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Abstract. Let K = Q(iv/Dg) be an imaginary quadratic field of dis-
criminant —Dg. We introduce a notion of an adelic Maass space S;lc\/l,k/g for

automorphic forms on the quasi-split unitary group U(2,2) associated with K
and prove that it is stable under the action of all Hecke operators. When D g

is prime we obtain a Hecke-equivariant descent from S}:/I_ k)2 to the space of

elliptic cusp forms Si_1(Dx, Xk ), where xi is the quadratic character of K.
For a given ¢ € Si_1(Dk, Xk ), a prime £ > k, we then construct (mod ¢) con-
gruences between the Maass form corresponding to ¢ and Hermitian modular
forms orthogonal to S}X{km whenever valy(L?'8(Symm?2¢, k)) > 0. This gives
a proof of the holomorphic analogue of the unitary version of Harder’s conjec-
ture. Finally, we use these congruences to provide evidence for the Bloch-Kato
conjecture for the motives Symm?p4(k — 3) and Symm?p,(k), where py de-
notes the Galois representation attached to ¢.

1. Introduction.

In 1990 Bloch and Kato [6] formulated a conjecture whose version relates the order of
a Selmer group of a motive M to a special value of an L-function of M. This is a very far-
reaching conjecture which is currently known only in a handful of cases, mostly concerning
the situations when M arises from a one-dimensional Galois representation. However, in
2004 Diamond, Flach and Guo proved a very strong result in a three-dimensional case
[12]. Indeed, they proved the Bloch-Kato conjecture for the adjoint motive ad® pgs (and
its Tate twist ad” ps(1)) of the f-adic Galois representation py attached to a classical
modular form ¢ without any restrictions on the weight (> 2) or the level of ¢. Their
proof was highly influenced by the ideas that were first applied by Taylor and Wiles in
their proof of Fermat’s Last Theorem ([42], [47]).

In 2009 the author proved a (weaker) result providing evidence for the conjecture for
a different Tate twist of ad® p, (more precisely for ad® ps(—1)x = Symm? py(k — 3) and
ad® ps(2)x = Symm? py(k)) for modular forms ¢ of any weight k& — 1 (with k divisible
by 4), level 4 and non-trivial character x [26]. The method was different from that of
[12] (but similar to the one used by Brown [9] who worked with Saito-Kurokawa lifts).
It relied on constructing congruences between a certain lift of ¢ (called the Maass lift) to
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the unitary group U(2,2) defined with respect to the field Q(7) and Hermitian modular
forms (i.e., forms on U(2,2)) which were orthogonal to the Maass space (the span of such
lifts). The elements in the relevant Selmer groups were then constructed using ideas of
Urban [43]. Unfortunately, some of the methods implemented in [26] relied significantly
on the fact that the class number of Q(%) is one and could not be directly generalized to
deal with other imaginary quadratic fields.

In this paper we develop new tools—among them a new notion of an adelic Maass
space and a Rankin—Selberg type formula—which work in sufficient generality. As a
consequence we are in particular able to extend the results of [26] to all imaginary
quadratic fields of prime discriminant —Dy, i.e., to all modular forms ¢ of any prime
level Dy, of arbitrary weight k — 1 (with & divisible by the number of roots of unity
contained in K), and nebentypus xx being the quadratic character associated with
the extension K/Q. Our result on the one hand provides evidence for the Bloch-Kato
conjecture for the motives Symm? py(k — 3) and Symm? py (k) for a rather broad family
of modular forms ¢. On the other hand the congruence itself (between a Maass lift
and a Hermitian modular form orthogonal to the Maass space) provides a proof of a
holomorphic analogue to a conjecture recently formulated by Dummigan extending the
so-called Harder’s conjecture concerning Siegel modular forms [13].

As alluded above, the first difficulty that one encounters in dealing with a general
imaginary quadratic field is the lack of a proper notion of the Maass space in this case.
The definition introduced by Krieg [28] does not allow one to define the action of the
Hecke operators at non-principal primes. The more recent (very elegant) results due
to Ikeda [24] while dealing with class number issues, are not quite sufficient for our
purposes. So, in this paper we introduce a new adelic version of the Maass space and
carefully study its properties, especially its invariance under the action of the Hecke
algebras. This provides us with a correct analogue of the classical Maass lift to the
space of automorphic forms on U(2,2)(A) for any imaginary quadratic field of prime
discriminant. We then proceed to construct a congruence between the Maass lift and
Hermitian modular forms orthogonal to the Maass space.

The method of exhibiting elements in Selmer groups of automorphic forms via con-
structing congruences between automorphic forms on a higher-rank group has been used
by several authors. The original idea can be dated back to the influential paper of Ribet
[32] on the converse to Herbrand’s Theorem, where for a certain family of Dirichlet
characters x elements in the y-eigenspace of the class group of a cyclotomic field are con-
structed by first exhibiting a congruence between a certain Eisenstein series (associated
with y) and a cusp form on GLs. Higher-rank analogues of this method have been applied
to provide evidence for (one inequality in) the Bloch—-Kato conjecture for several motives
by Bellaiche and Chenevier, Brown, Berger, Bocherer, Dummigan, Schulze-Pillot, as well
as Agarwal and the author (2], [9], [4], [26], [7], [1]). An extension of these ideas was
also used to prove results towards the Main Conjecture of Iwasawa Theory by Mazur and
Wiles, Urban ([29], [43]) and very recently by Skinner and Urban [40].

The general idea is the following. Given an automorphic form ¢ on an algebraic
group M (with an associated Galois representation pg) one lifts ¢ to an automorphic
form on G in which M can be realized as a subgroup (in our case M = Resg,;q(GL2/x)
is the Levi subgroup of a Siegel parabolic of G = U(2,2)). The Galois representation
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attached to the lift is reducible and has irreducible components related to ps. Assuming
divisibility (by a uniformizer w in some extension of Q) of a certain L-value associated
with ¢ one shows (this is usually the technically difficult part) that the lift is congruent
(mod @) to an automorphic form 7 on G whose Galois representation p; is irreducible.
Because of the congruence, the mod w reduction of p, must be reducible, but (because
pr was irreducible) it can be chosen to represent a non-split extension of its irreducible
components, thus giving rise to a non-zero element in some Selmer group (related to py).

Let ¢ € Sg—1(Dk, xx) be a newform. In our case the lifting procedure is the Maass
lift, which produces an automorphic form fy , on U(2,2)(A) (which depends on a certain
character x of the class group of K') whose associated automorphic representation is CAP
in the sense of Piatetski-Shapiro [31]. Even though the desired congruence is between
Hecke eigenvalues of the lift fs , and those of 7, we first construct a congruence between
Fourier coefficients of these forms and only then deduce the Hecke eigenvalue congruence.
The former congruence is achieved by first defining a certain Hermitian modular form =
(essentially a product a Siegel Eisenstein series and a Hermitian theta series) and writing
it as:

_ <Eaf¢,x> ’
<f¢,xv f¢,x> f¢7x 9

[1]

where ¢’ is a Hermitian modular form orthogonal to fs ,. The form Z has nice arithmetic
properties (in particular its Fourier coefficients are w-adically integral) and we show
that the inner products can be expressed by certain L-values. In particular the inner
product in the denominator is related to L*&(Symm? ¢, k). Choosing = so that the
special L-values contributing to the inner product in the numerator make it a w-adic unit
and assuming the w-adic valuation of L*8(Symm? ¢, k) is positive we get a congruence
between fy , and a scalar multiple g of g’. To ensure that g itself is not a Maass lift we
construct a certain Hecke operator T" that kills the “Maass part” of g.

Let us now briefly elaborate on the technical difficulties that one encounters in the
current paper as opposed to the case of K = Q(i) which was studied in [26]. First
of all, as mentioned above, the Maass space and the Maass lift in the case of the field
Q(7) are well-understood thanks to the work of Kojima, Gritsenko and Krieg ([27], [16],
[17], [28]) and in [26] we simply invoke the relevant definitions and properties of these
objects. In the current paper we introduce a notion of an adelic Maass space for a general
imaginary quadratic field and prove that it is a Hecke-stable subspace of the space of
Hermitian modular forms. This result does not use the assumption that Dy is prime.
One of the difficulties in extending the classical notion of Kojima and Krieg is the fact
that when the class number of K is greater than one the classical Maass space (which
was defined by Krieg for all imaginary quadratic fields) is not stable under the action of
the local Hecke algebras at non-principal primes of K. This is one of the reasons why we
chose to formulate the theory in an adelic language, even though it would in principle be
possible to extend the classical definitions of Krieg and work with several copies of the
Hermitian upper half-space. However, we think that the action of the Hecke operators as
well as the role played by a central character are most transparent in the adelic setting.
When Dy is prime we are able to relate our lift to the results of Krieg and Gritsenko
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and derive explicit formulas for the descent of the Hecke operators. We also prove an
L-function identity relating the standard L-function of a Maass lift to the L-function of
the base change to K of the modular form ¢. All this is the content of Section 5. A
yet another notion of the Maass lift has in the meantime been introduced by ITkeda [24]
using a different approach. This notion agrees with ours in the case of a trivial central
character, but not all the formulas necessary for our arithmetic applications are present
in [24].

On the other hand a lot of attention in [26] was devoted to computing the Petersson
norm of a Maass lift ([26, Section 4]). Here, however, we use a formula due to Sugano (cf.
[24]) to tackle the problem. To derive the congruence one also needs to be able to express
the inner product (Z, f4,) by certain L-values related to ¢. This calculation (drawing
heavily on the work of Shimura) becomes somewhat involved in the case of class number
larger than one. The relevant computations are carried out in Section 7. Since it does
not add much to the computational complexity we prove all the results for the group
U(n,n) for a general n > 1, obtaining this way a general Rankin—Selberg type formula
that might be of independent interest (Theorem 7.7). In that section we also prove the
integrality of the Fourier coefficients of a certain Hermitian theta series involved in the
definition of Z. Finally in the current paper our construction of the Hecke operator T" is
somewhat cleaner, because we work more with completed Hecke algebras. This is carried
out in Section 6.

In Section 8 we collect all the results to arrive at the desired congruence, first between
the Fourier coefficients of f4, and a Hermitian modular form orthogonal to the Maass
space (Theorem 8.10) and then between the Hecke eigenvalues of f, , and those of some
Hermitian Hecke eigenform f also orthogonal to the Maass space (Corollary 8.17). The
latter can only be achieved modulo the first power of w even if L*#(Symm? ¢, k) is divis-
ible by a higher power of w. This is not a shortcoming of our method but a consequence
of the fact that there may be more than one f congruent to fy, and the L-value (con-
jecturally) controls contributions from all such f. In fact this is precisely what we prove
by studying congruences between fy, and all the possible eigenforms f orthogonal to
the Maass space and as a result give a lower bound (in terms of L*#(Symm? ¢, k)) on the
index of an analogue of the classical Eisenstein ideal (which we in our case call the Maass
ideal) in the appropriate Hecke algebra (Section 8.3). Finally, we demonstrate how our
results imply the holomorphic analogue of Dummigan’s version of Harder’s conjecture
for the group U(2,2) (Section 8.4).

The congruence can be used to deduce the existence of certain non-zero elements
in the Selmer groups H}(K, ad® ps(—1)) and H}(K, ad® p;(2)) and hence get a result
towards the Bloch—Kato conjecture for these motives. For this we use a theorem of
Urban [43]. The relevant results are stated in Section 9. We note that the above
Selmer groups are over K, while the conjecture relates L*8(Symm? ¢, k) to the order of
the corresponding Selmer group over Q. More precisely, under some mild assumptions
one has valy(L¥8(Symm? ¢, k)) = val,(L¥8(Symm? ¢, k — 3)) = val,(L¥&(ad ¢, —1, xx)),
so L*¢(Symm? ¢, k) should control the order of H}(Q,Symm?py(k — 3)) = H}(Q,
ad’ ps(—1)xK) (we are grateful to Neil Dummigan for pointing out an error in an earlier
version of the article).

We would like to thank Chris Skinner who initially suggested this problem to us. We
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also benefited greatly from conversations and email correspondence with many people
and would like to express our particular gratitude to Neil Dummigan, Giinther Harder,
Tamotsu Tkeda and Jacques Tilouine. We are also grateful to the Department of Mathe-
matics of the Université Paris 13, where part of this work was carried out, for a friendly
and stimulating atmosphere during the author’s stay there in 2009 and 2010 and simi-
larly to the Max-Planck-Institut in Bonn, where the author spent the Summer of 2010.
Finally, we would like to thank Neil Dummigan for sending us his preprint on the ana-
logue of Harder’s conjecture for the group U(2,2) and an anonymous referee for many
helpful comments and suggestions.

2. Notation and terminology.

In this section we introduce some basic concepts and establish notation which will
be used throughout this paper unless explicitly indicated otherwise.

2.1. Number fields and Hecke characters.

Throughout this paper ¢ will always denote a fixed odd prime. We write i for v/—1.
Let K = Q(iv/ D) be a fixed imaginary quadratic extension of Q of discriminant — Dy,
and let Ok be the ring of integers of K. We will write Clg for the class group of K and hg
for # Clg. For a € K, denote by @ the image of a under the non-trivial automorphism
of K. Set Nao := N(a) := aa, and for an ideal n of Ok, set Nn := #(Og/n). As
remarked below we will always view K as a subfield of C'. For a € C, @ will denote the
complex conjugate of o and we set |a| := vaa.

Let L be a number field with ring of integers Oy,. For a place v of L, denote by L,
the completion of L at v and by Oy, ,, the valuation ring of L,. If p is a place of Q, we
set L, := Q, ®q L and O, := Z, ®z Or. We also allow p = co. Set Z = @Z/nZ =
proo Z, and similarly O = HUJ{OO Ok,y. For a finite p, let val, denote the p-adic
valuation on Q. For notational convenience we also define val,(c0) := co. If a € Q,,
then |alg, = p~ "*»(®) denotes the p-adic norm of a. For p=o0, |-|q.. =|'|r =] is
the usual absolute value on Q. = R.

In this paper we fix once and for all an algebraic closure @Q of the rationals and
algebraic closures Qp of Q,, as well as compatible embeddings Q — @p — C for all
finite places p of Q. We extend val, to a function from Qp into Q. Let L be a number
field. We write G, for Gal(Q/L). If p is a prime of L, we also write D, C G, for the
decomposition group of p and I, C D, for the inertia group of p. The chosen embeddings
allow us to identify D, with Gal(L,/Ly). We will always write Frob, € D, /I, to denote
the arithmetic Frobenius.

For a local field E (which for us will always be a finite extension of Q, for some
prime p) and a choice of a uniformizer @ € F, we will write val, : E — Z for the w-adic
valuation on E.

For a number field L let Ay denote the ring of adeles of L and put A := Ag.
Write Ar o and Ap ¢ for the infinite part and the finite part of Ay respectively. For
a = (ap) € Aset |ala :=[],lalg,. By a Hecke character of Af (or of L, for short) we
mean a continuous homomorphism
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Y:L*\Af — C*.

The trivial Hecke character will be denoted by 1. The character v factors into a product
of local characters 1) =[], 1., where v runs over all places of L. If n is the ideal of the
ring of integers O, of L such that

e Y, (x,) =1if v is a finite place of L, x, € Of,v and z —1 € nOp,,
e no ideal m strictly containing n has the above property,

then n will be called the conductor of . If m is an ideal of Of, then we set by, := [] ¥y,
where the product runs over all the finite places v of L such that v | m. For a Hecke
character ¢ of A}, denote by ¢* the associated ideal character. Let ¢ be a Hecke
character of Ax. We will sometimes think of ¢ as a character of (Resx;q GLi/k)(A),
where Resg/q stands for the Weil restriction of scalars. We have a factorization ¢ =
[I, %y into local characters ¢, : (Resx,q GLi/k)(Qp) — C*. For M € Z, we set
Un =[], s00, pias ¥p- I ¢ is a Hecke character of Af, we set g = |ax.

2.2. The unitary group.

For any affine group scheme X over Z and any Z-algebra A, we denote by © — T
the automorphism of (Resp, /z Xo, )(A) induced by the non-trivial automorphism of
K/Q. Note that (Resp, ;z Xo,)(A) can be identified with a subgroup of GL,(A® Ok)
for some n. In what follows we always specify such an identification. Then for = €
(Resoy /z X0, )(A) we write ! for the transpose of z, and set 2* := Z" and & := (z") !
Moreover, we write diag(ai,as,...,a,) for the n x n-matrix with a1, as,...,a, on the
diagonal and all the off-diagonal entries equal to zero.

We will denote by G, the additive group and by G, the multiplicative group. To the
imaginary quadratic extension K/Q one associates the unitary similitude group scheme
over Z:

Gn = GU(n,n) = {A € Resp, 7 GLan | AJA" = pu(A)J },

where J = [IW, 71"], with I, denoting the n X n identity matrix and p(4) € G,,. We
will also make use of the groups

Up=U(n,n)={A€ GU(n,n) | u(A) =1},
and

SU(n,n)={AeU, |det A=1}.

For x € Resp, ;z(GLy,), we write p, for [m x] € U,. Since the case n = 2 will be of
particular interest to us we set G = Ga, U = Us.

Note that if p is inert or ramified in K, then K,/Q, is a degree two extension of
local fields and a +— @ induces the non-trivial automorphism in Gal(X,/Q,). If p splits
in K, denote by t¢p1,tp2 the two distinct embeddings of K into @,. Then the map
a®b— (tp1(a)b, tp2(a)b), induces a Q,-algebra isomorphism K, = Q, x Q,, and a — @
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corresponds on the right-hand side to the automorphism defined by (a,b) — (b,a). We
denote the isomorphism Q, x Q) = K, by t,. For a matrix g = (g;;) with entries in
Q) x Q) we also set 1,(g9) = (tp(gi;)). For a split prime p the map ¢, ! identifies U, (Q,)
with

Unp= {(91a92) € GL2n(Qp) X GLQTL(QP | gngQ J}

Note that the map (g1,92) — g1 gives a (non-canonical) isomorphism U,(Q,) =

GL2,(Qp). Similarly, one has G,,(Q)) = GL2,(Qp) X G (Qp).
In U = U, we choose a maximal torus

a a,bGReSK/QGm/K s

and a Borel subgroup B = TUp with unipotent radical

1 a B 0l
1 ’_
Up = 1 ¥ N\ B.7 € Resk/q Gy, 6 € G, B € Gy
—a 1

Let T = {diag(a,b,a™',b7') | a,b € G} denote the maximal @Q-split torus contained
in T. Let R(U) be the set of roots of T, and denote by €;, j = 1,2, the root defined by
ej : diag(ay, az,a;',ay"') + a;. The choice of B determines a subset R*(U) C R(U) of
positive roots. We have R (U) = {e1 +ea, e1 —e2,2e1,2e2}. We fix a set A(U) C RT(U)
of simple roots A(U) := {e1 — ea,2e2}. If & C A(U), denote the parabolic subgroup
corresponding to 6 by Pp. We have Pa(yy = U and Py = B. The other two possible
subsets of A(U) correspond to maximal Q-parabolics of U:

e the Siegel parabolic P := P, _.,; = MpUp with Levi subgroup

MP{|:A A]‘AGRGSK/Q GLQ/K}7

and (abelian) unipotent radical

1 by by
1 by by
Up = 1 b1,bs € Go, by € Resg/@ Ga/k ¢ s

1

e the Klingen parabolic Q) := P(y.,; = MgUg with Levi subgroup
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T
a b a b
MQ = & .’EGRGSK/Q Gm/K7 |:C d:| S U(].,l) s
c d
and (non-abelian) unipotent radical
1l a (B 7~
1
Ug = ’ly a,B,v € Resg)@ Gu/k, B+ € Gy
—a 1

Similarly in U,, we denote by T,, the diagonal torus and by P, the Siegel parabolic
(with Levi isomorphic to Resx;q GLy/k)-

For an associative ring R with identity and an R-module N we write M, (N) for
the R-module of n x n-matrices with entries in N. Let z = [A4 B] € Ms,(N) with
A,B,C,D € M,(N). Define a, = A, b, =B, ¢, =C,d, =D.

For M € Q, N € Z such that MN € Z we will denote by D, (M, N) the group
U.(R) Hp,foo Konp(M,N) C U, (A), where

Ko,np(M,N) = {35 € Un(Qp) | az,dr € Mp(Ok ),
by € My(M ' Okp), o € My(MNOg )}, (2.1)

If M =1, denote D,(M,N) simply by D,(N) and Ko (M, N) by Konp(N). For
any finite p, the group Konp = Konp(l) = Un(Zp) is a maximal (open) compact
subgroup of U, (Q,). Note that if pt N, then Ko . p, = Ko,n p(N). We write Ko, ¢(N) :=
oo Konp(IN) and Ko := Ko,e(1). Note that Ko, is a maximal (open) compact
subgroup of U, (As). Set

Koo == { [_AB ﬂ € U,(R) ‘A,B € GL,(C),AA* + BB* = I,,, AB* = BA*}.
Then ICSC n.0o 18 @ maximal compact subgroup of U,(R). We will denote by Ko 00 the

+

0,n,0c0

subgroup of G,(R) generated by K
subgroup of G,,(R). Let

and J. Then Ko, is a maximal compact

U(m) := {A € GLn(C) | AA* = I, }.

We have
n ~ A B . .
Konoo =Un(R)NU((2n) — U(n) x U(n), Y (A+iB,A—iB).

Finally, set Kon(N) := Kq

0,n,00

Kont(N) and Ko, = Kon(l). The last group is a
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maximal compact subgroup of U, (A).
Similarly, we define KCq ,, (N) :IC(J{,L’C>OIC1’”7f(N)7 where Ky, ¢(N)= Hmm Kinp(N),

KinpN)={z € Konp(N) |tz — In € My(NOxk )}

Let M € Q, N € Z be such that MN € Z. We define the following congruence
subgroups of U, (Q):

Fg,n(Mv N) = UH(Q) N Dn(Ma N),
I}, (M,N):={aeT{, (MN)|a, —1€ M,(NOk)}, (2.2)

Ip(M,N) :={a €T}, (M,N)| by € My(M 'NOg)}

and set T, (N) := I, (1,N), It (N) := T}, (1,N) and T}(N) := I (1,N). When
n = 2 we drop it from notation. Note that the groups T'}(N), I'}(N) and T"(N) are
Up-analogues of the standard congruence subgroups I'g(N), I'; (N) and I'(N) of SLy(Z).
In general the superscript ‘h’ will indicate that an object is in some way related to the
group U,,. The letter ‘h’ stands for ‘Hermitian’, as this is the standard name of modular
forms on U,.

2.3. Modular forms.

In this paper we will make use of the theory of modular forms on congruence sub-
groups of two different groups: SLs(Z) and U(Z). We will use both the classical and
the adelic formulation of the theories. In the adelic framework one usually speaks of
automorphic forms rather than modular forms and in this case SLy is usually replaced
with GLg. For more details see e.g. [15, Chapter 3]. In the classical setting the modular
forms on congruence subgroups of SLy(Z) will be referred to as elliptic modular forms,
and those on congruence subgroups of I'z as Hermitian modular forms. Since the theory
of elliptic modular forms is well-known we will only summarize the main facts below.
Section 3 will be devoted to Hermitian modular forms.

2.3.1. Elliptic modular forms.
The theory of elliptic modular forms is well-known, so we omit most of the definitions
and refer the reader to standard sources, e.g. [30]. Let

H :={z€ C|Im(z) >0}

denote the complex upper half-plane. In the case of elliptic modular forms we will denote
by T'o(N) the subgroup of SLy(Z) consisting of matrices whose lower-left entries are
divisible by N, and by I'1(N) the subgroup of T'g(IV) consisting of matrices whose upper
left entries are congruent to 1 modulo N. Let I' C SLy(Z) be a congruence subgroup.
Set M, (T") (resp. S, (T")) to denote the C-space of elliptic modular forms (resp. cusp
forms) of weight m and level I'. We also denote by M, (N, ) (resp. S, (N, 1)) the space
of elliptic modular forms (resp. cusp forms) of weight m, level N and character ¢. For
fy9 € M,,(T') with either f or g a cusp form, and I C T' a finite index subgroup, we
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define the Petersson inner product
(o= [ FEE Mm )2 da dy,
'\H

and set

<fvg> = <fvg>F’a

[SLy(Z) : T']

where SLy(Z) := SLy(Z)/ (—15) and T is the image of I" in SLy(Z). The value (f, g) is
independent of T”.

Every elliptic modular form f € M,,(N,) possesses a Fourier expansion f(z) =
>0 o a(n)g™, where throughout this paper in such series ¢ will denote e(z) := €?™**. For
v=1[2%] € GL(R), set j(v,2) = cz +d.

Let D = Dk be a prime. In this paper we will be particularly interested in the
space Spm(Dxk, Xk), where xx is the quadratic character of (Z/DZ)* associated with
the extension K = Q(v/—D). Regarded as a function Z — {1, —1}, it assigns the value
1 to all prime numbers p such that (p) splits in K and the value —1 to all prime numbers
p such that (p) is inert in K. Note that since the character xx is primitive, the space
Sm(Dk, xk) has a basis consisting of primitive normalized eigenforms. We will denote

this (unique) basis by N. For f =Y  a(n)q" € N, set f*: =3  a(n)¢" € N.

FacT 2.1 ([30, Section 4.6]). One has a(p) = xx(p)a(p) for any rational prime
ptDk.

This implies that a(p) = a(p) if (p) splits in K and a(p) = —a(p) if (p) is inert in K.
For f € N and E a finite extension of Q, containing the eigenvalues of T}, n =
1,2,... we will denote by pf : Gg — GL2(E) the Galois representation attached to f
by Deligne (cf. e.g., [11, Section 3.1]). We will write p, for the reduction of py modulo
a uniformizer of E with respect to some lattice A in E?. In general Py depends on the

lattice A, however the isomorphism class of its semisimplification p¥ is independent of
A. Thus, if p; is irreducible (which we will assume), it is well-defined.

3. Hermitian modular forms.

3.1. Classical theory.
For n > 1, set i, := il,, and define

H, :={Z € My(C) | —in(Z — Z*) > 0}.

We call H,, the Hermitian upper half-plane of degree n. The group G} (R) = {z €
Gn(R) | p(x) > 0} acts transitively on H), via

9Z = (agZ+ bg)(cgz+d9)_l'
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DEFINITION 3.1.  We say that a subgroup I' C G, (R) is a congruence subgroup if

e T' is commensurable with U, (Z), and
e there exists N € Z-¢ such that I D T"(N) := {g € U,(Z) | g = Iz, (mod N)}.

Note that every congruence subgroup I' must be contained in U, (Q), because com-
mensurability with U,,(Z) and the fact that I' C G (R) force I' C G,,(Q) and u(T) to
be a finite subgroup of R hence to be trivial.

For g € G} (R) and Z € H,, set

(g, Z) = det(cy Z + dy),
and for a positive integer k, a non-negative integer v and a function F' : H,, — C define
Fliug(Z) = det(9)™" (9, 2) " F(92).

When v = 0, we will usually drop it from notation and simply write F|,g(Z).

DEFINITION 3.2. Let I' C G}'(R) be a congruence subgroup. We say that a
function F : H, — C is a Hermitian semi-modular form of weight (k,v) and level T if
F is a C*°-function and if F|i vy = F for every v € I'. If in addition F is holomorphic,
we call it a Hermitian modular form of weight (k,v) and level I'. The space of Hermitian
semi-modular (resp. modular) forms of weight (k,r) and level I" will be denoted by
Mflth(F) (resp. Ms’k)y(F)). We also set Mfl‘),w = M};k)y(Un(Z)). Ifn=2o0rv=0we
drop them from notation.

Set J(K) = (1/2)#0}%. Note that J(K) =1 when Dg > 12.

REMARK 3.3. Suppose I' C U,(Z). It is a Theorem of Hel Braun ([8, Theorem I on
p. 143]) that det U,,(Z) = {u? | u € O} }. This in particular implies that (det U, (Z))™" =
{1} if J(K) | v. In such case, we have M5t (T) = Mflhk(l“)

n,k,v

IfT = F&n(N) for some N € Z, then we say that F' is of level N. Forms of level 1
will sometimes be referred to as forms of full level. One can also define Hermitian semi-
modular forms with a character. Let I' = Fg’n(N) and let ¢ : A — C* be a Hecke
character such that for all finite p, ¢,(a) = 1 for every a € Ofx(yp with a =1 € NOk .
We say that F' is of level N and character i if

Flpy =v¢n(deta,)F for every v € Fgm(N).

Denote by MfL]f‘k(N, ) (resp. M,}LIJ,C(N7 1)) the C-space of Hermitian semi-modular (resp.
modular) forms of weight k, level N and character 3. If n = 2 we drop it from notation.
Write Z € H,, as Z = X +14,Y, where X = Re(Z) := (Z+2%)/2and Y =Im(Z) :=
(Z —2%)/(2i). Let M,, = G denote the additive group of n x n matrices. A Hermitian
semi-modular form of level I'! (M, N') possesses a Fourier expansion (cf. [36, p. 147])
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F(Z)y= > cp(r,Y)e(trtX),
T€S,(M)(Z)

where S,,(M)(Z) = {x € S,(Z) | tralL(M) C Z} with S,, = {h € Resp,/z My 0, |
h* = h} and L(M) = S,(Z) N M, (MOk). As usually when n = 2, we drop it from
notation. As we will be particularly interested in the case when M = 1, we set

t1 ta

s=s={ |1 | ¢ aa(x)

ti,ts € Z,ts €
Ty s 1,13 2

1
Ok ¢.
iV Dk K}
If F is holomorphic the dependence of ¢(h,Y) on Y is explicit:
cr(h,Y) = e(tr(i,hY))cr(h),

where cp(h) depends only on h. Then one can write

F(Z)y= Y crp(h)e(tr(hZ)).

hesSn(Q)

For F' € Mfl‘,k(I‘) and o € G (R) one has F|a € Mf;k.(a_ll"a) and there is an
expansion

Flra = Z co(T)e(tr72).

TGSW(Q)

We note that ¢, (7) = 0 unless 7 is semi-positive definite. We call F' a cusp form if for
all @ € GJf(R), ca(7) = 0 for every 7 such that det7 = 0. Denote by Sf ,(T) (resp.
Sgk(N, 1)) the subspace of cusp forms inside M}l‘k(f‘) (resp. MT};’,C(N, ). If ¢ =1, set
M;hk(N) = Mf;{lk(N, 1) and S£7k(N) = Sﬁjk(]\/'7 1). If n = 2 we drop it from notation.

THEOREM 3.4 (g-expansion principle, [22, Section 8.4]).  Let £ be a rational prime
and N a positive integer with £+ N. Suppose all Fourier coefficients of F € M};,k(va)
lie inside the valuation ring O of a finite extension E of Q. If v € Un(Z), then all
Fourier coefficients of F|yy also lie in O.

If F and F’ are two Hermitian semi-modular forms of weight k, level I and character
1, and either F or F”’ is a cusp form, we define for any finite index subgroup I'V of T', the
Petersson inner product

(F,F'\p = /F . F(Z)F'(Z)(detY)*~2"dXdY,

where X = ReZ, Y =Im Z, and for the space of Hermitian matrices M we set dM :=
[Ticicjcn dRe Mij) x T] iz jc,, d(Im M;j). We also set dZ = (det Y)~?"dXdY.
“Set -
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S
(F.F') =[Un(2) : T {FF)p

where U, (Z) := Up(Z)/ (i2n) and T is the image of I” in Un(Z). The value (F, F’) is
independent of I".

3.2. Adelic theory.

NotAaTION 3.5.  We adopt the following notation. If H is an algebraic group over
Q, and g € H(A), we will write go, € H(R) for the infinity component of g and g for
the finite component of g, i.e., § = (g0, gs)-

DEFINITION 3.6. Let K be an open compact subgroup of G, (Ag). Write Z,, for the
center of G,. Let M;, ; (K) denote the C-space consisting of functions f : G;,(A) — C
satisfying the following conditions:

* f(v9) = f(g) for all v € Gn(Q), g € Gn(A),

o f(gr) = f(g) for all k € K, g € G, (A),

o f(gu) = (detw) Vj(u,i,) ¥ f(g) forall g € Gp(A), u € Koo = Kon.oo (see (10.7.4)
in [36]),

o f(ag) = a=2="*f(g) for all g € G,,(A) and all a € C* = Z,(R) C G, (R),

o f.(Z) is a C*-function of Z € H,, for every ¢ € G,,(Ays).

Here f.(Z) := (det goo)”j(9oos in)* f(gooc), Where g = (goo, 1) € Gn(R)G,(A;) is such
that Z = geotpn. If v = 0 or n = 2 we sometimes drop it from notation. Let ¢ : A} — C*
be a Hecke character of conductor dividing N. Set

na (V) = {f € My, 1 (Kin(N)) | f(79(Koos if))
= 7/’3V(det(anf))71j(”ma ":n)ikf(g)v
g€ GL(A), v€Gr(Q), (Koo, kr) € Kon(N)}. (3.1)

REMARK 3.7. Note that the center Z,(R) of G, (R) acts via the infinite part of
a Hecke character of infinity type (—2nv — nk,0). In particular this action is trivial if
v=—k/2.

It is well-known (see e.g., [10, Theorem 3.3.1]) that for any finite subset B of
GL, (Ak ) of cardinality hx with the property that the canonical projection cx : A —
Clg restricted to det B is a bijection, the following decomposition holds

GLn(Ak) = | | GL.(K) GL,(C)b GL,(Ok). (3.2)
beB

We will call any such B a base. We always assume that a base comes with a fixed
ordering, so in particular if we consider a tuple (fp)pep indexed by elements of B, and
apply a non-trivial permutation o to the elements f;, we do not consider the tuples

(fo)ves and (fy(»))ves to be the same.

PROPOSITION 3.8.  Let K be a compact subgroup of G,,(As) such that det IC D @IX{
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There exists a finite subset C C Uy (Ag) such that the following decomposition holds

Gu(A) = | | G(Q)G;} (R)eK. (3.3)

ceC

Moreover, each element of C can be taken to be of the form py, for some b in a fized base
B. The same holds for U, in place of G,.

PrROOF. This is proved like Lemmas 5.11(4) and 8.14 of [36]. O

We will call any set C of cardinality hy for which the decomposition (3.3) holds a
unitary base.

COROLLARY 3.9. If (hk,2n) =1 a base B can be chosen so that for all b € B the
matrices b and py are scalar matrices and bb* = b*b = 1I,,.

ProoFr. It follows from the Tchebotarev Density Theorem, that elements of Clg
can be represented by prime ideals. Since all the inert ideals are principal, Clig can be
represented by prime ideals lying over split primes of the form pOx = pp. Let X be
a representing set consisting of such ideals p. As (2n,hx) = 1, the set X" consisting
of elements of X raised to the power 2n is also a representing set for Clg. Moreover,

as pp is a principal ideal, p = p~! as elements of Clg, hence ¥’ := {p"p "},ex also
represents all the elements Clg. Elements of ¥/ can be written adelically as ay, with

ap = (1,1,..., 1,p,p~1,1,...) € Ak, where p appears on the p-th place and p~! appears

at the p-th place. Set b, = aypl,. Then we can take B = {by},n5-ncys and we have
Db, = apla,. It is also clear that bb* = b*b = I,. O

PRrROPOSITION 3.10.  Suppose that K C G, (At) is a compact subgroup such that
det I D (’jﬁ Let Ny, ,(K) denote the C-space of functions f : U,(A) — C satisfying the
conditions of Definition 3.6, but with g € U,(A). Then the map [ — fl|u, a) gives an
isomorphism M;, ,(K) = Ny ,(K).

Proor. This is easy. O

In view of Proposition 3.10 in what follows we will often not distinguish between
automorphic forms defined on G,,(A) and those on U, (A).
Every f € M;L7k7V(IC) possesses a Fourier expansion, i.e., for every ¢ € GL,(Ak),

and every h € S(Q) there exists a complex number cs(h,q) such that one has

qun ZJ {q qD S ¢s(hg)ealtrho) (3.4)

heS,(Q)

for every o € S,,(A). Here e4 is defined in the following way. Let a = (a,) € A, where

27iay,

v runs over all the places of Q. If v = oo, set e,(a,) =€ . If v = p, a finite prime,

set e, (ay,) = e~ 2™ where y is a rational number such that a, —y € Z,. Then we set

cala) =1, ev(av).
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Suppose 2 { hg. For g € U,(A), write g = ygoc € U,(Q)U,(R)U, (As) with
¢ € U,(Ay) and go such that det go = | det go|e®® satisfies 0 < ¢ < 27/ J(K). Note that
such a gg exists and det g§ is independent of the choice of go.

PrROPOSITION 3.11.  Let f € M;, . (K). Let g = (9o, 1) € Upn(R)Upn(Ag). Set
Z = gooln. Let C be a unitary base. For c € C, set f.(Z) = (det guo)”J(goo, in)* f(gooc)
and write T, for U,(Q) N (G“‘( ) X chc_ ). The map [ — (fc)ecec defines a C-linear
1somorphism ®¢ : M;LJW( ) = [Toce M, o k L(Te).

PROOF. This follows from [36, Section 10]. O

If hi is odd, B is a base and C = {py }pen, we write I', instead of ', and f, instead
of fp, for b € B, and ®5 instead of ®¢.

DEFINITION 3.12.  Let C be a unitary base. A function f € M, ; ,(K) whose image
under the isomorphism ®¢ lands in [] .. Mn k. (L'e) will be called an adelic Hermitian
modular form of weight (k,v) and level K. The space of Hermitian modular forms of
weight (k,v) will be denoted by M., ., (K). Moreover, we set My, 1., = My k., (Un(Z)).

When v = 0 or n = 2 we drop them from notation.

We clearly have

n k, l/ H M»,}LI k, y (35)
ceC

Let x : Clg — C* be a character and choose a base B consisting of scalar matrices

b such that bb* = I,. Such a base always exists when (hg,2n) = 1 by Corollary 3.9.
Write Z,, for the center of G,,. Let z = vzoppk with v € Z,,(Q), z0 € Z,(R), b € B and
€ (KN Z,(Ays)) be an element of the center with zy = (Iz,. If f € My, 1, (K), then

f(z9) = f(z0peg) = ¢2™ "% f(ppg). Set
MY () ={f € My (K) | flpvg) = x(0)f(9)},

where we consider b as an element of Clg under the identification B = Clg given by
b— ci(detd) with cx : Aj — Clg. Then

Mn,kw(’c) = @ ﬁ,k,y(’C)- (36>

x€Hom(Clg,CX*)

By adapting the proof of Lemma A5.1 in [37] to the case of a trivial conductor
one can show that for every integer s with J(K) | s, there exists a Hecke character
B: A} — C* unramified everywhere, trivial on A* and such that 3(z) = 2%/|z|?* for
z € C* = KX. We will denote the set of such characters by Char(s). Note that every
element f3 of Char(s) is unitary, i.e., 3(z) = B(x)~'. If hx is odd, one has #Char(s) = hx
by [36, Lemma 8.14]. Using the Iwasawa decomposition one sees that for g € U, (A),
one has detg = aa ' detY for some a € A} and Y € Un(Z). By Lemma 5.11(4) in
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[36] we see that detY = sk~ ! for some k € @IX{ So, absorbing « into a we in fact we
have det g = aa~! for some a € Aj;. Moreover, if aa ' = bg_l, then a/b € A*. Thus
for every integer s, every 3 € Char(s) and every g € U,(A), the map g — 3(a) is a
well-defined character on U, (A). Abusing notation we will write 5(g) instead of 8(a).

PropoSITION 3.13.  Assume J(K) | v and (2n,hx) = 1. Let B € Char(—v).
Let B be a base as in Corollary 3.9—note that then B(py) = [(detd) for b € B. Let
K C G,(As) be an open compact subgroup. Then T := U,(Q) N (G (R) x ppKp, ') is
independent of b € B. Assume I' C U, (Z). Then M,]L‘,kﬂ,(F) = M};yk(F) and one has the
following commutative diagram in which all the maps are isomorphisms

@9
Milk(lc) - HbeB kazlk(r) s
NJ/‘P,B N\Lbﬁ (3.7)

(PI/
Ml’;ll,k,y(lc) — HbeB MT}LIk(F)

where 15(fy) = B(detd)fy, for g = ygoppk € Un(Q)Un(R)ppK one has ¥s(f)(g) =
B(9)f(g), and for h € Un(R)Po(f)y(hin) = j(h.in)*f(hpy) and @,(f)s(hin) =
(det h)”j(h,i,)* f(hpy). The map Vs is Hecke-equivariant; more precisely for T = Kak
with a € U, (A) one has ¥g(Tf)(x) = B(a)(TVs(f))(x) (for the definition of the Hecke
action see Section 4).

PROOF. This is straightforward using the results of this section (cf. (3.5) and
Remark 3.3). O

We end this section with a definition of the Petersson inner product for two adelic
Hermitian semi-modular forms. Assume hg is odd and let B be a base. Let f,g €
.k (IC) for some open compact subgroup K of U, (Ay). Then by Proposition 3.11 the
forms f and g correspond to #B-tuples of functions on H,, which we denote by (f,,)
and (gp, ) respectively or simply by (f3) and (gs). If either f or g is cuspidal, set (cf. [36,

(10.9.6)))

(f.9) = #B)D (foogp), and  (f.9)p = #B) D (frg)r, (38

beB beB

the latter if for all b € B the integrand f,(Z)gy(Z) det(Im(Z))*=2"dXdY is T-invariant.

4. Hecke operators.

4.1. Hermitian Hecke operators.

We study Hecke operators acting on the space My, of Hermitian modular forms
on G(A) = Ga(A). We also set U = Us. Let p be a rational prime write IC,, for G(Z,).
Let H,, be the C-Hecke algebra generated by the double cosets K, g/C,, g € G(Q)) with
the usual law of multiplication (cf. [36, Section 11]), and H,; C H,, be the subalgebra
generated by KC,g/C, with g € U(Q,). If K,gK, € H,, there exists a finite set A, C
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G(Qp) such that KpgKp = | ca, Kpa. For f e My, g € G(Qy), h € G(A), set
(KpgKp) f)(R) = 3= e a, f(ha™h). Tt is clear that [K,g/k,]f € My .

REMARK 4.1. Let Ko, = K, NU(Z,). Every element of H, can be written
as K9k, with ¢ a diagonal matrix. For x € K, write m,, = diag(1,1, u(x), u(k)).
Then h, = km_' € Ko, Since g is diagonal, m, commutes with g, hence we get
KpgKyp = KpgKo,p. From this it follows that

KopgKop = | | Kopa = Kpgllp = | | Kpa
a€A, a€Ay
4.1.1. The case of a split prime.
Let p be a prime which splits in K. Write (p) = pp. Recall that G(Q,) = GL4(Q),) X

G, (Qp). An element g of G(Q,) can be written as g = (g1,92) € GL4(Qp) X GL4(Q))
with go = —p(g)J(gf) ™" J. Set

o T, := K,(diag(1,p, p,p),diag(1,1,p, 1))/,
o T := K, (diag(1,1,p, 1), diag(1, p,p,p)) Ky,
hd TP = Icp(diag(la 17p7p)a diag(la 1>p7p))K:pa
o Ay =, (pls, 11)C),
[ ] AF = ICP(I4,pI4)/Cp.

It is easy to see that the C-algebra H,, is generated by the operators T}, T, Tp,, Ay, Ay
and their inverses.

PROPOSITION 4.2.  We have the following decompositions

v U e[ LD U s )

ab,c€Z/pZ p d,e€Z/pZ

ST A (N R

fez/pz

11bd 1135 ffl la ¢
n- Uoe (LD U e (s [ ])
b,c,d,e€Z/pZ p p —ap p

"o o
)

a,c,f€EZ/pZ
7pf1 Pl 1 b labd
TR N ) E T (R R N )
e.fEZ/pZ p P abE€Z/pZ —al 1

|_lalez|—|/pzlcp <[1plﬂ 7 [plglb u/cp(rpll} ’ [pp11]>~ (4.2)

Proor. This follows easily from the corresponding decompositions for the group
GL4(Q)p). O

4.1.2. The case of an inert prime.
Let p be a prime which is inert in K. Set
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o T, := K, diag(1,1,p,p)K,,
o T1, = K, diag(1,p, p?,p)K,,
o Ay = C,plkCy.

The operators T, 11 p», A, and their inverses generate the C-algebra H,,.

ProproOsSITION 4.3.  We have the following decompositions

bdeZ/pZ e€Z/pZ p
c€Ok /pOk
la b P
U] /cp{l’,, UK, Pl}. (4.3)
a€0k /pOKk —al 1
bEZ/pZ
la b+gc c P pc
ST E A T
a,CGOK/pOK —ap p CEOK/pOK p
beZ/p*Z dezZ/p*Z
P pa 2
T S
a€O0k /pOxk —al p
p b p b c
L L] /cp[ ppd] U | ] K, | pelefot |, (4.4)
b,deZ(/pZ ) p be(Z /pZ)*
bd=0 mod X
0.)£(00) ¢E(Onc/pOr)
PROOF.  See the proof of Lemma 5.3 in [26] and references cited there. O

4.2. Action of the Hecke operators on the Fourier coefficients.
Let S = S be as in Section 3. Write S, := S(Z,,) for {h € 5(Q,) | tr(S(Z,)h) C
Z,}. For a matrix h € S(A) such that h, € S, for every prime p, set

1
Gp(h) = max{n ez ’ Ehp S Sp} and E(h) = Hpep(h)
ptoo

Note that e,(h) > 0 for every p and e(h) = e(hy).
For f € My, ¢ € GLy(Ak) and h € S(Q) we write cf(h,q) for the (h,q)-Fourier
coefficient of f as in (3.4).

4.2.1. The case of a split prime.

Let p be a prime which splits in K. Let p be a prime of K lying over p and denote
by p its conjugate. As before we simultaneously identify G(Q,) with a subgroup of
GL4(Qp) x GL4(Q)) (the first factor corresponds to p and the second one to p) and with
a subgroup of G(A). Set

Ty1:= Ap_lTp and T := A;lTp.
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Note that the operators T} 1, T} 2 and their inverses generate H;‘ . Define the following
elements of GLy(Q)p) x GL2(Q,) which we regard as elements of GLy(Ag),

(P ) o[ ) e
([ S (P S ()

We will write m, € Aj for the adele whose p-th component is p and whose all other
components are 1. Write mp, = yp7p oobpkp with v, € KX, mp o = %—1 eC*, by € Axy,
Ky € OF, 50 that val, (bpby) = 0 (this is always possible).

PROPOSITION 4.4.  One has the following formulas

P P

p2ch(haqaa) +Zcf(th&a) f/ :Tp,lf;

a=0 a=0
— p P
CID=9 e has) +erhaly) 03> eslhanin) f = Tyaf:
a=0b=0
W s (hygby ") fl=A0,f

Proor. This is an easy calculation using Proposition 4.2. O

4.2.2. The case of an inert prime.
Let p be a prime which is inert in K. Set

Tp70 = A;ITLP.

Define the following elements of GLy(K,) C GLy(Ak):

—1
aa:|:p Cll:|a 6a:|:1 a}f)l]y GGOK/I?OIG

|

Write P1(Ok /pOk) for the disjoint union of Ok /pOk and p. Let h € S(Q) and
q € GLy(Ak ) and assume that ¢*hq € Sp. Since p { D, this implies that ¢;hg, €
M3(Ok p), where g, denotes the p-th component of g. Set

(4.6)

p valy(det(g*hg)) = 0;
s(h,q) :=< —p(p—1) wval,(det(¢*hq)) >0, €,(¢*hq) = 0;
P’(p—1) el hg) > 0.
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PROPOSITION 4.5.  Assume that ¢*hq € Sp. One has the following formulas:

s(h,q)c(h, q) + p* Z ct(h,qaq) + Z cr(h,qBa)

a€P' (O /pOk) a€P (O /pOk)
f/ = Tp,Of?
er (@) =4 =2kt (ph, g) + cs (=, g) + p~H ! > cpph,qBa)
a€P1(Ok /pOk)
f/ = Tpf?
p_4”_2kcf(h,q) f/ _ Apf

If *hq & Sp, cy/(h,q) = 0 in all of the above cases.

Finally let us also note that in the inert case the algebra ’H;‘ is generated by the
operators Tp, o and Uy, := AT and their inverses.

5. Maass space.

Let S = S5, S be as in Section 3 and S, €, €, as in Section 4. In this section we
assume that k is a positive integer divisible by #O.

5.1. Definition and basic properties.

DEFINITION 5.1.  Let B be a base. We say that f € My _y /o is a B-Maass form if
there exist functions ¢ f : Z>9 — C, b € B, such that for every ¢ € GL:(Ak) and every
h € 5(Q) the Fourier coefficient cy(h, q) satisfies

cp(h,q) = | det qoo|Fe 2™ *(a5) | det |7

x> dklcb,f<DKd2deth Hpvalv<d°tq?qf>>, (5.1)

dez, P
dle(qf har)

where g = 7y 4bkg € GL2(K)bK' for a unique b € B. Here K' = GLQ(@K) is a maximal
compact subgroup of GLy(Ak r). Also, here and in what follows we will often treat the K-
points as embedded diagonally in the Ak ¢-points (i.e., instead of writing ¢r = Vp, ¢qocbrqg
with g = 7;; € GLy(C) we will simply write gr =y, 4bkq as above).

REMARK 5.2. Note that by [36, Proposition 18.3(2)], cs(h,q) # 0 only if
(¢*hq), € Sp, so €,(qfhgr) > 0. Also, note that Definition 5.1 is independent of the
decomposition gr = p,4bkg € GLa(K)bK'. Indeed, if gr = v, by € GL2(K)OK' is
another decomposition of g¢, then

det vy , det'yl:; = det(rq(ry) ") € OXNEK* = 0%,

so det(v; )" = det .
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DEFINITION 5.3.  The C-subspace of My, _j /5 consisting of B-Maass forms will be
called the B-Maass space.

DEFINITION 5.4. Let B be a base. We will say that ¢ € GL2(Ak) belongs to a
class b € B if there exist v € GLa(K), ¢oo € GL2(C) and & € K’ such that ¢ = vbgeok-

It is clear that the class of ¢ depends only on ¢.

LEMMA 5.5.  Suppose r € GLy(Ak) and q € GLy(Ak) belong to the same class
and r¢ = yqek € GLo(K)gr GL2(Ok). Then

det ro

k
=27 tr(ri Ao — @Y hydoo) det k: h 5.2
| e detr| e g (52)

c(h,r) =

PROOF. It follows from the proof of part (4) of Proposition 18.3 of [36], that
c(h,r) =|det 7“00|ke_27rtr(r;oh’”‘”)cprf (h), (5.3)

where

f 271'i trhZ
prf Cprf .

hes

As is easy to see (cf. for example the Proof of Lemma 10.8 in [36]), f,, = fp,, [k [771 " } .
Hence

cp,, () = |dety| Fe,, (v h). (5.4)

The Lemma follows from combining (5.3) with (5.4). O

PROPOSITION 5.6.  Choose a base B and let f € My, _y . If there exist functions

2 Z>yg — C, b € B, such that for every b € B and every h € S(Q), the Fourier

coeﬁ'iczent ct(h,b) satisfies condition (5.1) with c; 7 in place of cy, g, then f is a B-Maass
form and one has cy 5 = ¢} ; for every b € B.

Proor. Fix B and f € My _j/2. Suppose there exist ¢j . such that (5.1) is
satisfied for all pairs (h,b). Let ¢ = vbxk = (ya,vbk) € GLo(C) x GLy(Ag t), where
v € GLy(K), x € GLy(C) and k € K'. Then by Lemma 5.5,

cp(hyq) = | det goo|Fe 2T H a0 det | e p (v ey, b).

Since condition (5.1) is satisfied for (h,b), we know that

Cf (h, b) — e 2mtrh Z dk= 1Cb y <DKd2 det h Hpvalp(det b*b)) '
P

deZ
d|e(b™ hb)



818 K. Krosin

Thus

cr(yhy,b) = e 20T N e (DKdzdet(fy*hfy) Hpvalpwecb*b))
deZ P
d|e(b*y" hvyb)

So,

cp(hyq) = | det goo|Fe 2™ 1 (anhdo0) | det 4|+

x Yy dklc;f<DKd2dethdet(y*fy) Hpva1p<detb*b>>. (5.5)

deZ p
dle(b " hyb)

The claim now follows since €(b*y*hyb) = e(qfhgr) and det(y*y) € Q4, so det(y*y) =
Hp pvalp(det YY) . 0

PROPOSITION 5.7. If B and B’ are two bases, then the B-Maass space and the
B’'-Maass space coincide, i.e., the notion of a Maass form is independent of the choice
of the base.

PROOF. Let B and B’ be two bases. Write ¢r = 7y 4bkn = Y o'k with b € B,
b e B, Y.q: V. € GLo(K) and kp, kp € K'. Suppose f is a B-Maass form, i.e., there
exist functions ¢ ¢ for b € B, such that for every ¢ and h,

cr(hyg) =t [detyug ™ Y d* o p(s),

deZ,
dle(qf har)

where t = | det goo| e~ 27 " (9xh9) and s = Dgd =2 det h [, #4197 %), Our goal is to
show that there exist functions ¢ ; for b’ € B’, such that for every ¢ and h,

cr(h,q) = t|det yp 4| F Z d" ey ¢(s). (5.6)
dez
dle(a; har)

We have

detp,q = det o det(V'db ") det (kg k). (5.7)

Since det(b'b™1) corresponds to a principal fractional ideal, say (app), under the map
((awp)p) — 11, pvale((p)p) - using [10, Theorem 3.3.1], we can write det(b'b~') =
Qpp Kby € Afe p with kyp € @IX( Then it follows from (5.7) that

B := Kpp det (IiglﬁB/) € @IX( NK* = 0.
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Hence % = 1. Thus |detyp 4| 7% = |detyy 4| Flapy|*. Note that |app|~* is well
defined and only depends on b and b’ (i.e., it is independent of ¢ and h). Set ¢y f(n) =
lop,p| Fep p(n). Then it is clear that ¢y ; satisfies (5.6). O

DEFINITION 5.8.  From now on we will refer to B-Maass forms simply as Maass
forms. Similarly we will talk about the Maass space instead of B-Maass spaces. This is
justified by Proposition 5.7. The Maass space will be denoted by Mi/lfk/z'

We now recall the definition of Maass space introduced in [28]. We will refer to it
as the U(Z)-Maass space. Assume J(K) | k/2, so that by Proposition 3.13 the space
Mp = Mp =M, (U(Z)). Wesay that F(Z) = 3,cscr(h)e*™ ") € Mp is
a U(Z)-Maass form if there exists a function ap : Z>9 — C such that for every h € S,

cp(h) = Y d"'ap(Dgd™?deth). (5.8)

deZ
dle(h)

The subspace of M} consisting of U(Z)-Maass forms will be denoted by M ,1; M,

PROPOSITION 5.9. If 2t hk, then the Maass space M};/[fk/z is isomorphic (as a
C'-linear space) to #B copies of the U(Z)-Maass space M,};M

PROOF. Since the Maass space is independent of the choice of a base B by Propo-
sition 5.7, we may choose B as in Corollary 3.9 and #B = #C = hk, with C as in Propo-
sition 3.8. The map ®g : My _i/2 — [,z M} is an isomorphism. Let f € M%_km and
set (fo)ven = ®p(f). Set ay, := ¢p ;. Then using (5.3), and the fact that the matrices
b commute with h and b*b = I, we see that condition (5.1) for c¢;(h,b) translates into
condition (5.8) for ¢y, (h). Hence <I>5(./\/lkM’7k/2) C Ilhen M. On the other hand if

(fo)ves € [lpen M,?’M, set ¢y r = ay,. Then conditions (5.8) for ¢y, (h) translate into
conditions (5.1) for ¢f(h,b). By Proposition 5.6 this implies that f is a Maass form. [

5.2. Invariance under Hecke action.

It was proved in [28] that the U(Z)-Maass space is invariant under the action of a
certain Hecke operator T}, associated with a prime p which is inert in /. On the other
hand Gritsenko in [17] proved the invariance of the U (Z)-Maass space under all the Hecke
operators when K = Q(7). In this section we show that the Maass space Mz/{fk/Z is in
fact invariant under all the local Hecke algebras (for primes p 4 Dg) without imposing
restrictions on the class number.

THEOREM 5.10. Let p t Dk be a rational prime. The Maass space is invariant
under the action of HY , i.e., if f € ./\/lkak/Q, and g € U(Q)y), then [K,g9K,]f € M}X{km.

REMARK 5.11.  In fact (at least when Dy is a prime) the Maass space is invariant
under H,, which is an easy consequence of the invariance under H; . In this case it is
also invariant under Hp, , hence under all local Hecke algebras. For both of these facts
see Remark 5.20.
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PrROOF OF THEOREM 5.10. We will only present the proof in the case when p
splits in K. For such a prime p the invariance of M}XL k)2 under the action of 'H; follows
from Propositions 5.14, 5.15 below. If p is inert one can proceed along the same lines,
however, it is the case when p splits that is essentially new. Indeed, if p is inert, the
elements of H;‘ respect the decomposition (3.5), hence the statement of the theorem

reduces to an assertion about the action of 'H; on M,? M Then the method used in
[17] can be adapted to prove the theorem. See also Theorem 7 in [28] which proves the
invariance of the U(Z)-Maass space for a certain family of Hecke operators in H;{ . g

Let p be a prime which splits in K. Write pOx = pp. It suffices to prove the
invariance of the Maass space under the operators T, ; and 7}, 2. In the rest of Section
5.2, | will denote a rational prime.

5.3. Diagonalizing Hermitian matrices mod ™.
We begin by generalizing Proposition 7 of [28] to split primes.

PROPOSITION 5.12.  Let n be a positive integer, and assume | { Di. Let h € Sy,
h # 0. Then there exist a, d € Z; with l1{a and u € SLy(Ok 1) such that

w*hu = 19M [“ d} (mod I"S)).

In fact it is enough to prove the following lemma.

LEMMA 5.13.  Proposition 5.12 holds if S; is replaced by the subgroup of Hermitian
matrices inside Mo (O ).

PROOF. For inert [, this is Proposition 7 of [28]. So, assume that [Ox = A\ with
A # A. Without loss of generality we may assume that ¢ (h) = 0. Let (M, M") be the
image of h under the composite

M5Ok, ) — M2(Ok /1"Ok)
2 My(Og JAY) @ Ma(Ox /N = My(Z 1M Z) & My(Z )1 Z). (5.9)

Since the canonical map
SLQ(OK’Z) — SLQ(OK/anK) = SLQ(Z/Z”Z) (&) SLQ(Z/I"Z)
is surjective ([34, p.490]), it is enough to find Ay, Ay € SLy(Z /1™ Z) such that

ALMA; = {O‘ 5] (5.10)

with o Z 0mod p. The existence of such A; and A, is clear. O
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5.4. Invariance under T} ;.
Let g =T, 1 f. Then for ¢ € GLy(Ak) and o € S(A), we can write

DE 5= ot eais(ho)

Define the following matrices
o= (17 Y. L) eGl(Q,) x GL,(Q,) a=0,1 —1
p,a 1 42 2 p 2 P =UL...,p
and
1
06;37;0 = ( |: p:| ,IQ>,€ GLQ(QP) X GLQ(QP)

For a =0,1,...,p, set ap o to be the images of a;’a in GLy(F},). To simplify notation in
this section we drop the subscript p and simply write o, for oy 4.

ProrosITION 5.14.  The Maass space is invariant under the action of Ty 1, i.e., if
fe M}}fﬁk/w then g € Mi/{f}c/l

PrROOF. Choose a base B in such a way that for all b € B we have b, = Iy if [ | D.
For b € B write bg for ], [vali(detb"b) By Propositions 5.6 and 5.7 it is enough to show
that there exist functions ¢, 4 : Zy — C' (b € B) such that

cg(h,b) = e 2" h N @ le, ((Did*bg det h). (5.11)

deZ
d|e(b* hb)

For b € B, set b/ = ba,. Note that all of the matrices: bay, bé,, (a =0,1,...,p) belong to
the same class . Denote any of these matrices by ¢. Then ¢ = vy (b'ky € GL2(K)V'K’
and it is easy to see that

1 =bay, a=0,1,...
det’yl’:,’q: . q Aa I 7p
p q:baaaa:()a]-a"'apa

and

p q=ba, a=0,1,...,p

Hvall(det q*q) = bg % { o
1

P q="ba, a=0,1,...,p.

Set ho := b*hbd and write hg = e(ho)h’ with e(h') = 1. Set D = Dg deth and D’ =
D[], [vali(det h) Using Proposition 4.4 and the fact that f is a Maass form, we obtain
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p
cg(h,b) = e 2mtrh (ﬁz > d" ey (DA bgp)

a=0 deZ
dle(ab*hbog)

+pk2 Z dk_lcb/,f(Dd_Qpr_l)> . (5.12)

deZy
d| (G&nb™ hbaa)

Using Proposition 5.12, one can relate e(alhoa,) and e(&ihod,) to €(hg) for a =
0,1,...,p, and then (5.12) becomes

(h b —27rtrh ZZA(l —27rtrh

PP AP 4R+ 1) AT pt D,
0 1
X
1)21421) +pZZA((11) +kaA(([1) +pk+1ZA£l*1) P ‘ D/,
0 1 0 1
(5.13)

where )" Agm) D dipre(ho) 4 m) A( = d* ey ;(Dd"2bgp™) and if there is no d
dividing p™e(ho), we set > = O

For D in the image of the map h — Dge(h) ?bgdeth and b € B we make the
following definition

Cb7g(D) = p2(p + 1)Cb/7f(Dp) —|—pk(p + I)Cb/7f(Dp71), (514)

where we assume that ¢y (n) =0 when n ¢ Z,. If D is not in the image of that map,
we set ¢y, 4(D) = 0. Note that we clearly have

cg(h,b) = e 2" hey (Dybg det h)

for every h with e(b*hd) = 1. Thus to check if g lies in the Maass space we just need
to check that (5.11) holds with ¢ 4 defined by (5.14). This is an easy calculation using
(5.13). O

5.5. Invariance under T} ».

This is completely analogous to the proof for T}, 1, hence we only include the relevant
formulas for the reader’s convenience.

Let g = T 2 f. Define matrices:

= (7 | n) e @) > e,

’y; = ( |:1 p:| ,IQ) S GL2(Qp) X GLQ(Qp), a=0,1,...,p—1,
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i ([ ] ) < e cnian

and set 3, to be the image of 3), in GLy(K}), and v, to be the image of 7, in GLy(K))
(a=0,1,...,p).

PROPOSITION 5.15.  The Maass space is invariant under the action of T}, o.

PRrROOF. This is similar to the proof of Proposition 5.14. Let b, D, D', h, h’ and
ho be as in that proof. Then for all a, ¢, we see that b3, b8y, by,Y. all lie in the same
class b = b3,. One has

1 q= bﬂp
detyf , = 4P F  4="0vAe, a,c€{0,1,...,p}
p72k q= bﬂApv
and
p2 q= bﬂp
Hvall(detq*q) =bgx«q1 q=bVaYe, a,c€40,1,...,p}
l p—2 q= be

Using Proposition 5.12 as in the proof of Proposition 5.14 we obtain

cy(h,b) = 627rtrh<p4ZA((iQ) Jrpzkz:Al(i—w erkﬂ(erl)ZAz(iO) +pk+3z:A((7l0))
1 —1

0 —1
Py A pt D
-1
4 e 2mtrhph+l pZAElO) p| D', p*tD (5.15)
0
ZA(O) +(p— 1)ZA(O) p? | D',
1 0

where if there is no d dividing p"e(hg), we set )~ = 0. For D in the image of the map
h +— Dye(h)™2bg det h, we make the following definition:
cb.g(D) = prey p(Dp?) + (B3 + p"+2 + pF ey (D)
0 p1D
+ 90" 2ey (D) p| D, p*tD (5.16)
P2y (D) +p*ey s (Dp~?) p*| D.

We now check as in the proof of Proposition 5.14 that g is a Maass form. O
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5.6. Descent.

In this section we assume that hg is odd and choose a base B as in Corollary 3.9.
One has #B = #C = hx with C = {p, | b € B}. We also assume that I> € B. Let xx
be the quadratic Dirichlet character associated with the extension K/Q. For a positive
integer n, set

ax(n) = #{a € (iD;{l/Q(’)K)/(’)K | DkNgjg(a) = —n  (mod Dg)}.

THEOREM 5.16.  There exists a C-linear injection of vector spaces

Descg : M%,k/z — H My 1(Dk, XK),
beB

such that Descg(f) = (v)ven with ay, (n) = i(ax(n)/v/Di)cy, r(n), where ag, (n) is the
n-th Fourier coefficient of ¢p. The map Descp depends on the choice of B.

ProoFr. This follows immediately from [28], Theorem 6 and formula (4) using our
assumption on B and (5.3). O

REMARK 5.17. Krieg in [28] explicitly describes the image of the descent map he
defines and denotes it by Gi—1(Dxk, xx)*. The image of Descg is exactly

H Gr-1(Dk,xx)* C H My_1(Dr, Xk)-
beB beB

Identify B with Clg via the map that sends b to cx (det b), where cx : A} — Clg is
the canonical projection. Then Clg acts faithfully on B by multiplication and defines an
embedding s : Clg — S, where Si is the group of permutations of the elements of 5.
Write Sp for the image of s. For a split p with pOg = pp, let a; 4, be as in Section 5.4.
Note that ag, = a5 . Write 0y ,, == sock (det ag’p). If A= (ap)pep is an ordered tuple
indexed by elements of B, and o € Sg, define o(A) to be the B-tuple whose b-component
is ag(p). Write ap , = Vp.n0pn(l2)kpn for vpn € GLa(K) and Ky, € K.

Write T}, for the classical Hecke operator acting on elliptic modular forms, i.e., for
6(2) = Y00, a(m)ePTnE € My (N,) define ¢ i= T, by ¢/(z) = Y00, ' (n)e2ns
with @’(n) = a(np) + ¥(p)p™ ta(n/p). Here a(n) = 0 if n € Z>o. The action of
T, on My _1(Dk,xk) extends component-wise to an action on [], .z Mr_1(Dk, xK)
which we will again denote by T,,. Write T}, for the C-subalgebra of endomorphisms of
[l Mi—1(Dx, x i) generated by T, if p is split (resp. by sz if p is inert) and the group
Si.

THEOREM 5.18.  Let p be a rational prime which splits in K. There exists a C-
algebra map

S St
Descpp : Hy — T,

such that for every T € H;‘ the following diagram
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T
MY MY

iDescB Descp i

Descg,p(T)
[lpen Mr—1(Dk, Xx) iz [lpen Mr—1(Dx, Xx)

commutes. Moreover, one has

Descp p(Tp1) = p> *2(p+ )T, 001, (5.17)
Descg p(Tp.2) = p4*k(T5 +pF 4 pF ) 00y 0.

PROOF. This follows from Theorem 5.16, and formulas (5.14) and (5.16). Just
for illustration, we include the argument in the case of T;, ;1. Let f € /\/lkMﬁ k)2 and set
g =Tp1f. Fix b € B and write by for o,1(b). One has oy, = Yb'k, where v = v, 1 €
GLy(K), k= kp1 € K', V' = 0y,1(12) € B with v, k diagonal. In fact one can choose 7 to
be of the form [! ,]. Write b0’ = 5 b1kpr € GLa(K)b1K', where vy 1, kpp are scalars.
Then

b p = YU K = Yy 1 b1 Kk b -
Identify M%_k/g with [[.c M,?M via f' — (f)cen. For fl € M,?’M, h € S, denote
by cg/(h) the h-Fourier coefficient of f.. We will study the action of T}, 1 on cy, (h).

Since f is a Maass form it is enough to consider h of the form [l #]. Fix such an h. Set
D = Dk det h. Then by (5.3) and (5.14),

cg (h) = €7 ey (h,b) = p*(p + 1)(cbay . £ (D) + 1" *eha, , 1 (DP 7).

By (5.3) and (5.1), we have

e <h [1 p: ) - ezmh[lp]cf(h [1 p} ’bl) = s (D7)

— | det YVb,b! |kcbap’pﬁf<Dp)7

ct,, (h {1 l/p: ) _ zmun[ 1/p]cf (h {1 1/p} ,bl) = ¢y, 1(Dp™h)

= |det YY1 [Feba, ,.r (DP 1),

(5.18)

where we have used the fact that e(h) = e(h [1 p] ) =1= e(h [1 1/p] ) for h as above
(the last equality holding for h such that h [1 1 /p] € S). This gives us

cgy () = p*(p+ 1) det yyu1 | ~*(cv,, s (Dp) + " 2cv, 1 (Dp™1)).

Note that | det y|* = pF/? since if we write 2 for the adele whose p-th and p-th component
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is p and all the other components are 1, then we have
2*/% = | det ap ¥ = | det y|*| det b'|¥| det w|*.

The claim now follows from Theorem 5.16 and the fact that | det v, 4 |¥ = 1, which follows
from bb* = b'(b')* = Is. O

For completeness we also include the analogue of Theorem 5.18 for an inert p. It
can be proved in the same way or can be deduced from the results of Section 3 of [17].

THEOREM 5.19. Let p be a rational prime which is inert in K. There exists a
C'-algebra map

Cyt
Descgp : Hy — T,

such that for every T' € 'H,, the following diagram

T
M%—k/z M%—kﬂ

\L Descp Descp J{

[Toes Mr-1(Dr, xx) [Toes Mr-1(Dr, xx)

Descg,p(T)

commutes. Moreover, one has

Descpp(Tpo) = p~ " P + D)I2 +p* +p° +p— 1, (5.19)
Descpp(Up) = p* (T + (p+ 3)p" T + p* *(p* + p+ 1))

5.7. L-functions.

In this section we study eigenforms in M%_ k)2 and give a formula for the standard
L-function of such an eigenform.

From now on assume that Dy is prime. It is well-known that this implies that
hg is odd, hence we can (and will) choose B be as in Corollary 3.9. One has #B =
#C = hg with C = {py, | b € B}. On the other hand, for such a Dy the space
Sk—1(Dx, xx ) of cusp forms inside My,_1 (D, x k) has a basis A/ consisting of newforms.
In particular, if ¢ € Sy_1(Dk,xk) is an eigenform for almost all Tj,, it is so for all

T,. For ¢ = 377 ay(n)e*™™™* € Sy_1(Dk,xk), set ¢#(z) := Y 0" | ap(n)e?™=. Let
N’ C N denote the set formed by choosing one element from each pair (¢, ¢”) such
that ¢ € N and ¢ # ¢”. Then the set {¢ — ¢” | ¢ € N’} is a basis of S;_;(Dk, xk) =
Gi_1(Dk,xx)NSk—1(Dk, xk) (cf. [28, Remark (b) on p.670]). Let x € Hom(Clg,C*).
Recall (cf. (3.6)) that we have the decomposition

My 12 = &b X w2 (5.20)

x€Hom(Clg,C %)
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Let S, /2 denote the subspace of cusp forms in My, _j /o and write S}C\/’{km for Sp,_r/2N
M%—k/Q' It is clear that a decomposition analogous to (5.20) holds for Sy _j/2, with
S;(ﬁk/Q having the obvious meaning. Write S}C\/’[;Xk/z for S,lc\f[_k/z N Mzﬁk/?

Let T}, be as in Section 5.6 and write T}, for C-subalgebra of the ring of endomor-
phisms of Si_1(Dx, xx) generated by T, (for p split) and T]D2 (for p inert). The algebra
T, actson S;_ (Dk, xk). For ¢ € N, the element ¢—¢” € S;;_,(Dxk, xx) is a non-zero
eigenform for T/, and for every x € Hom(Clg, C*), the B-tuple

Oy = (x(cx (det0))(d — ¢”))ves

is an eigenform for T}, for every p # Dy . Below we will write x(b) instead of x(ck (det d)).
Hence fg = Descgl(qu) lies in S;A;Xk/z and is an eigenform for H, for every p # Dk.

REMARK 5.20.  Since 2 { hg, the prime p such that DxOf = p? is principal. Hence
one can use the calculations in [17] to conclude that the Maass space is also invariant
under the action of Hp, and hence that fy4, is an eigenform for H, for all p. Also note
that for a split prime p and a prime p of K lying over p the operator A, acts on fg4
via multiplication by a scalar, so we conclude that the Maass space is in fact invariant
under H,,.

We have proved the following proposition.
PRrROPOSITION 5.21.  Let Descp be the map from Theorem 5.16. The composite
Desc pr
MYy — H My-1(Dge, Xx) —2 My—1(Drc, XK
beB

induces C-linear isomorphisms S}C\/I’_Xk/Q = S} (Dk,xk) for every x € Hom(Clg,C>).

The inverse of such an isomorphism (for a fized x) is induced by
&=’ fox = Descgl(d)x)

for any ¢ € N'. Moreover, these isomorphisms are Hecke-equivariant with respect to the
Hecke algebra maps (5.17) and (5.19) except that in (5.17) we replace composition with
0p.n by multiplication by x(ay ).

It follows that if ¢ runs over N’ and Fj denotes the Maass lift of ¢ in the sense of
Krieg [28], i.e., Fy = Desci (¢ — ¢*) € MM, where Descg : MM =S¥ (Dk, xx)
is the (non-Hecke-equivariant) isomorphism constructed in Theorem on p.676 of [28],

then the set of B-tuples {(x(b)Fy)vep} is basis of eigenforms of Sllc\/lixk/z after we identify
S}C\/’[’_ka with its image inside [],z M,

Let ¢ € Sk—1(Dk,xx) be a newform and write fy, € S}C\A;Xk/Q for its Maass lift

as above. For a unitary Hecke character ¢ : K* \ Ay — C* and a Hecke eigenform
fe S;‘_k/Q denote by Lg(f,s,v) = Z(s, f,%) the standard L-function of f twisted by
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¥ as defined in [37, Section 20.6] with the Euler factor at Dg removed. Moreover, for
the newform ¢ € Sk_1(Dxk,XxKk), and a prime p of Ok of characteristic p # Dk, set

Qpj = aiw where «, ;, j = 1,2 are the p-Satake parameters of ¢ and d := [Ok /p : F}).

For s € C with Re(s) sufficiently large, define

LBC(¢),s,¢) == [] ] —¢"(p)ap;(Np)~)~",

PID j=1

where ¥* denotes the ideal character associated to 1) and Np denotes the norm of p. It
is well-known that L(BC(¢), s, ) can be continued to the entire C-plane.

PROPOSITION 5.22.  Let ¥ be a unitary Hecke character of K. The following iden-
tity holds:

Lst(fo.x8,9) = LBC(¢), 5 = 2+ k/2,x¢) L(BC(9), 5 — 3+ k/2, x¢)).

Proor. This is an easy calculation involving Satake parameters. g

REMARK 5.23. In [24] Tkeda has studied liftings from the space of elliptic cusp
forms into the space of Hermitian cusp forms defined on the group U,, with no assump-
tions on the class number of K. In particular he constructs a lifting Si—1(Dk, xXx) —
Sk,—k /2, which agrees with the map ¢ — f4 1, where 1 denotes the trivial character. The
method used in [24] is different from ours.

5.8. The Petersson norm of a Maass lift.
Let ¢ € Sk—1(Dxk,xk) be a newform such that ¢ # ¢?. Let x : Clg — C* be a
character. Write fy ., € S}C\/I’_Xk/Q for the Maass lift of ¢.

THEOREM 5.24.  Let £ > 3 be an odd prime and assume £{ hx Dyk. Then one has

<f¢,X7 f¢,x> = Cﬂ—_k_2 : <¢7 ¢> L(Symm2 ¢> k)7

where Cy, € Q™ is an l-adic unit and

L(Symm2 o, s)_1 = H (1- aip_s)(l —apBpp~ )1 — ﬁzp_s)
ptDk

x TT (= a)*»~)(1 - alp) p™). (5.21)

p|Dk

Here oy, B, are the classical p-Satake parameters of ¢ and a(p) is the p-th Fourier
coefficient of ¢.

Proor. As indicated above the form fg, corresponds to a #B-tuple of classical
Hermitian modular forms (x(b)Fy)scn, where Fy is as before, under the identification of
Sllc\i[;xk/Q with its image inside [,z M,?M Since x(b) is a root of unity for every b € B
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we have by (3.8) that (fe y, fox) = (Fg, Fy). The result now follows by Proposition 17.4
in [24], which is essentially due to Sugano—see the references cited in [loc.cit.]. O

6. Completed Hecke algebras.

Let ¢, as before, be a fixed prime such that ¢4 2Dg. Suppose Dy is prime. Then
the space Sk_1(Dk, Xk ) has a canonical basis N consisting of newforms. The goal of
this section is to construct a Hecke operator T" acting on the space SZQ /2 such that

T" preserves the (-integrality of the Fourier coefficients of the Hermitian modular forms
in S,ztk/z and such that Thf¢7x = nfe for a Maass lift fg, of an elliptic modular form

¢ and TP f = 0 for all the f € S}C\/I’_ka with (f, f4.x) = 0. Here 7 is a generator of the

Hida’s congruence ideal.

6.1. Elliptic Hecke algebras.

Let Tz be the Z-subalgebra of Ende(Sk—1(Dk, Xk )) generated by the (standard)
Hecke operators 15, n = 1,2,3,... (for the action of T}, on the Fourier coefficients see
Section 5.6).

DEFINITION 6.1.  For every Z-algebra A we set

(i) Ty =Tz Qz A,
(ii) T to be the A-subalgebra of T4 generated by the set

o= {Tp}p split in K U {Tp2 }p inert in K

(iii) T to be the A-subalgebra of T’ generated by ¥/, where ¥/ = ¥/ \ {T}}.

Suppose ¢ = 37 | ay(n)g" € N. For T € Te, set Ay, c(T') to denote the eigenvalue
of T corresponding to ¢. It is a well-known fact that Ay o (T),) = ag(n) for all ¢ € N and
that the set {ag(n)}nez., is contained in the ring of integers of a finite extension Ly of
Q. Let E be a finite extension of Q, containing the fields Ly for all ¢ € M. Denote by
O the valuation ring of E and by @ a uniformizer of O. Then {ag(n)}g¢en nez-, C O.
Moreover, one has Tg = H¢eNE and

To = [[ Tom, (6.1)
m

where T i denotes the localization of Tp at m and the product runs over all maximal
ideals of Tp. Analogous decompositions hold for Tj, and T(’g Every ¢ € N gives rise to an
O-algebra homomorphism T — O assigning to T' the eigenvalue of T' corresponding to
¢. We denote this homomorphism by Ay and its reduction mod w by X¢. Ifm= kerx(z,,
we write mg for m. For simplicity in this section we will drop the subscript O from
notation, so for example, we will simply write T instead of Tp.

Fix a maximal ideal m of T'. Write m’ (resp. m’') for the maximal ideal of T" (resp.
T’) corresponding to m. We have the following commutative diagram
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T T T
ifr/ lw/ lﬂ' (62)
. i Tm

T, — 1T,

where the top arrows are the natural inclusions and the vertical arrows are the canonical
surjections coming from the decomposition (6.1) and its analogues. Note that the local-
izations of the Hecke algebras in the bottom row of (6.2) are Noetherian, local, complete
O-algebras. In [26], we proved the following properties of the maps i and ' (the proofs
in [loc.cit.] are for Di = 4, but they generalize verbatim to the general case).

THEOREM 6.2.  The map i in (6.2) is an injection. Moreover if ¢ € N is ordinary
at £ and ﬁ¢|GK 18 absolutely irreducible, then both i and i’ are surjective.

PROOF. The first statement is Proposition 8.5 in [26]. The surjectivity statement
for 4 is the main result of Section 8.2 in [loc.cit.]—see Corollary 8.12. The surjectivity
statement for ¢’ follows from Corollary 8.10 in [loc.cit.]. O

We also record the following result from [26], which again works for any Dg.

PROPOSITION 6.3 ([26, Proposition 8.13]).  If pylc, is absolutely irreducible, then
¢ # ¢ (modw).

Fix ¢ € N and set Ny := {¢p € N | my = mg}, where my (resp. my) is the
maximal ideal of T' corresponding to ¢ (resp. to 1)). Similarly, we define NV and N 5 1t
is easy to see that we can identify Ty, with the image of T' inside Endc(Sk—1,4), where
Sk—1,6 C Sk—1(Dk, Xk ) is the subspace spanned by Ny. Similarly we define S!b,k—l and

S;),k_l.
LEMMA 6.4. Suppose that ¢ is ordinary at ¢ and that ﬁ¢|GK 1s absolutely irre-

ducible. Then ./\7(;’5 = N, and the set Ny is formed from the set N, by choosing one
element from each pair (1,9") such that ¢ € N.

PrOOF. The last statement can be directly deduced from Corollary 8.4 in [26], so
we just need to show that if ¢» € A7, then ¢y € N (2/5 This, as we will demonstrate, follows
from ordinarity of ¢. Indeed, since the forms ¢ and ) have congruent Hecke eigenvalues
for all the operators in T, one can easily show (using Tchebotarev Density Theorem and
the Brauer—Nesbitt Theorem) that p,|c, = pylc,- We will explain the case when £ is
inert in K (the split case being very similar). Using ordinarity at ¢ we conclude that
both of the representations py and py, when restricted to the decomposition groups at
the prime [ of K lying over ¢ have a one-dimensional unramified quotient on which G
operates by the character which sends Frob; = Frobf to the square of the unique unit root
ay, of the polynomial X2 —ay, (£)+xx (£)¢5=2, where h € {¢,%} and ay,(¢) is the eigenvalue
of the operator T corresponding to h. So, ap(£)? = a2 + 2xx (£)0F=2 + ¢**~*a; 2. Since
Polak = Pylay, we conclude that o = of, (mod w) and hence a4(¢)* = aj,(¢) (mod w).

O
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Write Ty, ® E = E x Bg, where Bg = HweN¢\{¢} FE and let B denote the image

of T\, under the composite Ty,, — Ty, @ B oo, Bpg, where 7y is projection. Denote
by § : Ty, — O x B the map T + (A\y(T), 74(T')). If E is sufficiently large, there exists
1 € O such that coker § = O/nO. This cokernel is usually called the congruence module
of ¢.

PROPOSITION 6.5. Assume ¢ € N is ordinary at £ and the associated Galois
representation pg s such that ﬁ¢|gK 18 absolutely irreducible. Then there exists T € TT%;

such that T = no, To? = ne? and Ty = 0 for all ¢ € ./\7(; \ {9, ¢}
PROOF. The proof is the same as the proof of Proposition 8.14 in [26]. (]

PROPOSITION 6.6 ([20, Theorem 2.5]).  Suppose £ > k. If ¢ € N is ordinary at £,
then

(¢,¢)
Qgay

n = (x)

where Q;f, Q, denote the “integral” periods defined in [45] and (x) is a w-adic unit.

6.2. Galois representations attached to Hermitian modular forms.

Let f € S}?,fk/z be an eigenform for the local Hecke algebra H,, for every p { D.
For every rational prime p, let A, ;(f), j = 1,...,4, denote the p-Satake parameters of
f. (For the definition of p-Satake parameters when p inerts or ramifies in K, see [23],
and for the case when p splits in K, see [18].) Let p be a prime of O lying over p.

THEOREM 6.7. There ezists a finite extension E; of Q¢ and a 4-dimensional

semisimple Galois representation py : Gx — GLg, (V) unramified away from the primes
of K dwiding Dkt and such that

(i) for any prime p of K such that p { Dgl, the set of eigenvalues of ps(Froby)
coincides with the set of the Satake parameters of f at p, i.e., one has

L(pf7 S)P = LSt(fa 8)p7

where Lgi (f, 5)p s the p-component of the function Le(f, s,1) introduced in Section
5.7 and L(py, s)p = det(Iy — ps(Froby)(Np)=*)~1;

(ii) if p is a place of K over {, the representation py|p, is crystalline (cf. Section 9).

(iii) if £ > k, and p is a place of K over {, the representation p¢|p, is short. (For a
definition of short we refer the reader to [12, Section 1.1.2].)

(iv) one has p¥(3) = p°x~2, where ¢ denotes the lift to Gg of the generator of

Gal(K/Q) and p°(g) = p(cge™?).

REMARK 6.8. Theorem 6.7 is stated as Theorem 7.1.1 in [40]. It is proved in [39]
—see Theorem B. We refer the reader to [40, Section 7] for further discussion. Galois
representations attached to Hermitian modular forms are also discussed in [5] or [3].
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REMARK 6.9. It is not known if the representation py is also unramified at the
prime Dg. See [2] for a discussion of this issue.

6.3. Integral lifts of Hecke operators.
Fix a character x : Clg — C* and for every prime p { Dk write Hy for the quotient
of H} acting on Slchk/z'

DEFINITION 6.10. For a prime p which splits in K as pp set X, = {T}.1,T},2,
Ts,1, 5,2} and for a prime p which is inert in K set X, = {T}0,Up}. Set H} to be the
Z-subalgebra of EndC(S,z‘fk/Q) generated by the set Up’(DKé Y,. For any Z-algebra A
set HY = HE ®z A.

Note that H% is a finite free Z-algebra. As before let E be a sufficiently large finite
extension of @, with valuation ring O. We fix a uniformizer w € O. To ease notation
put HX = HY,.

LEMMA 6.11. Let £ t 2Dk be a rational prime, E a finite extension of Q, and
O the valuation ring of E. Suppose that f € S/f,—k/z’ T € HX and cy(h,q) € C is the
(h, q)-Fourier coefficient of f. Write cry(h,q) for the corresponding Fourier coefficient
of Tf. Assume that there exists a € C such that acg(h,q) € O. Then acrys(h,q) € O.

ProOOF. This follows directly from Propositions 4.4 and 4.5 (note that the powers
of p in Proposition 4.5 are f-adic units). O

PROPOSITION 6.12.  The space Sli(—k/2 has a basis consisting of eigenforms.

PRrROOF. This is a standard argument, which uses the fact that Hg is commutative
and all T' € HE are self-adjoint. O

From now on N will denote a fixed basis of eigenforms of S /2

THEOREM 6.13.  Let f € N®. There exists a number field Ly with ring of integers
OL, such that the f-eigenvalue of every Hecke operator T' € H’éLf lies in Op, .

PrRoOF. This can be seen as a consequence of Theorem 6.7. O

Let ¢ be a rational prime and E a finite extension of Q. containing the fields Ly
from Theorem 6.13 for all f € N". Denote by O the valuation ring of E and by w
a uniformizer of O. As in the case of elliptic modular forms, f € N gives rise to an
O-algebra homomorphism HX — O assigning to T the eigenvalue of T' corresponding to
the eigenform f. We denote this homomorphism by Af. Proposition 6.12 and Theorem
6.13 imply that we have Hj, = er/\/h E. Moreover, as in the elliptic modular case, we
have

HX = [ HE. (6.3)
m

where the product runs over the maximal ideals of HX and H denotes the localization
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of HX at m.
The descent map Desc defined in Section 5.6 induces the following map (for which
we use the same name):

Desc : HX — T, (6.4)

given by the following formulas (cf. Theorems 5.18, 5.19 and Proposition 5.21)

Desc(Tp 1 ui(p + 1)1,

up(T7 4+ p* 1+ p"73),
(6.5)

Desc(Tp,0

)

)

Desc(T},2)
) =us(p® + )T +p* +p* +p—1,
)

Desc(U,

wsT) +us(p + 3)T2 + p** 4 (p? +p+ 1)

where w1, ug, ug, ug, us € OX.
The first two formulas in (6.5) are for a prime p of K lying over a split prime p # ¢
and the last two for an inert prime p # £. The map (6.4) factors through

Desc : HX — HMX — T/, (6.6)

where HMX is the quotient of HX acting on the space Sgd;xk /2 Now fix a newform
¢ € Sk—1(Dr, xx) such that p,|c, is absolutely irreducible. Then by Proposition 6.3
we in particular have that ¢ # ¢°. Write f4 , for the Maass lift of ¢ lying in the space
S,lg\/f;xk /2 Write mj, for the maximal ideal of T" corresponding to ¢ and my (resp. my)
for the corresponding maximal ideals of HX (resp. HM:X). The map (6.6) induces the

corresponding map on localizations:

Desc : Hy, — Hi\n/[i/lx — TI%;. (6.7)

PROPOSITION 6.14. Let ¢ € N be such that ﬁ¢|GK is absolutely irreducible. Assume
0t (k—1)(k—2)(k —3) and that ¢ is ordinary at £. Then the map (6.7) is surjective.

PROOF. This is very similar to the proof of Proposition 5.14 in [26], so let us only
set up the argument. Let p{ Dk be a prime. We need to show that T, is in the image
of Desc. Note that by the first formula in (6.5) this is clear if ¢ { (p + 1) (for a split
p) and (by the third formula in (6.5)) if £ { (p?> + 1) (for an inert p). As discussed in
Section 6.2 to every eigenform f € S,’:ﬁ /2 One can attach an f-adic Galois representation
pr : Gk — GLy(E) and it follows from Theorem 6.7(i) and Proposition 5.22 together
with the Tchebotarev Density Theorem and the Brauer—Nesbitt Theorem that

pron = |10 @ xe* M2, (6.8)

(Pg @ €)lak



834 K. Krosin

where we treat y as an l-adic Galois character via class field theory (here [ denotes a
prime of K lying over £). We now proceed as in the proof of Proposition 5.14 in [loc.cit.]
using representation (6.8) instead of (5.12) in [loc.cit.]. O

The above arguments yield the following result.

THEOREM 6.15.  Let ¢ € N be such that py|c, is absolutely irreducible. Assume
042Dk (k—1)(k—2)(k—3) and that ¢ is ordinary at £. Let fy, € S}CV,I;X,'Q/Q be the Maass
lift of ¢. Then there exists T" € HY such that T f4 = nfsx and Tf = 0 for any
eigenform f € S,L\/I;ka orthogonal to fg. .

Proor. LetT € TT%, be as in Proposition 6.5 and let T € HY,, be an element
¢

of the inverse image of T under the map (6.7), which by Proposition 6.14 is surjective.
Pulling back T to H via the canonical projection induced by decomposition (6.3) we
obtain an operator 7" with the desired property. O

7. Eisenstein series and theta series.

The goal of this section is to express the inner product of a Hermitian Siegel Eisen-
stein series of level N multiplied by a certain Hermitian theta series against an eigenform
f € My, ,k(N) in terms of the standard L-function of f. In this section we also prove that
the Fourier coefficients of the Eisenstein series and the theta series that we will use are
l-adically integral. We derive the desired formulas and properties from certain calcula-
tions carried out by Shimura in [36] and [37]. We will often refer the reader to [loc.cit.]
for some definitions, facts and formulas, but whenever we do so, we will explain how the
statements in [loc.cit.] referenced here imply what we need. We will set hx = # Clk.
The results of this section are valid for U,, for a general n > 1.

7.1. Some coset decompositions.

Let @ be any finite subset of GL, (Ak ) of cardinality hx such that det @ = Clg
under the canonical map ¢ : Ax — Clg.

For r € GL,(Aky), the group r GLn(@K)r*1 is an open compact subgroup of
GL, (Ak ) with det r G'Ln(@K)r_1 = @ﬁ Hence by the Strong Approximation Theorem
for GL,, ([10, Theorem 3.3.1]) we have

GLn(Ag) = | | GLu(K) GL,(C)qr GL,(Og)r™". (7.1)
q€Q

As before, for any g € GL,, we put pq := [q q] € U,,. Write P for the Siegel parabolic of
Uy.

LEMMA 7.1.  For any r € GL,(Aky) the following decomposition holds:

P(A) = | | P(Q)P(R)pyp-Kpp; ",
q€Q



The Maass space and the Bloch-Kato conjecture 835

where Kp :=U,(Z) N P(A).

Proor. Write P = MN for the Levi decomposition. As M = Resg/q GLy/k,
and M NN = {Iz,}, we get by (7.1) with r = I5,:

P(A) = M(A)N(A) = | | M(Q)M(R)pp-Knp, ' N(A),
q€Q

where KCpr :={p, |z € GLn(@K)} C Kp. Set Kp, := p,Kpp, . This is a compact open
subgroup of P(Ag¢). Let

X = ﬂ pKprp; ' NN(A).
qc€Q

(Note if (2n, hg) = 1, Corollary 3.9 implies that we can find @ so that p, are scalars, and

then X = Kp, N N(A).) By [36, Lemma 9.6(1)], we know that N(A) = N(Q)XN(R),
since X N(R) = N(R)X is open in N(A). Thus we have

P(A) = | | M(Q)N(A)M(R)p,Kp,

q€Q
= | | M(@QN@QXN®R)M(R)p,Kp, = | | P@Q)P(R)Xp,Kp,,  (7.2)
qeQ qeQ

where the first equality follows from normality of NV in P and the fact that Ky; C Kp C
P(A) while the third one follows from the fact that X has trivial infinite components.
Note that every z € X can be written as z = qu:pq_1 for some £k € Kp,. Hence
XpeKp, C pgKCpyr. The other containment is obvious, so we have XpKp, = pKp.r.
Thus finally P(A) = | ],co P(Q)P(R)pyKp,, as desired. O

Fix r € GL,(Ak¢) and an integer N > 1. Set
I (N) = Un(Q) NUn(R)p,K;(N)p;*,  for j=0,1

and for any subgroup I of U, (Q) we put I'*’ := T'n P(Q). Note that F?,In (N) = F?ﬁn(N)
for 7 = 0,1 with F?’H(N) defined as in Section 2.2. In the discussion below we keep N
fixed and to shorten notation we write I' = I't (V).

LEMMA 7.2.  The canonical injection
DAL = PQ)\ (Un(Q) N P(A) U, (R)prKon(N)p; )

is a bijection.

PROOF. We need to prove surjectivity. Set Kp, = p.Kpp, ' and Ko, (N) :=
PrKo.n(N)p, . From Lemma 7.1 we get
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P(A)U,(R)p,Ko(N)p; " = | ] P(Q)P(R)peKpUn(R)Ko (N).
q€eQ

Note that det U,,(Q) C H(Q), where H = { € Resg /@ Gm/x | 2T = 1}, and
det(P(Q)P(R)pyKp,Un(R)Ko,(N)) C det p,H(Q) det D,
with D = U, (R)Ko.(N). Thus
Un(Q) N P(Q)P(R)pyKp,Upn(R)Ko,(N) =0

unless det p, € H(Q)det D. However, @ is chosen so that det p, runs over all the ideal
classes of K. It follows from Lemma 8.14 in [36] that there is a bijection between Clg
and H(A)/H(Q) det D, thus detp, € H(Q) det D only for one ¢ (which without loss of
generality we can take to equal I,). Thus

(Un Q) N P(A)UR(R)pr’CO,n(N)p;l)
P(R)KP,rUn(R)ICO,T(N))
Un(R)Ko,r(N)). (7.3)

Thus if g € U,(Q) can be written as g = pk with p € P(Q) and k € U,(R)Ko,(N),
then clearly p~'g € T',. O

We will need more congruence subgroups. Let T'(N) := I''(N) be the subgroup
introduced in Section 2 and set

Tu(N):= { {g g} eTIg,.(N) ‘ 1—detD € N(’)K}.

LEMMA 7.3.  The canonical injection
D(N)P\T(N) <= Ty (N)" \Tu(N)
18 a bijection.

ProoF. This follows from strong approximation for SL,,. O

7.2. Eisenstein series.
As before, let N > 1 be an integer and set Ok, = Z, ® Og. Let ¢ be a Hecke
character of K satisfying

Yoo(x) = 2™ |2|™™ (7.4)

for a positive integer m and
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Yp(z) =1 if p# oo, € O, and z—1€ NOk. (7.5)
Set Yy = Hp\ N ¥p. Let 0p denote the modulus character of P. We define
e M(Q)N(A) \ Un(A) — C
by setting
pp(g) = L
Y(det dg) My (det di) Vi (koor tn) ™™ g = gk € P(A) (K, 0oKo.n (V).
Note that pup has a local decomposition up = Hp 1pp, where
Vp(detdg,) ™t if pt Noo,
1rp(apky) = { ¥p(det dqp)ilwp(dEt d,) ifp|N,p# oo, (7.6)
Yoo(detdy ) 1 (koo,3)™™ if p=o00
and dp has a local decomposition dp = Hp dp,p, where
A _
dpp i uk | = |det Adet A|q, . (7.7

DEFINITION 7.4. The series

E(g,s, Nm,w):= > pup(v9)dp(yg)*?
VEP(Q\UA(Q)

is called the (Hermitian) Siegel Eisenstein series of weight m, level N and character 1.

For z € U,(Ay), g € U,(R) and Z = gi,, we define ([37, (17.23a)])
Ex(Z,s,m, ¢, N) = j(g,in)" E(zg,s, N, m, ).
Fix 7 € GL,(Axky), write A, = P(Q) \ (U,(Q) N P(A)p,U,(R)Ko(N)p;!). Then
By (Z,5,m, 6, N)

= ¢(det r™)| det(rr*)% Z N(ayp, (a))*Ylal,, det(Irrl(Z))S_m/2|ma7
a€A,

(7.8)

where a,,_(a), ¥[a]p, are defined in Section 18 of [36]. (Our notation differs slightly
from that in [36], which we quote here. In particular our r corresponds to ¢ in [loc.cit.]
and one has §(Z) = detn(Z) by (6.3.11) in [loc.cit.] and n(Z) = 2Im(Z) by (6.1.8)
in [loc.cit.].) As stated in the proof of Lemma 17.13 of [37], there exists a finite set
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B C U,(Q) such that A, = | |, Spb, where S, = (P(Q) N Uy, (R)bI:b~1) \ b0~ 1. By
Lemma 7.2, we can take B = {Iy,}. It follows then from the proof of Lemma 17.13 of
[37], that a,, (v) = ap,.(I2n) for v € S, = (P(Q) NU,(R)I';) \ T'y. By the definition of
ap, (a) in [36, Lemma 18.7(3)], we get a,, (l2,) = O ([36, (18.4.4)]), so for v € Sy, we
have

N(ap, (7)) = N(ap, (I2n)) = 1.
Moreover, for v € Sy, , we have by [36, Lemma 18.7(3) and (12.8.2)]
UDlp, = Yoc(det dy ) (det dyap, (7)) = too(det dy )" (det dyap, (T20) ")
= Yoo(det d.)1p* (det d, Ox) = ¥y (det ds,). (7.9)
Hence we get
By, (Z,s,m,4,N)

= e(det r™)| det(rr™)[g Z Y (det d,) "t det(Im(Z2))*~™/2|,.7. (7.10)
~eLP\T,

In what follows we will write E, instead of E,, for r € GL,,(Ak ). For any congru-
ence subgroup I' of U, (Q) we define an Eisenstein series (cf. [37, (17.3), (17.3a)] where
a similar definition is made in the case when I' is a congruence subgroup of SU,,(Q)):

E(Z,s,m,T) = Y det(Im(2))*~"™/?|,. (7.11)
YELPAT

Let X = X,, v be the set of all Hecke characters ¢ of K satisfying (7.4) and (7.5).

LEMMA 7.5. Assumer € GL,(Aky) is such that p, is a scalar. Then

> ee(detr*) Y det(rr*)| g En(Z, 5,m, 4, N) = #X E(Z,5,m,T1 n(N)).
PpeX

PROOF. Note that #X # () because of our assumption that N > 1 by Lemma
11.14(1) in [36]. Let z € Ok, (z,N) = 1, be such that there exists ¢’ € X with

P (x) # 1. Then Y-, ¥n(z) = 0. Thus,

A= Z Yr(det r*)_1|det(rr*)|ésEr(Z,8,ma¢7N)

peX
= ¥ ( > e (det dw)‘l) det(Im(Z2))*~™/?| .. (7.12)
YETP\T, “veX

By our assumption on r we have I', = FB’H(N ). Thus the inner sum equals 0 unless
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v € T'y(N), in which case it equals #X. Hence we get

A=#X > det(Im(2))*~"™/?|,,,7.
YET W (N) P\, (N)

Using Lemma 7.3 we further get

A=#X > det(Im(2))* 2|y = #XE(Z,5,m,T(N)). (7.13)
YEL(N)P\T'(N)

Now apply ZVEF(N)\F}I‘ (V) |m7y to both sides of (7.13). We have E,.(Z, s,m, 9, N)|my =
E.(Z,s,m,, N) for every v € F}f,n(N), and

> E(Z,s,m,T(N))lmy = [[1 (V)7 : T(N)"] E(Z, 5,m,T] ,,(N))
YEL(N\TY (V)

by [37, (17.5)] together with Remark 17.12(2). Note also that [I}, (N)¥ : T(N)F] =
[T} ,.(N) : D(N)], hence we finally get A = #XE(Z,s,m, T}, (N)). O

7.3. Theta series and inner products.

If € is an (algebraic) Hecke character of K then £¢ defined by £¢(z) = £(Z) is also an
algebraic Hecke character of K whose infinity type is the conjugate of the infinity type
of .

Let k be a positive integer. Fix a Hecke character £ of K with conductor f¢ and
infinity type |z|'z~* for an integer ¢ about which we for now only assume that ¢t > —k.
We will now define a theta series associated with the character . Let A : M,,(Ak ) — C
be a function given by

Ag) = &ic(detg) if g € M, (Ok) and g, € GL,(O,) for all v | f
9= 0 otherwise.

The map A is a Schwarz function (cf. [37, Section A5] for a more precise statement).
Fix r € S. For Z € H,, set

0:(Z,0) = Y Ma)deta-e(tr(a*raZ)).
aeM, (K)

For g € U,(A) set
Oe(g) = j(g.1)'0(gi, \%),

where | = t+k-+n and the automorphism of the space of Schwarz functions on M,, (A f)
given by A +— A9 is defined in Theorem A5.4 of [37].
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REMARK 7.6. Note that §¢ depends on the choice of the matrix 7. If {g*Tg}geog( =
Z and c is a positive integer such that {9*7_19}geo§( C (1/¢)Z, then 0 € M;(N,y"),
where N = DgcNg/q(fe) by [37, Section A5.5 ] and [36, Proposition A7.16]. Note that
such a ¢ always exists (for example one can take ¢ = det 7). In what follows we fix 7 and
¢ so that {g*Tg}ge(f)?{ = Z and we fix N as above. In particular, we have f¢ | N.

By [37, (22.14b)], ¥ = £ 1™, where ¢ is a Hecke character of K with infinity
type |aso|/ac and such that ¢|3 = xx (such a character always exists, but is not unique
—cf. [37, Lemma A.5.1]). Thus ¢/ (z) = z'™"|z|~*". Let Q@ = B be as in Corollary
3.9. Then 6 corresponds to a #Q-tuple of functions, which we denote following [37] by

(0x.p,) or simply by (6y.q)-
Set m = —t —n. Let v € I'§ , (V). Note that if ¢ is a Hecke character of K, then

Yn(deta,) = Py (detd, ') =S (detd,) . (7.14)

Note that this makes sense because N € Z. Let f € M,, (N). Then f corresponds to
a #Q-tuple of functions (f,). We have

<E(a s, m, Flll,n(N))QX»Qa f¢1>r‘111 W (IN)

-/ ew(Z)( 3 w;v<deta7>E<Z7svm,r?,nuv))m)
th(N)\H

YETY , (N\FG . (N)

x f(2)0(Z)*dz (7.15)
By Lemma 7.5 one has

> Ui (detay)B(Z, 5,m,TT (N)|my
7€ L (ML}, (V)

=#X)7' ) > We(det ¢*) 7| det(qq™)|g" Bq(Z, 5,m, %, N)|,. (7.16)

YEX yery (NG, (N)

Note that for Z = goot, with g = (oo, 1), we have Ey(Z,s,m, ¥, N) = j(goo, tn)™
“E(pgg, 8, N,m, ), and Ey(Z,s,m, 1, N)|my = j(gomin)mj(’y,Z)_mE((goo,pq’y_l),
s, N,m, 1), where we have used the assumption that p, is a scalar. Then by [36,
(18.6.2)], we have E((goo,Pq7 1), 8, N,m, ) = ¥ (detd,—1) "L E(pqg, s, N, m, ). Since
detd,-1 = detd;"' (mod N), we finally get

Eq(Z,s,m, 1, N)|mvy = ¥n(det dy)Eg(Z, s,m, ¥, N). (7.17)

Then using (7.14) we see that (7.16) equals
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#X)™' Y e(detg*) 7! det(qq") 5" Eq(Z, s,m, ¥, N)
PeXx

X > ()% (det d-) T (det ). (7.18)

Y€} (N\TG . (N)

Using the fact that

> (V)5 (det dy) "oy (detd,) = 0

YELY  (N\TG . (N)

unless ¥ = (¢')¢, we obtain

> Ui (detay)B(Z, 5,m,TF (N)|my
+€TY (ML, ()

= (#X) TG, (N) : T] L (N)](w) (det ¢*) | det(gq")g" Eqy(Z, 5,m, ), N).  (7.19)
Hence finally

<E('a S, M, Fkll,n(N))exm f11>1“111,n(]\7)
= (#X) I8, (N) : T (V)] (v) " (det g)| det(qq") |5’
X (Bq(+5,m, ((¥)%), N)Oy g5 fq>r3,"(1v) : (7.20)

Note that the inner product (7.20) makes sense, because first of all (¢')S (x) =

=zt = 2™ |z|™, so the definition of E(Z, s, m, (¢)¢,I'%  (N)) makes sense, and
secondly (using (7.14) and (7.17)) we see that

E(Z7 S, M, (W)C» N)‘W = (w/)]i\ll (det a‘Y)Eq(Zv 8, M, ("//)Ca N)

Hence (Ey(Z,s,m, (V)¢ N)Oy.q) ey = Eq(Z,s,m, ()¢, N)b, 4 for every v € I‘]{)‘)n(N).
Set T' := T}, (N) N SUL(Q). We now relate (E(-,s,m,I} (N))0y.q, fq)
(E(-,5,m,I")0yq, fq)- By [37], formula (17.5) and Remark 17.12(2), we get

e (w0

<E('7 s, m, F?,TL(N))0X7Q7 fq>p? n (V)

= [F}ll,n(N) : F]_l <E(7 S7m71—‘}11,n(N))9X7q7 flI>F

:[rg;n(N):r]—2<( > E(Z,s,m71")ma)9x,q,fq>. (7.21)

a€L\T} (V) r

Since Oy qlia = Oy g and fy|ro = fy for € T} (N) we finally have



842 K. Krosin

<E(" S, m7r?,n(N))9X,q7 fq>F111 ()

N [Fh(]vl)rp Z <(E('ﬂ87m7F)|ma)(9x,q‘la)7fq|ka>p
Ln ’ @€\ (N)
= m <E('v5amvr)‘9x7q7fq>p' (7.22)

7.4. The standard L-function.

Let @ and f be as before and let ¢ € Q. From now on we assume that f is a Hecke
eigenform. Let D(s, f,€) and Dy(s, f,0¢) denote the Dirichlet series defined in [37] by
formulas (22.11) and (22.4) respectively. Let 7 € GL,(Aky) and 7 € ST :={h € S |
h > 0}. Then (22.18b) in [loc. cit.] gives

D(s +3n/2, f,€)

= (det )72  det 7 72 N () (det g) | det g | Dy (s, £,6y),  (7.23)
q€Q

while [37, (22.9)] gives
Dy(s, f,0¢) = ANT((s) ™" {fg: Ox.a EC,5 + ,m,T)) s, (7.24)

where Ay and T'((s)) are defined as follows. Let X, = {h € M, (C) | h = h*}/{h €
M,(Ok) | h = h*} and Xim = {h € M,(C) | h = h*,h > 0}/ ~, where h ~ b’ if
there exists g € GL,(Ok) such that b’ = ghg*. Then X, X Xjn, is commensurable with
It (N)NP(Q)\ H, i.e, the ratio of their volumes is a positive rational number ([37,
p.179]). We set Ay to be this rational number times the vol(X,,)~!. Note that Ay € Q.
We also set (cf. [37, p. 179 and formulas (22.4a), (16.47)])

n—1
F((S)) _ (47T>7(n/2)(25+k+l)ﬂ_2n(n71)/4 H F(S o Z)
=0
Combining (7.22) with (7.20), we obtain
(farOxqB(,5 +m,m, D))y = (#X) TG, (N) T (det g)| det(gq”)|g" ™"
X (fgs Eq(-,5 +n,m, (), N)Oxadr () (7.25)

Combining (7.23), (7.24) and (7.25) we finally obtain

D(s+3n/2, f,€) = An(#X) T8 (N) : TID((s)) " (det 7)*HF+D/2| det 7[5/

X Z | det qq*|é” (fgs Eq(-,5+n,m, ()€, N)9x7q>rgyn(N) :
q€Q
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By our assumption det q¢* = 1, so we get

Dls+30/2, ,€) = An(#X) [T, (V) : TIP()) (et 1) 0472 det [~/
x (f,E(-,54+n,m, (¢I)C7N)9£>ngn(1v) ) (7.26)

We now relate D(s, f,£) to the standard L-function Lg(f,s, ) = Z(s, f,v) of f
as defined in [37, Section 20.6]. In this section we assume that (Dg,fe) = 1. (This
assumption is not strictly necessary, but our formulas complicate if we do not make it.)
Let &, ¢, ¥’ be Hecke characters of K as we defined them above. Let N = Z N (cond ¢).

One has (by [37, formula (22.19)])

cs, (1) Z(s, [,€)
ITpco 90(& (POK)P~2) 1=y L(2s —n— j + 1, x5 7'eg)

D(s, f,€) = (7.27)

Here ¢y, (7) is the 7-Fourier coefficient of f,, and L(s, ) is the usual Dirichlet L-function
of ¢ while [T ¢y, 9 (§* (PO )p~?*) is defined in [37, Lemma 20.5]. Note that the definition
of Fourier coefficients in [37] (cf. Proposition 20.2 in [loc.cit.]) differs from ours and from

the one given in (18.6.6) in [36] (which in turn agrees with ours) by the factor e =277
(so, cf(1,7) in (22.19) of [37] agrees with our ¢y, (7)).
Combining (7.27) with (7.26) we obtain
Z(5+n/2, f,¢)
(f,E(s8,m, () N)be)rs vy =C(8) 7 n (7.28)
I5n(N) Hj:l L(2S —j+1 X +j— 1§Q)
where
O(s) = BXIL(G —m)(det 1) T O detr ey (r) (o)

AN[LS (N) : T e 99 (€7 (pOK )P~ 77)

Following [37, (17.24)], we define
D(9757N7m7¢) _EgaSNm’l/) H 23_.]+17wa%(_1)
Using (7.28) we obtain a formula which we record as a theorem.

THEOREM 7.7.  Assume (hg,2n) = 1. Let f € M, ,(N) be a Hecke eigenform.
Let &, o' be as above. Then

(D(-,s,m, (¢')C,N)95,f>ran(N) =C(s) - Lgt(f,5+n/2,€)

with C(s) defined by (7.29).
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7.5. f-integrality of Fourier coefficients of Eisenstein series and theta
series.
Let D(g,s, N,m,v¢) be as above. Fix r € GL,(Aks). As for the Eisenstein series
E, we define

D,,-(Z,S,m,’l,b,N) = Dpr(ZaSama¢aN) :j(gvin)mD(pTg7st7m7¢)7

where g € U,(R) and Z = gi,,. For s = n — m/2 this is a holomorphic function of Z
(Theorem 17.12(iii) in [37]).

For a function A : U,(A) — C set A*(g) = A(gn; '), where n; € U,(A) is a
matrix with trivial infinity component and all finite components equal to the matrix

J=[; "]

n

We write

D*( {q 0;] n— ’;,N,m,z/)) =" c(h,q)ea(ho).

hesS
From now on let £ be a prime such that ¢ { 2Dk.
THEOREM 7.8.  Suppose we take ¢ = (y/?,q1), where y*/? (resp. q1) denotes the

infinite (resp. finite) component of q. One has

c(h, q) = (¥)e~ 27 *((@0)m) det(qq* )/ 29b(det g1 )| det gy [ />

n—1—rk(h) . n+i—1
« N="° @pn(nt1)/2 I[Lizo Ly —m—i, ¢, Xk ) (7.30)

17 T(n — i) ’

where @ is an algebraic integer and (%) is an £-adic unit. If r < 1 we set ngo =1.

PROOF. The theorem follows from Propositions 18.14 and 19.2 in [36], combined
with Lemma 18.7 of [36] and formulas (4.34K) and (4.35K) in [35]. It is a long but
straightforward calculation. O

DEFINITION 7.9. Let B be a base. We will say that B is admissible if

e all b € B are scalar matrices with bb* = I,,, which implies p;, are scalar matrices
with pepy = Ion;

e for every b € B there exists a rational prime p { 2Dg/ such that by = I,, for all
q1pand by = I,.

The set of primes p for which by # I,, with q | p (or by a slight abuse of terminology the
product of such primes) will be called the support of B.

REMARK 7.10. If (hg,2n) = 1 it follows from Corollary 3.9 together with the
Tchebotarev Density Theorem that an admissible base exists.

For r € GLy(Ak ) write D} (Z) for D} (Z,n —m/2,,N,m,).
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COROLLARY 7.11.  Assume €1 N(n—2)\. If B is an admissible base whose support
is relatively prime to cond v, then for every h € S and for every b € B, the product
w*"(”“)/%h,b lies in the ring of integers of a finite extension of Q¢. Here cpp stands
for the h-Fourier coefficient of Dy(Z).

PrROOF. Let O be the ring of integers in some sufficiently large finite extension of
Q. For any admissible base B, one has by Theorem 7.8

n—1—rk(h)
cn = h(det by HD/2. H Ly(n—m—i, ¢, x5 -,
i=0

where x € O. So, the corollary follows from the fact that ¥ (detb) € O* upon noting
that for every Dirichlet character " of conductor dividing N and every n € Z_q, one has
L(n,y") € Z;[¢'] (by a simple argument using [46, Corollary 5.13]) and (1—4¢'(p)p™™) €
Z[y'] for every p | N. O

We now turn to the theta series. First note that &, (det g)” = 1 for a sufficiently
large integer r (because &, is a character of finite order). So A(a) # 0 only if a €
M, (K) N M,(Og) = M,(Ok) and for such o one has A(a)deta € O (more precisely
A(a@) is a root of unity in O and det @ € Ok).

Fix r,7 as in Section 7.4. Let ¢ € GL,(Ax ).

PROPOSITION 7.12.  Assume q, = r, = I, for every v | fe. Write
Alo,q,7) = {a € M (K) N 1M, (Ok)qg~ ' | a*ra =0, a, € GL,(Ok,,) for all v | ¢}

Then the Fourier coefficient co.(0,q) =0 if det o = 0. If det o # 0, one gets

coc(0,q) = e 27" 7| det q\?(pgo”(det q)&s (det g)&(det 1) Z &5 (det a)det o,
a€A(o,q,r)

where | - |k denotes the idele norm on Ay (cf. [37, p.180]).

PRrROOF. The Fourier coefficient of 0¢(g) is computed in Section A5 of [37] (formula
(A.5.11)), where we have w’ = £71¢". Our formula is slightly reordered and simplified
due to the assumptions we imposed, but this is an easy calculation. Again note the
discrepancy in the definitions of Fourier coefficients between us and [37] pointed out
after formula (7.27). O

COROLLARY 7.13.  Assume r, = I, for allv | f¢Dgl. For an admissible base B we
have that c(g,),(0) = €™ 7¢g (0,b) € O for allb € B and all 0 € S.

PROOF. Let us fix an admissible B. Then we automatically have |detb|x = 1.
Since cond ¢ | Dk, we see that p(detb) € O*. Similarly we get &, (detb) = 1 and
§(detb) € O*. Since &j, is of finite order, we see that &, (det o) € O* for any matrix o
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as remarked above. Finally, since r, = b, = I, for all v | £, we get that for such v and
a € A(o,b,r) one has a,, € My, (Ok ). Since a € M, (K), we get that o € M,,(Ok ),
so deta € O. Since cg,),(0) = €*™ " 7¢g,(0,b) by (5.3), we are done. O

8. Congruence.

In this section we set n = 2 and write U = Uy. Let K be an imaginary quadratic
field of discriminant — Dy, which we assume to be prime. It is a well-known fact that
this implies that the class number of K is odd. Then the space Sk_1(Dg, xk) has a
(unique) basis of newforms, which we, as before, denote by A/. We fix the following set
of data:

e a positive even integer k divisible by #0%;

e a rational prime ¢ > k such that {1 hx D;

e ¢ € NV, which is ordinary at £ such that Polay is absolutely irreducible;

e x € Hom(Clg,C*) and write fy , for the Maass lift of ¢ lying in the space S}i—km;

e ¢ a Hecke character of K of co-type z!|z|™! for an integer —6 >t > —k; we write
f¢ for the conductor of £ and set N = Drhg Ni/q(fe);

e [ € Char(k/2);

e an admissible base B whose support is prime to V.

Let E be a finite extension of Q,, which we will always assume to be sufficiently
large to contain any (finite number of) number fields that we encounter. Write O for its
valuation ring. We also fix a uniformizer w € O.

LEMMA 8.1.  Letb € BandT € S. Writecy, (7,b) for the (1,b)-Fourier coefficient
of f4.x- Then €™ ey, (1,b) € O for arbitrary T € S.

PRrOOF. It is a standard fact that the Fourier coefficients of ¢ are algebraic integers
(the field which they all generate is a finite extension of @), so by our assumption that
O be sufficiently large we may assume that they lie in O. Then the Lemma follows from
(5.1) and the formula in Theorem 5.16. O

DEFINITION 8.2. Let 7 € S and b € B. We will call (7,b) an ordinary pair if the
following two conditions are simultaneously satisfied:

(1) val(e*m ey, | (7,b)) = 0;
(2) (det7,N)=1.

LEMMA 8.3.  An ordinary pair exists.

PrOOF. This is proved like Lemma 7.10 in [26]. Note that the prime py chosen
in the proof of that lemma can be taken to be arbitrarily large because its existence

is guaranteed by the Tchebotarev Density Theorem. Hence condition (2) can also be
satisfied. O

DEFINITION 8.4. Let f and g be two Hermitian modular forms. We say that f is
congruent to g modulo w™, a property which we denote by f = g (mod w™) if there exists
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a base B such that f, and g, both have Fourier coefficients lying in O for all b € B and
fo = g» (modw™) for all b € B. The latter congruence means that w” | (¢, (h) — g, (h))
for all h € S.

REMARK 8.5. Note that if f and g are congruent (modw™) with respect to one
admissible base, say B, and B’ is another admissible base such that f;, and g, both have
Fourier coefficients lying in O for all b € B, then f, = g, (mod ™) for all b € B’. Indeed
this follows from admissibility of B and B’ and formula (5.4).

8.1. The inner product ratio.

Let Ug: My — M, _k/2 be the isomorphism defined in Proposition 3.13. Denote
the restriction of fy, to U(A) again by fs, (cf. Proposition 3.10). Fix 7 € S and
assume that the theta series ¢ was defined using that 7 (cf. Section 7.3). For the
moment we will not assume that we are working with an ordinary pair to obtain a more
general formula for the ratio of the inner products. Set ¢ = det7. Set ¢/ = £ 12
with ¢ as in Section 7.3. Then 6 € M;(Nc¢,¢'), where | = ¢t + k + 2 (see Remark
7.6). Set m = k — . To shorten notation write D(g) := D(g,2 — m/2, N¢,m, (¢')¢) and
D*(g) :== D(gnf_la 2—m/2,Ne,m, (¢/)p)

Since D(g) € My (Ne, (¢')7!) and 6 € M;(Ne,v'), we get DO € My(Ko(Nc))
and D*0; € M(n ' Ko(Ne)ne). For F € Ml?ﬁk/z(J_ll"g(Nc)J) define the trace opera-
tor tr: Mk 2 (JTITE(NO)T) = M 5 (U(Z)) by

tr FF = Z Fliy.

yeJITE(Ne)J\U(Z)

Note that if F' has f-integral Fourier coefficients, then so does tr F' by the g-expansion
principle (Theorem 3.4). The form D*f} corresponds to #B forms (D*0;),, €
MP(J~TB(Ne)J), b € B. This way we can define tr(D*0;). Since both Wg(tr(D*6;))
and fy,  are elements of the finite-dimensional C-vector space My, _j,/2(Ko(N¢c)) we can
write

(= fo)

<f¢>,x>f¢>’x>. (8'1)

E = Ug(tr(D*0;)) = Cfyx +9, with (g, fs) =0and C =

LEMMA 8.6. For any f € My, one has

(Wah). fon) = (95 (o)) -

Proor. We have

(Ws(f), for) = H#B) D (Ta(£)os (for o) = (#B)™1>_ (B(det b) fi, (f5.x)6)

beB beB

Z<fb’ detb f¢'X) >:<fa\ll[;l(f¢ux)>7

beB
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where the second and the fourth equality follow from commutativity of diagram (3.7)

while the third one follows from the fact that B(detb)~! = 3(det b)). O

LEMMA 8.7. One has

=/ _ -1
(&, fox) = (DO V5" (o))

PrOOF. Write x = [U(Z) : TE(Nc)]~!. We have

(& fon) = ((D02), 05" (fo.))
—@#B) Y > (DO U5 (Fande)

beB yeJ—1Th(Ne)J\U(Z)

=#B) ey Y (D00 V5 (fesehr )

bEB yeJ-ITH(Ne)J\U(Z)

—@#B) Y > (D0 (fan)

bEB yeJ 1T (Ne)J\U(Z)

= (#B) 1D (D020, 5 (fanhs)

beB

rh(Ne)
Ph(Ne)
I'B(Nc)

rh(No)

— (DO, W5 (o))

)
T'b(Nc)

where the first equality follows from Lemma 8.6, the third one and the last one from
(10.9.3) in [36] and the fourth one from the fact that \Ilgl(f¢7x) € M. O

PROPOSITION 8.8. Let T be as before. Suppose there exists r € GLy(Ak ) such
that cs, (7,7) # 0. One has

M = (*)7771 #X7rL,Nc773 (det T)7k| det T|%2Cf¢,x (1,7)
(foxs fox) AN[FE(NC) : Tl
L LMBO(@), (t+ k)/2+ 1, BE L™ (BC(9), (¢ +k)/2 + 2, 5Ex ")

Lint(Symm? ¢, k) s ’2)

where T' = TY(N) N SU2(Q) (cf. Section 7.3), (x) € E with val,((x)) <0,

b

t+k w) . T(t+k+j)L(BC(@),j + (t+k)/2,w)

int -
k (BC@MJF 2 rt k200

for a Hecke character w: Ay — C* and
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I'(n)L(Symm? ¢, n)

int 2 —
L™ (Symm* ¢, n) := ﬂn+ZQ;Q;

for any integer n.

REMARK 8.9. The normalized L-values are algebraic (see the proof below) and are
expected to be algebraic integers, but for the moment we know of no proof of the latter
claim.

PrROOF OF PROPOSITION 8.8. By Lemma 8.7 we get

(&, Fon) = (DO, W5 (o))

rh(Ne)

Since the isomorphisms in diagram (3.7) are Hecke-equivariant, \1151( fox) is still a Hecke
eigenform, hence we can apply Theorem 7.7 and get

(DO Y5 (fox)) , = CC=m2) La(¥5 (for):3 = m/2,€)

I't(Nc)

=C(2-m/2) - La(fyx,3 —m/2,B71). (8.3)

Using Proposition 5.22 we get

Lu(fone3 = 07) =2 B0, 58 + 1 ex )2 Beton E 4 207 ).

Moreover, by Fact 2.1 (and the fact that 8 = 87!) we get

p(Bewon 5+ qpex) = £ o), 4 g,

To ease notation write ¢(7) for the 7-Fourier coefficient ¢4, ) (7) of the r-component of
fo- Using the formula (7.29) we get

m\ (FXne) T 22D 4 k4 2)T(E + k + 1)(det ) F| det 7|17 ¢(7)
c(2-5)=0 AN, (Vo) : T) ’

with Ay defined in Section 7.4 and (x) € E with valy((x)) < 0 (note that the product
[T,co 9p(* (pOK )p~°~") in (7.29) is a finite product and g, is a polynomial with coeffi-

cients in Z and constant term 1—cf. [37, Lemma 20.5]). On the other hand we have by
Theorem 5.24 (note that val,(I'(k)) = 0)

(Fouxs Fo) = (x)m %72 (¢, §) L(Symm® ¢, k)T (),

where valy((x)) = 0. Define L*# the same way as L™ except with (¢, ¢) instead of
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Q;fQ; It follows from Remark 6.3 in [26] and from Theorem 1 on page 325 in [21] that
LYM8(BC(¢),j + (t +k)/2,86x7 1) € Q, j=1,2, and from a result of Sturm [41] that
L¥8(Symm? ¢, k) € Q. We note here that [41] uses a definition of the Petersson norm of
¢ which differs from ours by a factor of 3/, the volume of the fundamental domain for
the action of SLy(Z) on the complex upper half-plane. We assume that E contains the
above L-values. It follows from Proposition 6.6 that

(6, 0) = (x) n Q[ Qg (84)

where (x) is a A-adic unit as long as ¢ is ordinary at £ and ¢ > k, which we have assumed.
We also assume that E contains 7. The Proposition now follows. O

8.2. Congruence between f;, and a non-Maass form.

The goal of this section is to prove the following theorem, which is the main result of
the paper. To make the statement self-contained we repeat the assumptions made at the
beginning of the section (the constant Ay is defined in Section 7.4). In the next section
we will formulate some consequences of this theorem.

THEOREM 8.10. Let K = Q(iv/Dg) be an imaginary quadratic field of prime
discriminant — Dy and class number hyg. Let k be an even positive integer divisible
by #0O5 and ¢ > k a rational prime such that ¢ { Dihg. Let ¢ € Sip_1(Dk,Xxk)
be a newform ordinary at £ and such that py|c, is absolutely irreducible. Fir a Hecke
character & of K such that valy(cond &) = 0, £ (2) = (2/]2]) "t for some integer —k <
t < =6, valy(An) > 0 and £ { #(Ok /NOk)*, where N = DxhgNg/g(cond§). Let E
be a sufficiently large finite extension of Qg with uniformizer w. Fiz x € Hom(Clg, C*)
and 8 € Char(k/2). If

2 t+k

—n = valy ( 11 Lint(BC(qs),j 5 ﬂg;ﬂ)) — valg (L™ (Symm? ¢, k)) < 0

j=1

then there exists f € S,fik/Q, orthogonal to the Maass space, such that f = fg
(mod @™).

REMARK 8.11. Theorem 8.10 is a generalization of Theorem 7.12 in [26], which
applied to the case K = Q(i). In that case the character § is unique (and equals @
in [loc.cit.]), the character x is trivial since the class number of Q(i) equals 1 and the
character £ corresponds to the character which in [loc.cit.] was denoted by x.

PRrROOF OF THEOREM 8.10. Consider again equation (8.1). Note that =/ =
Up(tr(D*05)) and g lie in My _j/o and fy, € M} 2. We would like all of the

forms to be in Mz,—km'

LEMMA 8.12. Let Z denote the center of U. The quotient Z(A)/Z(Q) is compact.

PrOOF. Note that Z(A) = U5 Z2(Q)Z(R)pyZ(Z). Since Z(R) is compact, the
lemma follows. O
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Let dz be a Haar measure on Z(A)/Z(Q) normalized so that vol(Z(A)/Z(Q)) = 1.
For f € My, _j /2 set

_ e Ly .
@)= [ e e = e 2 ) €My

where by x~1(2), x *(py) we mean x~'(cx(det 2)'/?) and x~!(ck(det b)) respectively
with c¢x : A} — Clg the canonical map. The last equality clearly implies that a Fourier
coefficient of 7, f is in O when the corresponding Fourier coefficient of f is in O (since
¢t hg). Note the slight abuse of terminology when we say that f (or other adelic
Hermitian modular form) has Fourier coefficients in O. By saying so, we mean that for
h € 8 and r € GLy(Aky) one has e>"hcp(h,r) € O. We will continue this abuse.
Apply 7, to both sides of (8.1). Write E = 737, =’ and go = 7~ 3m,g. Then we have

E=Coxfox+g0€ M;cc,fk/z (8.5)

with (go, fe) =0 and Cy , =7 3C.

Combining Corollaries 7.11 and 7.13 we get that for every b € B and every h € S,
the h-Fourier coefficient cz, (k) of 2 is in O.

Fix an ordinary pair (7,bp) and as before set ¢ = det 7. Then valy(c(7)) = 0 with
¢(7) as in Section 8.1. Since N¢ > 1 it follows from the proof of Lemma 11.14 in [36]
together with Lemma 11.15 in [loc.cit.] and the remark following it that the order of
X Ne equals the index of the group {z € AX |z, € le(,p and z, — 1 € NcOkg, for
every p t oo} inside Aj. Hence in particular the assumptions in the theorem imply that
0t # X0 Ne. So, from (8.5), (8.1) and Proposition 8.8 we obtain that

S LMBC(9), (t+K)/2+1, BT LM (BC(9), (t+ k) /2 +2, 67"
L™ (Symm? ¢, k) ’
(8.6)

Cox = (¥)1

where valy((*)) < 0 since det 7 € O, Ay € O and [['}(Nc) : T] € Z. Note that under our
assumption on the L-function (and ignoring the factor n=!), this equality (together with
fact that for every b € B the forms =, and (fy ), have Fourier coefficients in O) implies
that we must have a mod @w"” congruence between f4, and —w"gg. However, there is
no guarantee that gg is orthogonal to the Maass space. So, we will now use the Hecke
operator T" which we constructed in Section 6 to ‘kill’ the ‘Maass’ part of go.

Indeed, by Theorem 6.15 there exists T" € HY such that Thf¢,x = Nfex and
Thf =0 for any eigenform f € S%;Xk /o orthogonal to fe,y.

We apply T" to both sides of (8.5). Asforallb € Band h € S, the Fourier coefficients
e?™hez(h,b) of Z lie in O, so do the Fourier coefficients of T"= by Propositions 4.4 and
4.5. Moreover, since 6, is a cusp form, so are = and T"Z.

We thus get

T"E = NCoxfox + Tth (8.7)
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with T"go orthogonal to the Maass space.

As Cyp, € E C C by (8.6), it makes sense to talk about its w-adic valuation.
Suppose val(n Cy ) = —n € Zq. Note that since the (h, b)-Fourier coefficients of T"E
and of fy, lie in O for all b € B and all h € S, but n Cy, & O, we must have that

either T"gg # 0 or e*™ "¢y, (h,b) = 0modw for all b€ Band all h € S.

LEMMA 8.13.  There eists a pair (h,b) such that €*™ "¢y, (h,b) # 0mod w.

PROOF. Assume on the contrary that e%trhcmx(h, b) = Omodw for all pairs
(h,b). By our choice of B, taking h = [{)’ (ﬂ with p = 1 or a prime, (5.1) implies then
that ¢y, r,  (Dxp) = 0modw for all primes p and for p = 1. Using Theorem 5.16 we get
that ay(pDk) — ay(pDk) = Omod w for all primes p and p = 1. Here ay(n) stands for
the n-th Fourier coefficient of ¢. By taking p = 1 we conclude that a4(Dx) = a¢(Dxk)
(modw). Since |ay(Dg)| = D%ﬂ_z)m (see for example [25, formula (6.90)]), we have
valy(ay(Dk)) = 0 since £ { Dg. Hence we must have ay(p) = ay(p) (modw) for all
primes p. This on the other hand implies that p;|q, is not absolutely irreducible by

Proposition 6.3. This contradicts our assumptions. U

By Lemma 8.13 we must have T"go # 0. Write 7 Cyx = aw™" with a € O*. Then
the Fourier coefficients of (™1™ gp)p lie in O and one has

fox = —a '@w"Thgy (modw").

As explained above, —a~'w"T gy is a Hermitian modular form orthogonal to the Maass
space. This completes the proof of Theorem 8.10. 0

COROLLARY 8.14.  Suppose that &, x, 8 in Theorem 8.10 can be chosen so that

2
valg (H Lint(BC(qﬁ),j + tj;k,ﬁ{x_l)) =0,
j=1

then n in Theorem 8.10 can be taken to be valy, (L™ (Symm? ¢, k)).

REMARK 8.15.  As already discussed in Remark 7.15 of [26], the existence of char-
acter ¢ as in Corollary 8.14 is not known in general. Note that one needs to “control”
two L-values at the same time to ensure that their product is a w-adic unit. However,
if the class number of K is larger than one, we now have (slightly) more flexibility as
we also get to choose the character 3 (or equivalently x~!3). While we still do not have
a proof for this fact it seems very unlikely that for all the possible combinations of the
characters £ and [ the product of L-values should always involve non-zero powers of .

REMARK 8.16. The ordinarity assumption on ¢ in Theorem 8.10 is used in Section
6 to construct the Hecke operator T" annihilating the Maass part of gy as above as well
as to ensure that () in (8.4) is a w-adic unit. Note that the operator 7™ is not necessary
provided that ¢ is not congruent (mod @) to any other ¢’ € Si_1(Dxk, Xx). Indeed, then
there cannot be any ‘Maass part’ of gg € S/?,fk/z that is congruent to fg .



The Maass space and the Bloch-Kato conjecture 853

8.3. The Maass ideal.
COROLLARY 8.17.  Under the assumptions of Theorem 8.10 there is a non-Maass
cuspidal Hecke eigenform g € Sé‘ik/z such that valg (Ag, (T)—Xg(T)) > 0 for all Hecke

operators T € H. Here the homomorphism A sends the Hecke operator to its eigenvalue.
PROOF. This is proved as Corollary 7.17 in [26]. O

Recall that we have a Hecke-stable decomposition

SX

_ cMx NM,x
k,—k/2 — Sk, ®S

“k/2 POk —k/2

where S}jl\_/[,;’jw denotes the orthogonal complement of 82/[ X /o inside SE . /o Denote
by Hp "X the image of M) inside Endc(S,il\_/[ﬁz) and let ® : HY — Hy X be the
canonical O-algebra epimorphism. Let Ann(fs,) C H denote the annihilator of fy ,.
It is a prime ideal of Hy and Ay, : HE — O induces an O-algebra isomorphism
H5 /A (fo) = O.

DEFINITION 8.18.  As ® is surjective, ®(Ann(fy,)) is an ideal of HgM’X. We call
it the Maass ideal associated to fg .

There exists a non-negative integer r for which the diagram

HY ki HAMX
HS /AN () —> HEMX /D (Ann(fy ) (8:8)
Afrb,x iz iz
O O/w"O

all of whose arrows are (J-algebra epimorphisms, commutes.

COROLLARY 8.19.  If r is the integer from diagram (8.8), and n is as in Theorem
8.10, then r > n.

ProOOF. This is proved as Corollary 7.19 in [26]. O

REMARK 8.20. The Maass ideal plays a role similar to the classical Eisenstein
ideal. Its index inside the Hecke algebra is a measure of the congruences between fy
and eigenforms in S 2‘7_ k)2 which are orthogonal to the Maass space. While Corollary 8.17
only guarantees a Hecke eigenform f orthogonal to the Maass space congruent to fg
modulo w, the quotient 'HI(\;M’X /®(Ann(fy4,)) takes into account all such eigenforms f
at the same time and hence gives a better idea of how much congruence there is between
fo,x and eigenforms orthogonal to the Maass space. Also, it is exactly the index of the
Maass ideal inside HEM’X that bounds the order of the appropriate Selmer group from
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below, as we discuss in the next section.

8.4. Unitary analogue of Harder’s conjecture.

Let E be a sufficiently large finite extension of Q,, with ring of integers O
and uniformizer w. The original Harder’s conjecture states that if £ is “large” and
w | L¥8(f,j + k) (the appropriately normalized algebraic part of the special value of
the standard L-function of f) for a cuspidal elliptic eigenform f = Y an(f)e(z) €
Sr(SL2(Z)), then there exists a cuspidal (vector-valued) Siegel modular eigenform F
of full level, whose eigenvalues for the Hecke operators T'(p) (for all primes p) are con-
gruent to p*~2 + ptF71 + a,(f) modulo w. Here r = j + 2k — 2, and T(p) is the
Hecke operator acting on the space of Siegel modular forms given by the double coset
Sp4(Z) diag(1,1,p,p) Sp,(Z). For details see [19] or [44].

Recently Dummigan [13] formulated an analogue of this conjecture for the group
U(2,2). (We are grateful to him for sending us his preprint.) Let ¢ € S,_1(Dx, xx) be
as before. Let j be an integer such that 0 < j < (k —4)/2 (note that our k differs from
Dummigan’s k by 1). Suppose

val, (L8 (Symm? ¢, 2k — 4 — 2j)) > 0.

Write 7, for the automorphic representation of GLo(A) associated with ¢. Let II(¢)
denote the representation Indggﬁg(BCK/Q(ﬂ'@ -| det [F=(/2)=7) of U(A). Then the uni-
tary analogue of Harder’s conjecture asserts that if 0 < j < (k — 4)/2 then there exists
a cuspidal automorphic representation IT of U(A) (whose finite part contributes to the
cuspidal cohomology of degree 4—for details cf. [13]), unramified away from Dy, such
that

Ati(g)(T) = An(T)  (mod w) (8.9)

for all Hecke operators T in the local Hecke algebras away from Dy . Here A denotes the
appropriate Hecke eigenvalue.

Let us now briefly explain the relation of Corollary 8.17 to this conjecture. First,
assume that ¢ is not congruent to any other v € Siy_1(Dg, xx)modw. This implies
that the Hida congruence module of ¢ is a -adic unit, so that val, (L™ (Symm? ¢, k)) =
valg, (L8 (Symm? ¢, k)) (cf. Proposition 6.6). Secondly, when j = (k —4)/2, the auto-
morphic representation II, attached to the Maass lift f, 1 is associated (in the sense of
Piatetski-Shapiro [31]) with II(¢). In fact the local representations are isomorphic at
all finite places, hence Il shares the Hecke eigenvalues with II(¢). Let g € S,%ﬁ k)2 be
a Hecke eigenform congruent to fy, as in Corollary 8.17. Then the automorphic rep-
resentation II of U(A) associated with g is cuspidal and unramified everywhere and its
eigenvalues satisfy (8.9).

However, note that Dummigan’s conjecture specifically excludes the case j = (k —
4)/2 hence our result should be viewed as complementary to that conjecture rather than
as a case of it. Indeed, the case j = (k—4)/2 is special because of the existence of the CAP
representation I, of U(A) associated with II(¢) which has a holomorphic vector fy  in
it. The holomorphicity of f4, in particular allows us to use a holomorphic Eisenstein
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series to define the form = and for such Eisenstein series we know the integrality of their
Fourier coefficients thanks to results of Shimura (cf. Section 7.5). The main point of
Dummigan’s conjecture is the prediction of the congruence (8.9) in the absence of a CAP
representation.

9. The Bloch—Kato conjecture.

In Section 9.1 we will discuss how the results of the previous sections can be applied
to give evidence for the Bloch—Kato conjecture for a twist of the adjoint motive of an
elliptic modular form ¢. Since these results (and proofs) are completely analogous to the
case considered in [26], we will just give the relevant statements and refer the reader to
[loc. cit.] for details.

9.1. Selmer groups.

We begin by defining the Selmer group. For a profinite group G and a G-module
M (where we assume the action of G on M to be continuous) we will consider the
group HZL (G, M) of cohomology classes of continuous cocycles G — M. To shorten
notation we will suppress the subscript ‘cont’ and simply write H'(G, M). For a field L,
and a Gal(L/L)-module M (with a continuous action of Gal(L/L)) we sometimes write
HY(L, M) instead of HL (Gal(L/L), M).

Let L be a number field. For a rational prime p denote by 3, the set of primes of L
lying over p. Let 3 D ¥, be a finite set of primes of L and denote by Gy the Galois group
of the maximal Galois extension Ly of L unramified outside of .. Let E be a (sufficiently
large) finite extension of Q, with ring of integer O and a fixed uniformizer w. Let V'
be a finite dimensional E-vector space with a continuous Gyx-action. Let T C V be a
Gyx-stable O-lattice. Set W := V/T.

We begin by defining local Selmer groups. For every p € ¥ set
H&H(LP7M) = ker{Hl(vaM) ﬂ Hl(IP7M)}
Define the local p-Selmer group (for V) by

H&H(Lpav) pEZ\Ee

Hch(LFH V)= {
ker{H'(Ly,V) — H'(Lp,V @ Berys)} b € S
Here B.,ys denotes Fontaine’s ring of ¢-adic periods (cf. [14]).

For p € 3, we call the Dy,-module V' crystalline (or the Gr-module V' crystalline
at p) if dimg, V = dimg, H°(Ly,V ® Berys). When we refer to a Galois representation
p: Gp — GL(V) as being crystalline at p, we mean that V' with the G -module structure
defined by p is crystalline at p.

For every p, define H}(Lp, W) to be the image of H}(Lp, V) under the natural map
HY(L,,V) — H'(L,,W). Using the fact that Gal(%, : x,) = Z has cohomological
dimension 1, one easily sees that if W is unramified at p and p &€ X, then Hjlc (Lp, W) =
H} (L,,W). Here £, denotes the residue field of L,.

For a Z,-module M, we write MV for its Pontryagin dual. Moreover, if M is a
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Galois module, we denote by M (n) := M ® €” its n-th Tate twist.

DEFINITION 9.1.  The group

YL
1 o res p,
Hf(L,W)._kcr{ (Gs, W @ U }
peEX

is called the (global) Selmer group of W.

For L = @, the group H}(Q7 W) is the Selmer group defined by Bloch and Kato [6,
Section 5]. Let p : Gy, — GLE(V) denote the representation giving the action of G on
V. The following two lemmas are easy (cf. [33, Lemma 1.5.7] and [38]).

LEMMA 9.2. H}(L, W)V is a finitely generated O-module.

LEMMA 9.3.  If the mod w reduction p of p is absolutely irreducible, then the length
of H}(L, W)V as an O-module is independent of the choice of the lattice T.

REMARK 9.4. For an O-module M, val,(#M) = [O/w : Fy]lengthy, (M).

Let K be an imaginary quadratic field of prime discriminant —Dy. Let ¢ =
>omepa(n)g™ € N be such that pyla, is absolutely irreducible. Then by Proposition
6.3, fo.x 7 0. From now on we also assume that ad’ ﬁ¢|GK» the trace-0-endomorphisms
of the representation space of ﬁ¢|G « with the usual Gg-action, is absolutely irreducible.
Finally, to be able to show that the cohomology classes we produce are unramified at the
prime Dy we assume that (under the chosen embedding Q, — C) the Fourier coefficient
a(Dg) is neither congruent to D% nor to D¥~* modulo @ (see [26, Lemma 9.23] for how
this assumption is used). By (6.8) we have

pfqhx = (p¢|GK ©® (p¢ (4] €)|GK) ® X€27k/2'

Let V denote the representation space of

ad” pyla, (—1) = ad” pyla, ® €' C Homp((pg ® €)lay» polax)

of Gk. Let T C V be some choice of a G-stable lattice. Set W = V/T. Note that the
action of G on V factors through Gs,. Since the mod w reduction of ad’ polax @€t
is absolutely irreducible by assumption, valg(H}(K ,W)V) is independent of the choice of
T.

Let NNMHEMX and @ be as in Section 8.3. Let my, be the maximal ideal of Hpy' X
corresponding to fy , and write ’H MX for the localization of HNM’X at my and Py, for

the corresponding “local” component of ®. Write N NM for the subset of N™M consisting

of eigenforms whose corresponding maximal ideal of H MX s my.
The main result of this section is the following theorem.

THEOREM 9.5. Let W be as above. Suppose that for each f € ./\/'}j)MX, the represen-
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tation py : Gg — GL4(E) is absolutely irreducible. Then
valy (#H ((K,W)Y) = valy (#Hph"X /@, (Ann(fy.1)))-

ProOF. This is proved in the same way as Theorem 9.10 in [26] and we will not
reproduce the proof here. The key point is that eigenforms f € S}zl:/[;c’j? congruent to
f#, modulo powers of w give rise to non-split extensions of py(1)|c, by pgla.. These
extensions are checked to satisfy the local conditions defining the Selmer group and can
be put together to generate a submodule of H}c (K, W) of order no smaller than the index
of the Maass ideal inside the local Hecke algebra. In this one mostly follows Urban [43].

O

REMARK 9.6. The irreducibility assumption in Theorem 9.5 is presumably unnec-
essary. If one assumes multiplicity one for the Maass forms in the sense that the only
eigenforms in M;;_ k)2
fo.x are multiples of fy4 , then one needs to show that all non-CAP cuspidal automorphic
representations have irreducible Galois representations. This is expected to be the case,

but we know of no proof of this fact.

(i.e., in particular holomorphic) sharing all Hecke eigenvalues with

COROLLARY 9.7.  With the same assumptions and notation as in Theorem 8.10
and Theorem 9.5 we have

valy (#H (K, W)) > n[O/w : F).

If in addition the characters &, 3, x in Theorem 8.10 can be taken as in Corollary 8.14,
then

valy (#H}(K,W)) > valy(#0 /L™ (Symm® ¢, k)).

PRrROOF. The corollary follows immediately from Theorem 9.5 and Corollary 8.19.
O

With the assumptions as in Corollary 9.7 we have thus the following inclusion of the
fractional ideals of O:

#H (K, W) -0 C L™ (Symm® ¢, k) - O. (9.1)
Note that since xx is the nebentypus of ¢ one has
ad” pgs(—1)xx = Symm? py(k — 3).

Here we treat xx as a Galois character via class field theory. Hence assuming that a
certain technicality concerning the Tamagawa factors at the prime Dy can be proved
(cf. Section 9.3 in [26]), the Bloch-Kato conjecture can be formulated as follows:

CONJECTURE 9.8 (Bloch-Kato).  One has the following equality of fractional ideals
of O:
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#H} (Q, Symm? pe(k—3))-O
= #H}(Q,ad’ py(—1)xk) - O = L™ (Symm® ¢, k) - O. (9-2)

Thus Corollary 9.7 provides evidence for Conjecture 9.8, but falls short of

proving that the left-hand side of (9.2) is contained in the right-hand side, be-
cause the module H}(K,W) = H}(K, ad® pg|a, (—1)) can potentially be larger than
H}(Q, ad® ps(—1)xx). For a more detailed discussion see [26, Section 9.3].
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