2 × Z2

≥0. One might wonder if U(Aθ)0 is isomorphic to the unitary
group U(B) of an AF algebra B, but this is never the case. Indeed, on one hand the
homotopy group π2(U(B)) is trivial for any AF algebra B because π2(U(d)) is trivial for
any d ≥ 1. On the other hand we have π2(U(Aθ)0) ∼= K1(Aθ) ∼= Z2 (see [38, Theorem
II]).

7. Stable simple AF algebras.

The purpose of this section is to prove Theorem 1.4.
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Lemma 7.1.

lim
t→+∞

e−t
∞∑

n=1

∣∣∣∣
tn−1

(n− 1)!
− tn

n!

∣∣∣∣ = 0.

Proof. Let [t] be the integer part of t > 0. Then

∞∑
n=1

∣∣∣∣
tn−1

(n− 1)!
− tn

n!

∣∣∣∣ = −
[t]∑

n=1

(
tn−1

(n− 1)!
− tn

n!

)
+

∞∑

n=[t]+1

(
tn−1

(n− 1)!
− tn

n!

)

= −1 +
2t[t]

[t]!
.

Letting at = t− [t], we get the following estimate from the Stirling formula:

e−tt[t]

[t]!
=

e−[t]−at([t] + at)[t]

[t]!
∼ e−[t]−at([t] + at)[t]

[t][t]e−[t]
√

2π[t]
=

e−at(1 + at/[t])[t]√
2π[t]

∼ 1√
2πt

. ¤

Lemma 7.2. Let a = (a1, a2, . . . , am) ∈ Rm
>0. For x, y ∈ Zm

≥0, we introduce a
transition probability from x to y by

pa(x, y) =





m∏

i=1

e−aiayi−xi

i

(yi − xi)!
, yi − xi ≥ 0, ∀i,

0, otherwise,

and a Markov operator P acting on `∞(Zm
≥0) by

P (f)(x) =
∑

y∈Zm
≥0

pa(x, y)f(y).

Then the tail boundary for P is trivial, that is, if {fn}∞n=1 is a bounded sequence in
`∞(Zm

≥0) satisfying P (fn+1) = fn for any n ∈ N, then there exists a constant c satisfying
fn = c for any n ∈ N.

Proof. Since {e−aax/x!}∞x=0 is the Poisson distribution, the k-step transition
probability p

(k)
a (x, y) is given by pka(x, y). We denote by {ei}m

i=1 the canonical basis of
Rm. Let C = supn∈N ‖fn‖∞. Then

|fn(x)− fn(x + ei)| = |P k(fn+k)(x)− P k(fn+k)(x + ei)|

≤
∑

y∈Zm
≥0

|pka(x, y)− pka(x + ei, y)||fn+k(y)|
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≤ C
∑

z∈Zm
≥0

|pka(x, x + z)− pka(x + ei, x + z)|

= C
∑

z∈Zm
≥0

|pka(0, z)− pka(ei, z)|

= Ce−kai

(
1 +

∞∑

l=1

∣∣∣∣
(kai)l

l!
− (kai)l−1

(l − 1)!

∣∣∣∣
)

.

Letting k →∞, we get fn(x) = fn(x + ei), and fn is a constant function. ¤

Let A be a stable simple AF algebra not isomorphic to K. Then we may assume
A = B ⊗K with an infinite dimensional unital simple AF algebra B. We can express B

and K as B = lim−→Bn with finite dimensional Bn and K = lim−→Mn(C). We may assume
that Bn ⊂ B is a unital inclusion. Then we have

U→(A) = lim−→U→(B ⊗Mn(C)).

We set Gn = U→(B⊗Mn(C)). For n < m, we denote by Φn,m the connecting map from
Gn to Gm given by Φn,m(u) = u + (1m − 1n) where 1n is the unit of B ⊗Mn(C). We
denote by Φn,∞ the inclusion map from Gn to U(A) given by Φn,∞(u) = u + 1− 1n.

Assume that TW (A) is finite dimensional. Then exT (B) is a finite set, and we
denote ex T (B) = {τi}s

i=1. Let Tr and Trn be the traces of K and Mn(C) respectively.
We set

τi,n =
1
n

τi ⊗ Trn.

Then ex T (B ⊗Mn(C)) = {τi,n}s
i=1.

Lemma 7.3. Let A be a stable simple AF algebra not isomorphic to K. If the affine
space TW (A) is finite dimensional, then χτ,τ ′ ∈ exChar(U→(A)) for any τ, τ ′ ∈ TW (A).

Proof. We use the notation as above. Then there exist non-negative numbers ai

and bi such that τ =
∑s

i=1 aiτi ⊗ Tr and τ ′ =
∑s

i=1 biτi ⊗ Tr. We set I = {i; ai 6= 0},
J = {j; bj 6= 0}.

For any u ∈ Gn, we have

χτ,τ ′(Φn,∞(u)) =
∏

i∈I

enaiτi,n(u−1n)
∏

j∈J

enbjτj(u
∗−1n)

=
∏

i∈I

( ∞∑

k=0

(nai)ke−nai

k!
τi,n(u)k

) ∏

j∈J

( ∞∑

l=0

(nbj)le−nbj

l!
τj,n(u)

l
)

=
∑

(x,y)∈ZI
≥0×ZJ

≥0

an(x)bm(y)
∏

i∈I

τi,n(u)xi

∏

j∈J

τj,n(u)
yi

.
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where

an(x) =
∏

i∈I

(nai)xie−nai

xi!
, bn(y) =

∏

j∈J

(nbj)yj e−nbj

yj !
.

Let χ ∈ Char(U→(A)) be a character for which cχτ,τ ′ − χ is positive definite with
some constant c > 0. Then there exist unique positive numbers fn(x, y) for (x, y) ∈
Zs1+s2
≥0 such that 0 ≤ fn(x, y) ≤ c and

χ(Φn,∞(u)) =
∑

(x,y)∈ZI
≥0×ZJ

≥0

fn(x, y)an(x)bn(y)
∏

i∈I

τi,n(u)xi

∏

j∈J

τj,n(u)
yj

.

For n < m, we have χ(Φn,∞(u)) = χ(Φm,∞ ◦ Φn,m(u)), and the right-hand side is

∑

(z,w)∈ZI
≥0×ZJ

≥0

fm(z, w)am(z)bm(w)
∏

i∈I

τi,m(Φn,m(u))zi

∏

j∈J

τj,m(Φn,m(u))
wj

.

Since

∏

i∈I

τi,m(Φn,m(u))zi =
∏

i∈I

(
nτi,n(u) + m− n

m

)zi

=
∏

i∈I

( zi∑
xi=0

(
zi

xi

)
nxi(m− n)zi−xi

mzi
τi,n(u)xi

)

=
∑

x∈ZI
≥0, x≤z

∏

i∈I

(
zi

xi

)
nxi(m− n)zi−xi

mzi
τi,n(u)xi ,

where x ≤ z means xi ≤ zi for all i ∈ I, we obtain

χ(Φm,∞ ◦ Φn,m(u))

=
∑

0≤x≤z, 0≤y≤w

fm(z, w)
am(z)
an(x)

∏

i∈I

(
zi

xi

)
nxi(m− n)zi−xi

mzi

× bm(w)
bn(y)

∏

j∈J

(
wj

yj

)
nyj (m− n)wj−yj

mwj
an(x)bn(y)

∏

i∈I

τi,n(u)xi

∏

j∈J

τj,n(u)
yj

,

where x, z ∈ ZI
≥0 and y, w ∈ ZJ

≥0. Since

am(z)
an(x)

∏

i∈I

(
zi

xi

)
nxi(m− n)zi−xi

mzi
=

∏

i∈I

azi−xi
i (m− n)zi−xie−(m−n)ai

(zi − xi)!
,

we get
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fn(x, y) =
∑

z≥x, w≥y

fm(z, w)
∏

i∈I

{(m− n)ai}zi−xie−(m−n)ai

(zi − xi)!

×
∏

j∈J

{(m− n)bj}wj−yj e−(m−n)bj

(wj − yj)!
.

Now Lemma 7.2 implies that {fn}n=1 is a constant sequence consisting of a constant
function, and χ = χτ,τ ′ . This shows χτ,τ ′ ∈ exChar(U→(A)). ¤

Proof of Theorem 1.4. Let χ ∈ exChar(U→(A)). Applying the ergodic
method to lim−→Gn with Gn = U→(B ⊗ Mn(C)), we get a sequence of characters
χn ∈ exChar(Gn) such that {χm(Φn,m(u))}∞m=n converges to χ(Φn,∞(u)) uniformly
on Gn for every n, and χm ◦ Φn,m contains χn for any n < m. Theorem 1.2 shows that
there exist ϕn ∈ Hom(K0(A),Z) and pi,n, qi,n ∈ Z≥0 such that for any u ∈ Gn we have

χn(u) = detϕn
(u)

s∏

i=1

τi,n(u)pi,nτi,n(u)
qi,n

.

Moreover we have

χm(Φn,m(u)) = detϕm
(u)

s∏

i=1

(
nτi,n(u) + m− n

m

)pi,m
(

nτi,n(u) + m− n

m

)qi,m

= detϕm
(u)

s∏

i=1

(
1 +

nτi,n(u− 1n)
m

)pi,m
(

1 +
nτi,n(u∗ − 1n)

m

)qi,m

.

Thus {ϕm}∞m=1 is a constant sequence, say ϕ, and {pi,m}∞m=1 and {qi,m}∞m=1 are increas-
ing.

We claim that {pi,m/m}∞m=1 and {qi,m/m}∞m=1 are bounded. For u ∈ Gn, let zi =
τi,n(u− 1n). Then <zi ≤ 0, and <zi = 0 if and only if u = 1n. Since 1 + t ≤ et holds for
any t ∈ R, we have

∣∣∣∣
(

1 +
nzi

m

)pi,m
∣∣∣∣ =

(
1 +

2n<zi + |n2zi|2/m

m

)pi,m/2

≤ e(n<zi+|n2zi|2/2m)(pi,m/m).

Thus if there existed i such that either {pi,m/m}∞m=1 or {qi,m/m}∞m=1 is unbounded, we
would have

χ(v) =

{
1, v = 1,

0, v 6= 1,

which is not continuous. Thus {pi,m/m}∞m=1 and {qi,m/m}∞m=1 are bounded.
Choosing an appropriate subsequence, we may assume that the following limits exist:
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ai = lim
k→∞

pi,mk

mk
, bi = lim

k→∞
qi,mk

mk
, 1 ≤ ∀i ≤ s.

Thus

χ(Φn,∞(u)) = lim
m→∞

χm(Φn,m(u))

= lim
k→∞

detϕ(u)
s∏

i=1

(
1 +

nτi,n(u− 1n)
mk

)pi,mk
(

1 +
nτi,n(u∗ − 1n)

mk

)qi,mk

= detϕ(u)
s∏

i=1

eainτi,n(u−1n)ebinτi,n(u∗−1n).

Letting

τ =
s∑

i=1

aiτi ⊗ Tr, τ ′ =
s∑

i=1

biτi ⊗ Tr,

we get χ = detϕχτ,τ ′ , which finishes the proof. ¤

It is natural to ask whether we can drop the condition dimTW (A) < ∞ in Theorem
1.4.

Conjecture 7.4. Let A be a stable simple AF algebra not isomorphic to K. Then

exChar(U→(A)) = {detϕχτ,τ ′ ; τ, τ ′ ∈ TW (A), ϕ ∈ Hom(K0(A),Z)}.

8. Type II factors.

Our purpose in this final section is to prove Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5. We first show the statement for the hyperfinite II1 fac-
tor R0. We can choose a dense C∗-subalgebra A ⊂ R0 isomorphic to the CAR algebra.
Since U(A) is dense in U(R0) and the embedding map of U(A) with the norm topology
into U(R0) with the strong operator topology is continuous, the statement follows from
Theorem 1.2 and Corollary 5.8.

Let R be a general II1 factor now, and let τ be the unique tracial state on R. Then
there exists a unital embedding of the hyperfinite II1 factor R0 into R. We show that
every χ ∈ Char(U(R)) is uniquely decomposed as

χ =
∑

p,q∈Z≥0

cp,qτ
pτ q, cp,q ≥ 0,

which will finish the proof. Indeed, the restriction of χ to U(R0) is uniquely decomposed
as
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χ|U(R0) =
∑

p,q∈Z≥0

cp,qτ
p
R0

τR0
q, cp,q ≥ 0,

where τR0 is the restriction of τ to R0. As in the proof of Lemma 6.3, we can show
that for any u ∈ U(R) there exist sequences of unitaries un ∈ U(R0) and wn ∈ U(R)
satisfying ‖wnuw∗n − un‖ → 0, and we get

χ(u) = lim
n→∞

χ(un) = lim
n→∞

∑

p,q≥0

cp,qτ(un)pτ(un)
q

=
∑

p,q≥0

cp,qτ(u)pτ(u)
q
.

Since the decomposition is unique on U(R0), it is unique on U(R) too. ¤

Let M be a type II∞ factor with separable predual, and let τ∞ be a normal semifinite
trace on M . Then there exists a II1 factor R with a unique tracial state τ satisfying
M = R⊗B(`2) and τ∞ = τ ⊗Tr. Let {eij}i,j∈N be the canonical system of matrix units
of B(`2), and let en =

∑n
i=1 1⊗ eii ∈ M . Then τ∞(en) = n and {en}∞n=1 converges to 1

in the strong operator topology. We set Gn = U(enMen), which has the strong operator
topology, and embed it into U(M)1 by u 7→ u + 1 − en. We regard G = lim−→Gn as a
subgroup of U(M)1.

Lemma 8.1. The group G is dense in U(M)1.

Proof. Let u ∈ U(M)1, and let ε > 0. Then

‖(u− 1)(1− en)‖1 = ‖|u− 1|(1− en)‖1
≤ ‖|u− 1|1/2‖2‖|u− 1|1/2(1− en)‖2

= ‖u− 1‖1/2
1

√
τ∞(|u− 1|)− τ∞(|u− 1|1/2en|u− 1|1/2),

which converges to 0 as n tends to ∞. A similar estimate holds for ‖(1 − en)(u − 1)‖1,
and we can choose n satisfying ‖(u− 1)(1− en)‖1 < ε, and ‖(1− en)(u− 1)‖1 < ε. Thus

‖enuen + 1− en − u‖1
= ‖(1− en)(1− u)(1− en)− (1− en)uen − enu(1− en)‖1
≤ ‖(1− en)(1− u)(1− en)‖1 + ‖(1− en)(u− 1)en‖1 + ‖en(u− 1)(1− en)‖1
≤ 2‖(u− 1)(1− en)‖1 + ‖(1− en)(u− 1)‖1 < 3ε.

We would like to approximate enuen by a unitary in enMen. Since 1−t ≤ (1−t2)1/2

holds for 0 ≤ t ≤ 1,

τ∞(en − |enuen|) ≤ τ∞((en − enu∗enuen)1/2)

= τ∞({enu∗(1− en)uen}1/2) = τ∞({en(u∗ − 1)(1− en)(u− 1)en}1/2)

= ‖(1− en)(u− 1)en‖1 ≤ ‖(1− en)(u− 1)‖1 < ε.
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Let enuen = vn|enuen| be the polar decomposition. Since enMen is finite, we can choose
a partial isometry wn ∈ enMen such that w∗nwn = en− v∗nvn and wn + vn is a unitary in
U(enMen). Now we have

‖wn + vn + 1− en − u‖1
≤ ‖wn + vn − enuen‖1 + ‖enuen + 1− en − u‖1
< 3ε + ‖wn‖1 + ‖vn − vn|enuen|‖1 = 3ε + τ∞(en − v∗nvn) + τ∞(v∗nvn − |enuen|)
= 3ε + τ∞(en − |enuen|) < 4ε,

which shows that G is dense in U(M)1. ¤

Proof of Theorem 1.6. We equip G with the inductive limit topology. Then
essentially the same argument as in the proof of Theorem 1.4 shows

exChar(G) = {χa,b; a, b ≥ 0}.

Since the embedding map from G into U(M)1 is continuous and G is dense in U(M)1,
we get (1).

For 1 ≤ q < p and u, v ∈ U(M)q, we have

‖u− v‖p = τ∞(|u− v|p)1/p ≤ (‖|u− v|p−q‖τ(|u− v|q))1/p ≤ 21−q/p‖u− v‖q/p
q ,

which implies that the embedding of U(M)q into U(M)p is continuous. It is easy to
show that U(M)q is dense in U(M)p. Thus we can repeat a similar argument as above
replacing G with U(M)1 and U(M)2 for (2) and (3) respectively.

Let 1 < p ≤ 2. For u ∈ U(M)1, we have χa,b(u) = χc(u)χa−c,b−c(u) with c =
min{a, b}. Since χc is continuous on U(M)p, the character χa,b continuously extends to
U(M)p if and only if a− c = b− c = 0, and we get (2).

Let 2 < p. Then χa continuously extends to U(M)p if and only if a = 0, and we get
(3). ¤

9. Appendix.

In this appendix, we generalize Theorem 4.1 to arbitrary infinite dimensional factors.
The following proof was obtained through discussions with Reiji Tomatsu, and we would
like to thank him for his courtesy.

We first treat the case with q = 0 for arbitrary von Neumann algebras.

Theorem 9.1. Let M be a von Neumann algebra, and let p be a natural number.
Then

{u⊗p ∈ M⊗p; u ∈ U(M)}′′ = (M⊗p)Sp , (9.1)

where the symmetric group Sp acts on M⊗p as the permutations of tensor components.
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Proof. Let L be the left-hand side of (9.1). Then we have L ⊂ (M⊗p)Sp . Let α

be the Sp-action on M⊗p. We denote by E the conditional expectation from M⊗p onto
(M⊗p)Sp given by

E(x) =
1
p!

∑

σ∈Sp

ασ(x).

Let a ∈ M be a positive invertible. For z ∈ C, we set f(z) = (az)⊗p, which is a
M⊗p-valued entire function. Since f(it) ∈ L for any t ∈ R, we have a⊗p = f(1) ∈ L too.
For a general positive element a ∈ M , we have (a + ε1)⊗p ∈ L for any ε > 0, and we get
a⊗p ∈ L by letting ε → +0. Let a1, a2, . . . , ap ∈ M be positive. We introduce positive
parameters t1, t2, . . . , tp, and set a =

∑p
i=1 tiai. Then a⊗p ∈ L and

∑

σ∈Sp

aσ(1) ⊗ aσ(2) ⊗ · · · ⊗ aσ(p) =
∂p

∂t1∂t2 · · · ∂tp
a⊗p ∈ L.

Since every element in M is a linear combination of positive elements in M , the
above argument shows E(x) ∈ L for any x ∈ M⊗p in the algebraic tensor product, which
shows (M⊗p)Sp ⊂ L. ¤

We proceed to the general case, which never holds in the finite dimensional case.
Let H be a Hilbert space, and let H be its complex conjugate Hilbert space, that is, the
collection of symbols {ξ; ξ ∈ H} with linear operations ξ + η = ξ + η, cξ = cξ, and inner
product 〈ξ, η〉 = 〈η, ξ〉 for ξ, η ∈ H and c ∈ C. We denote the canonical antiunitary map
H 3 ξ 7→ ξ ∈ H by j. For a bounded operator x ∈ B(H) we denote x = jxj−1, and for
a subset X ⊂ B(H) we denote X = {x ∈ B(H); x ∈ X}. When M ⊂ B(H) is a factor,
so is M too.

Theorem 9.2. Let M be an infinite dimensional factor, and let p, q be non-negative
integers with (p, q) 6= (0, 0). Then

{u⊗p ⊗ u⊗q ∈ M⊗p ⊗M
⊗q

;u ∈ U(M)}′′ = (M⊗p)Sp ⊗ (M
⊗q

)Sq . (9.2)

The above statement was obtained for M = B(`2) by Kirillov [23] (see [27] for the
proof), and our argument gives a new proof as a particular case. For the hyperfinite
II1 factor, the statement follows from Theorem 4.1. Let Lp,q(M) and Np,q(M) be the
left-hand side and the right-hand side of (9.2) respectively. Then Lp,q(M) is a priori a
von Neumann subalgebra of Np,q(M).

When M is not of type I, Sakai’s theorem [30] shows that the (Sp ×Sq)-action on
M⊗p⊗M

⊗q
is outer. Thus Theorem 9.2 implies that Lp,q(M) is an irreducible subfactor

of M⊗p ⊗M
⊗q

with index p! q!.

Lemma 9.3. Let M be an infinite factor, and let e ∈ M be a projection not equiv-
alent to 1. Then there exists two projection f1, f2 ∈ M satisfying e = f1 − f2 and
f1 ∼ f2 ∼ 1 − f1 ∼ 1 − f2 ∼ 1, where the symbol ∼ means Murray–von Neumann
equivalence.
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Proof. We first claim that 1 − e is equivalent to 1. Indeed since 1 is infinite
and e is not equivalent to 1, it follows that 1 − e is infinite and 1 − e Â e. Thus
1− e Â (1− e) + e = 1, and the Cantor–Bernstein type theorem for projections implies
the claim. We take three projections e1, e2, e3 ∈ M satisfying e1 + e2 + e3 = 1 and
e1 ∼ e2 ∼ e3 ∼ 1. Thanks to the claim, we may assume e ≤ e3. Now f1 = e2 + e3 and
f2 = e2 + e3 − e satisfy the condition. ¤

Proof of Theorem 9.2. Throughout the proof, whenever we say that R is a
subfactor of M , we assume that R contains the identity of M . Let I(M) be the
set of hyperfinite II1 subfactors of M . Then for R ∈ I(M), we have Lp,q(M) ⊃
Lp,q(R) = Np,q(R) = Np,0(R) ⊗ N0,q(R). Thus to prove the statement, it suffices
to show

∨
R∈I(M) Np,0(R) = Np,0(M). Thanks to Theorem 9.1, this is equivalent to∨

R∈I(M) Lp,0(R) = Lp,0(M).
For any u ∈ U(M) and ε > 0, there exists v ∈ U(M) with finite spectrum satisfying

‖u − v‖ < ε. Thus it suffices to show that v⊗p ∈ ∨
R∈I(M) Lp,0(R) for any unitary

v ∈ U(M) with finite spectrum. If M is either of type II1 or of type III, then there exists
R ∈ I(M) with v ∈ R, and we are done.

Assume now that M is either of type I∞ or of type II∞. To finish the proof, it
suffices to show that v is a product of unitaries such that each of them is of the form
1 − e + λe with λ ∈ T and a projection e ∈ M satisfying e ∼ 1 − e ∼ 1. Indeed,
such a unitary belongs to a type I2 subfactor of M , and hence there exists R ∈ I(M)
containing it. Let v =

∑n
i=1 λipi be the spectral decomposition of v, where λi ∈ T

and {pi}n
i=1 are mutually orthogonal projections in M . Then we have v = v1v2 · · · vn

with vi = 1 − pi + λipi. If pi ∼ 1 − pi ∼ 1, there is nothing to do. If pi is not
equivalent to 1, Lemma 3 shows that there exist two projections f1, f2 ∈ M satisfying
pi = f1 − f2 and f1 ∼ f2 ∼ 1− f1 ∼ 1− f2 ∼ 1. Thus we get the desired decomposition
vi = (1− f1 + λif1)(1− f2 + λif2). The case where 1− pi is not equivalent to 1 can be
treated in the same way. ¤
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