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Abstract. We study the long time behavior of solutions of the wave
equation with a variable damping term V (x)ut in the case of critical decay

V (x) ≥ V0(1 + |x|2)−1/2 (see condition (A) below). The solutions manifest a
new threshold effect with respect to the size of the coefficient V0: for 1 < V0 <
N the energy decay rate is exactly t−V0 , while for V0 ≥ N the energy decay
rate coincides with the decay rate of the corresponding parabolic problem.

1. Introduction.

We consider the Cauchy problem for the linear wave equation with a critical
potential V (x) in RN (N ≥ 1):

utt(t, x)−∆u(t, x) + V (x)ut(t, x) = 0, (t, x) ∈ (0,∞)×RN , (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ RN , (1.2)

where (u0, u1) are compactly supported initial data in the energy space:

u0 ∈ H1(RN ), u1 ∈ L2(RN ), suppui ⊂ B(R0) := {x ∈ RN : |x| < R0},
(i = 0, 1),

and the potential V ∈ L∞(RN ) ∩ C(RN ) satisfies

(A) V0(1 + |x|2)−1/2 ≤ V (x) ≤ V1(1 + |x|2)−1/2 for V0, V1 > 0.

Denote X1(0, T ) := C([0, T );H1(RN )) ∩ C1([0, T );L2(RN )) for T ∈ (0,∞].
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It is well-known that, under the above assumptions on the initial data, problem
(1.1)–(1.2) has a unique solution u ∈ X1(0,+∞) satisfying

Eu(t) +
∫ t

0

∫

RN

V (x)u2
t (s, x)dxds = Eu(0), t ≥ 0, (1.3)

where

Eu(t) :=
1
2

∫

RN

(u2
t + |∇u|2)dx

is the total energy of u. Hence Eu(t) is a non-increasing function of t. An important
question is whether the energy decays as t →∞, and if so, what is the decay rate?
The main objective of this paper is to find the exact decay rate of the energy Eu(t)
as t →∞.

1.1. Prior results.
In the case of constant potential V (x) = V0 > 0, Matsumura [9] estab-

lished the estimate Eu(t) = O(t−n/2−1) as t → ∞ by using Fourier analy-
sis. The generalization of this estimate to the case of variable potential V (x)
was far from straightforward and, correspondingly, the initial decay results were
dimension independent. Matsumura [10], Mochizuki-Nakazawa [14] and Ue-
saka [28] discussed the energy decay rate of problem (1.1)–(1.2) in the case
V (x) = V (t, x) ≥ V0(1 + t + |x|)−1. Their results tell us that Eu(t) = O(t−1)
as t → +∞. Mochizuki [13] observed the hyperbolic structure of equation (1.1)
by showing non-decay results for Eu(t) in the case V (t, x) ≤ V0(1 + |x|)−1−α with
α > 0, i.e., the case of supercritical potential. Rauch-Taylor [22] showed non-decay
results for potentials V (x) with compact support.

Recently, Todorova-Yordanov [26] treated the x-dependent potential V (t, x)
≡ V0(1+ |x|)−α with α ∈ [0, 1), i.e., the case of subcritical potential. They derived
almost optimal decay rates of the total energy Eu(t). Their results also showed the
diffusive structure of equation (1.1) in the subcritical case. In [26], the condition
α < 1 is essential (see also Ikehata [5]) and the results cannot be applied directly
to the critical case α = 1. So far the critical case α = 1 has been far from
well-understood.

The nonlinear version of equation (1.1) with the critical potential V (t, x) ≡
V0(1 + |x|)−1 (α = 1) is considered in Ikehata-Inoue [6]. Let us mention also the
very recent work of Ikehata-Todorova-Yordanov [7] where the critical exponent
problem is studied for the semilinear equation



Optimal decay for wave equations 185

utt(t, x)−∆u(t, x) +
V0

(1 + |x|)α
ut(t, x) = |u(t, x)|p, α ∈ [0, 1). (1.4)

These authors found that the critical exponent is pc = 1+2/(N−α). Namely, (1.4)
will admit global solutions with small initial data for p > pc, while all solutions of
(1.4) with positive in average initial data will blow-up in finite time for 1 < p ≤ pc.

The case of t-dependent potentials V (t, x) ≡ V0(1+t)−1 is studied extensively
by Wirth [29], [30], [31] (see also [10], [28] and Reissig [23]) using the Fourier
transform method. These results show the following optimal decay for t-dependent
potentials:

Eu(t) = O(t−min{V0,2}), t → +∞.

Unfortunately, the Fourier transform is not very effective in the case of x-dependent
potentials.

1.2. Main results.
The purpose of this paper is to determine the exact decay rate of Eu(t) associ-

ated to the Cauchy problem (1.1)–(1.2) in the case of potentials V (x) with critical
decay, i.e., condition (A). This case is extremely delicate. The solution manifests
a new threshold effect with respect to the size of coefficient V0 in condition (A).
Here is our main result.

Theorem 1.1. Let N ≥ 3 and V (x) satisfy condition (A). For the solution
u of the Cauchy problem (1.1)–(1.2), we have the following :

( i ) if 1 < V0 < N , then

Eu(t) = O(t−V0), t → +∞, (1.5)

( ii ) if N ≤ V0, then

Eu(t) = O(t−N+δ), t → +∞, (1.6)

for any δ > 0.

Remark 1.2. The decay estimates (1.6) for large V0 ≥ N continuously agree
with those in [26] for α → 1−. These results also apply to the exterior mixed
problem for equation (1.1) with potentials V (x) ≡ V0|x|−1, where the exterior
domain Ω ⊂ RN satisfies 0 /∈ Ω̄.
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We obtain similar results in low dimensions N = 1, 2. Next theorem presents
the estimates in the two-dimensional case. We will discuss the one-dimensional
case later.

Theorem 1.3. Let N = 2 and V (x) satisfy condition (A). For the unique
solution u ∈ X1(0,+∞) to (1.1)–(1.2), one has the following :

( i ) in the case when 1 < V0 ≤ 2,

Eu(t) = O(t−V0+δ), t → +∞, (1.7)

for any δ > 0, and
( ii ) in the case when 2 < V0,

Eu(t) = O(t−2), t → +∞. (1.8)

A recent paper of Nishihara [20] shows that φ(t, x) = A(1 + t)−(N−1)

×e−V0(|x|/(1+t)) is the exact solution to the heat equation (see Remark 1.2)

V0

|x|φt −∆φ = 0, x ∈ Ω, t > 0.

One can easily check that

‖φt(t, ·)‖2 = ‖∇φ(t, ·)‖2 = O(t−N ), t → +∞.

If we compare this result with the decay results in Theorem 1.1 for large V0 ≥ N ,
we can say that equation (1.1) has a diffusive structure as t → +∞. When the
coefficient V0 in condition (A) is less than the threshold N , namely 1 < V0 < N ,
the diffusive structure of equation (1.1) is destroyed and the exact energy decay is
t−V0 (see (1.5) together with Theorem 1.6).

The proof of Theorem 1.1 relies on three different ideas. First we observe
that equation (1.1) is approximately invariant under scaling (t, x) 7→ (λt, λx) at
large |x|. This points towards solutions with power-type asymptotic behavior and
suggests L2 estimates with powers of |x| as weights along the lines of Todorova-
Yordanov [26]. The diffusive structure of equation (1.1) with large V0 À 1 is
the second key observation used as follows: for large V0, the estimate Eu(t) ≤
C(1 + t)−d implies Eut(t) ≤ C(1 + t)−d−2. Namely, the gain in the decay rate
from the first-order energy Eu(t) to the second-order energy Eut

(t) is t−2. Such a
gain is much stronger than the one found by Nakao [16]. The relationship between
energies of different orders is studied in Radu-Todorova-Yordanov [21] for equation
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(1.1) with subcritical potentials V (x) ∼ V0(1 + |x|)−α, α < 1. We note that the
condition V0 À 1 is not needed in order to reach a t−2 gain in the decay rate
when the potential is subcritical. Here we are able to show the same gain in the
decay rates from Eu(t) to Eut(t) when the potential V (x) is critical. A similar
phenomenon is observed for the heat equation

∂tv −∆v = 0, v(0, x) = f(x).

In fact, the following Lq − L2 decay estimates are well known:

∥∥∂k
t ∇v(t, ·)∥∥2 ≤ Ckt−N(1/q−1/2)−2k−1‖f‖2Lq ,

∥∥∂k+1
t ∇v(t, ·)

∥∥2 ≤ Ck+1t
−N(1/q−1/2)−2(k+1)−1‖f‖2Lq ,

for all t À 1 and k ≥ 0. Thus, each t-derivative increases the energy decay by
t−2. The third important idea comes from Morawetz [15] (see also its modified
version in Ikehata [4] for N = 2). In the case N ≥ 3 we introduce the auxiliary
function

χ(t, x) =
∫ t

0

u(s, x)ds + h(x),

where u(t, x) is the solution of problem (1.1)–(1.2). The correction h(x) is the
unique solution of the Poisson equation

∆h = V (x)u0 + u1,

which decays fast at infinity (see (2.1) below). Further we derive (see Proposition
2.2 below) that the energy of this auxiliary function χ has the following decay rate

Eχ(t) = O(t−(N−2)), t → +∞,

for large V0. Since Eu(t) = Eχt(t), the energy of u is actually the second energy of
χ. Using the gain t−2 in the decay rate from the first energy Eχ(t) to the second
energy Eχt

(t) = Eu(t), we finally derive that Eu(t) = O(t−N ) for V0 ≥ N .

If we impose convenient restrictions on the initial data we can get faster
decay rates for the energy of (1.1)–(1.2). We state these results only in the one-
dimensional case.
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Theorem 1.4. Let N = 1 and assume condition (A) on V (x). If the initial
data [u0, u1] ∈ H1(R)× L2(R) further satisfy

(H1)
∫

R

(V (x)u0(x) + u1(x))dx = 0,

then the unique solution u ∈ X1(0,+∞) to (1.1)–(1.2) satisfies

( i ) in the case 2 < V0,

Eu(t) = O(t−2), (t → +∞), (1.9)

and
( ii ) in the case 2 ≥ V0 > 1,

Eu(t) = O(t−V0+δ), t → +∞, (1.10)

for any small δ > 0.

The decay rate in the case 1 ≥ V0 > 0 is already known from Matsumura [10],
Mochizuki-Nakazawa [14], Uesaka [28].

Proposition 1.5. Let N ≥ 1 and V (x) satisfy condition (A). For the solu-
tion u ∈ X1(0,+∞) to (1.1)–(1.2) we have

( i ) in the case 1 < V0,

Eu(t) = O(t−1), t → +∞, (1.11)

and
( ii ) in the case 0 < V0 ≤ 1,

Eu(t) = O(t−V0+η), t → +∞, (1.12)

for any small η > 0.

Finally, we can address the question about the exactness of decay rates in
Theorem 1.1. When 0 < V0 < N , these rates are actually exact, since the next
theorem shows that the energy cannot decay faster than t−V0 .

Theorem 1.6. Let V ∈ C(RN ) be radial, and V (x) ∼ V0/|x| as |x| → +∞.
Then there exist non-trivial initial data [u0, u1] ∈ H1(RN ) × L2(RN ) such that
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the solution u ∈ X1(0,+∞) to problem (1.1)–(1.2) satisfies

Eu(t) ≥ Ct−V0 , t À 1, (1.13)

with some constant C > 0.

Remark 1.7. For large V0 ≥ N , the decay estimate (1.6) coincides with the
decay estimate of the corresponding parabolic problem (up to small losses δ > 0).
Therefore, based on this heuristic argument, we expect that the decay rate in (1.6)
is almost exact even for large V0 ≥ N .

We conclude with a few standard definitions and notations used throughout
this paper.

(p, q) =
∫

RN

p(x)q(x)dx, p, q ∈ L2(RN ),

‖p‖ :=
{ ∫

RN

|p(x)|2dx

}1/2

, p ∈ L2(RN ),

〈x〉 :=
√

1 + |x|2, |x| :=
( N∑

i=1

x2
i

)1/2

, x := (x1, x2, . . . , xN ) ∈ RN ,

f ∈ BC2(RN ) iff f ∈ C2(RN ) and |f |, |∇f |,
and |∂2f/∂xi∂xj | are bounded on RN .

The paper is organized as follows. In section 2 we prove Theorem 1.1 by
dividing the proof into several lemmas. Sections 3 and 4 are devoted to the proofs
of Theorem 1.3 and Theorem 1.4, respectively. In section 5 we address the question
about the optimality of decay rates. We present several weighted L2−L2 estimates
for the auxiliary elliptic problem in the Appendix.

2. High-dimensional case N ≥ 3.

First we shall consider the Poisson equation with a restriction on the behavior
at infinity:

{
∆H(x) = f(x), x ∈ RN ,

H(x) = O(|x|−(N−2)), |x| → +∞.
(2.1)

It is well-known [12] that the unique solution H ∈ H2
loc(R

N ) to problem (2.1) is
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given by the Newton potential

H(x) =
−1

(N − 2)|SN−1|
∫

RN

|x− y|−(N−2)f(y)dy,

where |SN−1| is the area of the (N − 1)-dimensional unit sphere, provided that
f ∈ L2(RN ) and f(x) = 0 for |x| > R0 > 0. In this case, one can show the
following weighted L2 − L2 estimates.

Lemma 2.1. Let N ≥ 3. Assume that f ∈ L2(RN ) has a compact support
supp f ⊂ B(R0). Then the (unique) solution H ∈ H2

loc(R
N ) of the problem (2.1)

satisfies the following estimates

(1) If N − 2 > s > 0, then

∫

RN

〈x〉s|∇H(x)|2dx ≤ 4(N − 2 + s)
(N − 2− s)2

∫

RN

〈x〉s+2f(x)2dx,

(2) If N − 2 > s > 0, then

∫

RN

〈x〉s−2|H(x)|2dx ≤ 16(N − 2 + s)
(N − 2)(N − 2− s)2

∫

RN

〈x〉s+2f(x)2dx.

In the Appendix we present the proof of Lemma 2.1.
Now we introduce the auxiliary function

χ(t, x) :=
∫ t

0

u(s, x)ds + h(x), (2.2)

where u is the solution to (1.1)–(1.2) and the perturbation h(x) is the unique
smooth solution to the Poisson problem (2.1) with f(x) := V (x)u0(x) + u1(x).
The function h(x) is smoother than the data u0(x) and u1(x), but h(x) does not
decay sufficiently fast as |x| → +∞. In fact, since h(x) is a solution of (2.1), we
have h(x) = O(|x|−(N−2)) and |∇h(x)| = O(|x|−(N−1)) as |x| → +∞ for smooth
initial data. Lemma 2.1 implies the same behavior in L2 sense. The decay of h(x)
transfers to decay of χ(x) through definition (2.2) and the finite propagation speed
(FSP) of problem (1.1)–(1.2):

|χ(t, x)| = O(|x|−(N−2)), |∇χ(t, x)| = O(|x|−(N−1)), |x| → +∞, (2.3)

for sufficiently smooth u0(x) and u1(x). It is easy to see that the auxiliary function
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χ(t, x) is a solution of the following Cauchy problem:

χtt(t, x)−∆χ(t, x) + V (x)χt(t, x) = 0, (t, x) ∈ (0,∞)×RN , (2.4)

χ(0, x) = h(x), χt(0, x) = u0(x), x ∈ RN . (2.5)

Clearly χ(t, x) is smoother than u(t, x) and has both first and second order energy.
Moreover the second energy Eχt

(t) = Eu(t). The only shortcoming of χ(t, x) is
that it does not decay fast enough as |x| → ∞. This leads to some problems which
will be overcome in the sequel.

We start with the following Proposition.

Proposition 2.2. Let N ≥ 3 and V0 ≥ N − 2. Then it follows that

Eχ(t) = O(t−(N−2−δ)), t → +∞,

for any δ > 0.

The idea to proceed further comes from [26]. Indeed, we set

v(t, x) := χ(t, x)w(x)−1, (2.6)

where w(x) = 〈x〉−m with m ∈ R to be chosen in the sequel. Then it can be
shown as in [26] that v(t, x) satisfies the following equation

vtt−∆v+V (x)vt−2(w−1∇w)·∇v+w−1(−∆w)v = 0, (t, x) ∈ (0,∞)×RN . (2.7)

Furthermore, we set

w1(x) = k〈x〉1−m = k〈x〉w(x),

where k > 0 is another parameter to be chosen in the sequel. As in [26, Proposition
2.1] we multiply equation (2.7) by w1vt + wv and integrate by parts over RN to
derive the following weigthed energy identity.

Lemma 2.3. Let N ≥ 3 and m < N − 2. Then

d

dt
E(vt,∇v, v)(t) + F (vt,∇v, v)(t) = 0, (2.8)

where the weighted energy
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E(vt,∇v, v)(t)

=
1
2

∫

RN

[
w1(v2

t + |∇v|2) + 2wvtv + (w−1w1(−∆w) + V (x)w)v2
]
dx (2.9)

and

F (vt,∇v, v)(t) =
∫

RN

(V w1 − w)v2
t dx +

∫

RN

vt

(
∇w1 − 2w1

∇w

w

)
· ∇vdx

+
∫

RN

w|∇v|2dx− 1
2

∫

RN

(∆w)v2dx. (2.10)

Outline of proof. Here we calculate only the integrals coming from the
integration by parts whose convergence is not evident. Let us assume that u0 and
u1 are smooth. Using the decay (2.3) of the auxiliary function χ and the Gauss
divergence theorem on B(ρ) with a large ρ À 1 we obtain

∫

B(ρ)

∇ · (w(x)vt(t, x)∇v(t, x))dx =
∫

B(ρ)

∇ · (χt(t, x)∇v(t, x))dx

=
∫

B(ρ)

∇ · (u(t, x)∇v(t, x))dx =
∫

|σ|=ρ

u(t, σ)∇v(t, σ) · n(σ)dσ = 0, ρ À 1,

∫

B(ρ)

∇ · (w(x)v(t, x)∇v(t, x))dx =
∫

B(ρ)

∇ · (χ(t, x)∇v(t, x))dx

=
∫

|σ|=ρ

χ(t, σ)∇v(t, σ) · n(σ)dσ

=
∫

|σ|=ρ

h(σ)(w−1∇h(σ)− w−2h(σ)∇w) · n(σ)dσ = O(ρm−(N−2)), ρ → +∞,

and

∫

B(ρ)

∇ · (∇w(x)v(t, x)2)dx =
∫

|σ|=ρ

∇w(σ) · n(σ)v(t, σ)2dσ

=
∫

|σ|=ρ

w−2∇w(σ) · n(σ)h(σ)2dσ = O(ρm−N ), ρ → +∞.

In the above we used the FSP of solutions u(t, x) to problem (1.1)–(1.2) and the
decay (2.3) of h(x) and |∇h(x)| as |x| → +∞. The proof for general u0 and u1

follows from the above proof and standard approximation argument. ¤
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We will prove that the weighted energy E(vt,∇v, v)(t) is a non-increasing
function of t for conveniently chosen weights. The parameters m and k in the
weights w(x) and w1(x) will be chosen so that the following conditions will hold:

1. The initial weighted energy E(vt,∇v, v)(0) is finite (see the restriction on m

coming from Lemma 2.4).
2. The inequality F (vt,∇v, v)(t) ≥ 0 holds (see Lemma 2.6 below).

These together with Lemma 2.3 give us that the weighted energy E(vt,∇v, v)(t)
is a non-increasing function of t.

The next result finds the restriction on m which assures that E0 < ∞.

Lemma 2.4. The initial weighted energy

E(vt,∇v, v)(0) = E0

is finite, provided N − 3 > m > −1.

Proof. From the definition of v, it is easy to estimate

E0 ≤ C

∫

RN

〈x〉m+1(|u0(x)|2 + |∇h(x)|2)dx

+ C

∫

RN

〈x〉m−1|h(x)|2dx + C

∫

RN

〈x〉m|h(x)||u0(x)|dx.

Applying Hölder inequality, we get

∫

RN

〈x〉m|h(x)||u0(x)|dx

≤
( ∫

RN

〈x〉m−1|h(x)|2dx

)1/2( ∫

RN

〈x〉m+1|u0(x)|2dx

)1/2

≤ 1
2

∫

RN

〈x〉m−1|h(x)|2dx +
1
2

∫

RN

〈x〉m+1|u0(x)|2dx.

It is clear that E0 < +∞ holds if

I1,h :=
∫

RN

〈x〉m+1|∇h(x)|2dx,

I2,h :=
∫

RN

〈x〉m−1|h(x)|2dx
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are finite, since

E0 ≤ C

(
I1,h + I2,h +

∫

RN

〈x〉m+1|u0(x)|2dx

)
,

with some generous constant C > 0. Applying Lemma 2.1 with s = m + 1 and
using that N − 2 > m + 1 > 0, we get the following bounds:

I1,h ≤ 4(N + m− 1)
(N −m− 3)2

∫

RN

〈x〉m+3(V (x)u0(x) + u1(x))2dx < +∞, (2.11)

I2,h ≤ 16(N + m− 1)
(N − 2)(N −m− 3)2

∫

RN

〈x〉m+3(V (x)u0(x) + u1(x))2dx < +∞. (2.12)

Thus, we have

E0 ≤ C(N, m, k, V1)
∫

RN

〈x〉m+3(|u0(x)|+ |u1(x)|)2dx < +∞,

with another constant C = C(N, m, k, V1) > 0 provided that N − 3 > m > −1. ¤

Throughout the rest of this section, we consider the case V0 > 1 in condition
(A). Our next goal is to find admissible values of m and k for the weights w(x)
and w1(x). We prove some auxiliary estimates which lead to the non-negativity of
F (vt,∇v, v)(t) in (2.10). The first three terms there form a quadratic form which
is non-negative in all cases. However, the last term in (2.10), involving ∆w as a
weight, has a sign only when N ≥ 4. When N = 3, ∆w changes sign at small
|x|. This fact requires a more delicate inequality in the case N = 3 and leads to
different choices for k in the two cases N ≥ 4 and N = 3.

Lemma 2.5. Let N ≥ 3, V0 > 1 and m = min{N − 3, V0 − 1} − δ, where δ

is a small positive number.

Case 1: If N ≥ 4, there are numbers k± > 0 such that for all k ∈ [k−, k+] the
following estimates hold :

( i )
∆w ≤ 0, (2.13)

( ii )

4w(V (x)w1 − w) ≥
∣∣∣∣∇w1 − 2w1

∇w

w

∣∣∣∣
2

. (2.14)
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Case 2: If N = 3, there are numbers k± > 0 such that for all k ∈ [k−, k+] the
following estimate holds with small δ > 0 :

(4−
√

δ)w(V (x)w1 − w) ≥
∣∣∣∣∇w1 − 2w1

∇w

w

∣∣∣∣
2

. (2.15)

Proof.

Case 1 (i): Set r = |x|. We calculate

∆w = m(1 + r2)−1−(m/2)

{
(2 + m)

r2

(1 + r2)
−N

}
.

In order to get ∆w ≤ 0, it suffices to have

r2

1 + r2
(2 + m) ≤ N. (2.16)

Inequality (2.16) holds, since

m ≤ N − 2. (2.17)

Case 1 (ii): Simple computations show that

4w(V (x)w1 − w) ≥ 4〈x〉−2m(V0k − 1) (2.18)

and

∣∣∣∣∇w1 − 2w1
∇w

w

∣∣∣∣
2

= k2(1 + m)2r2(1 + r2)−(m+1). (2.19)

Based on the above inequalities (2.18) and (2.19), condition (2.14) follows from

4(V0k − 1) ≥ r2

1 + r2
k2(1 + m)2. (2.20)

This can be verified using the relations

r2

1 + r2
k2(1 + m)2 ≤ k2(1 + m)2 ≤ 4(V0k − 1),
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and

(1 + m)2k2 − 4V0k + 4 ≤ 0. (2.21)

If we set

k± =
2V0 ± 2

√
V 2

0 − (m + 1)2

(m + 1)2
> 0,

then (2.21) and (2.20) hold for all k ∈ [k−, k+]. At this step it suffices to take any

m ≤ V0 − 1. (2.22)

Case 2: Using the same arguments as in Case 1 (ii), we need to show that

r2

1 + r2
k2(1 + m)2 ≤ k2(1 + m)2 ≤ (4−

√
δ)(V0k − 1),

or

(1− δ)2k2 − (4−
√

δ)V0k + (4−
√

δ) ≤ 0. (2.23)

Here we set

k± :=
(4−

√
δ)V0 ±

√
(4−

√
δ)2V 2

0 − 4(4−
√

δ)(1− δ)2

2(1− δ)2
> 0.

Then estimate (2.23) holds with a small δ > 0 for all k ∈ [k−, k+]. Of course
we need the expression under the square root to be positive, i.e. (4 −

√
δ)V 2

0 >

4(1− δ)2 for small δ > 0. This property is a consequence of

V0 > 2
(1− δ)√
4−

√
δ
. (2.24)

The above inequality holds for small δ > 0 since

lim
δ→+0

2
(1− δ)√
4−

√
δ

= 1 and V0 > 1.

The proof of (2.15) is completed. ¤
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Let us now choose the parameters m and k in the weights w(x) and w1(x):

m = min{N − 3, V0 − 1} − δ (2.25)

and

k =





2V0+2
√

V 2
0 −(m+1)2

(m+1)2 , N ≥ 4,

(4−
√

δ)V0+
√

(4−
√

δ)2V 2
0 −4(4−

√
δ)(1−δ)2

2(1−δ)2 , N = 3,

(2.26)

where δ is a small positive number that may be decreased in the sequel. We use
these definitions of m and k in the proof of next Lemmas.

Lemma 2.6. For m and k chosen above, the functional

F (vt,∇v, v)(t) =
∫

RN

(V w1 − w)v2
t dx +

∫

RN

vt

(
∇w1 − 2w1

∇w

w

)
· ∇vdx

+
∫

RN

w|∇v|2dx− 1
2

∫

RN

(∆w)v2dx (2.27)

is nonnegative at all t ≥ 0.

Proof.

Case 1: N ≥ 4. The nonnegativity of F (vt,∇v, v)(t) is a trivial consequence
from estimates (2.13) and (2.14).

Case 2: N = 3. The proof is more involved. We can not rely anymore on the
sign of ∆w. Instead we apply a combination of the weighted Hardy inequality and
estimate (2.15) to close the circle. Simple calculation shows that

∫

RN

∆w(x)v(t, x)2dx ≤ 3δ

∫

RN

〈x〉δ−2v(t, x)2dx.

On the other hand, by Hardy’s inequality (cf. [2, Lemma 1.21]) we have

∫

RN

〈x〉δ−2v(t, x)2dx ≤ 4
∫

RN

〈x〉δ|∇v(t, x)|2dx.

Respectively, we get
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∫

RN

∆w(x)v(t, x)2dx ≤ 12δ

∫

RN

〈x〉δ|∇v(t, x)|2dx.

This gives the lower bound

F (vt,∇v, v)(t) ≥
∫

RN

(V w1 − w)v2
t dx +

∫

RN

vt

(
∇w1 − 2w1

∇w

w

)
· ∇vdx

+ (1− 6δ)
∫

RN

w|∇v|2dx. (2.28)

By Hölder inequality we also have

−vt

(
∇w1 − 2w1

∇w

w

)
· ∇v ≤ 1

2εw
v2

t

∣∣∣∣∇w1 − 2w1
∇w

w

∣∣∣∣
2

+
ε

2
|∇v|2w,

where ε > 0 will be chosen later. Using (2.28) and Lemma 2.5 with a small δ > 0,
we get a better lower bound:

F (t, vt,∇v, v)(t) ≥
∫

RN

v2
t

(4−
√

δ)w

∣∣∣∣∇w1 − 2w1
∇w

w

∣∣∣∣
2

dx

−
∫

RN

1
2εw(x)

∣∣∣∣∇w1 − 2w1
∇w

w

∣∣∣∣
2

v2
t dx

+
(

1− 6δ − ε

2

) ∫

RN

w(x)|∇v(t, x)|2dx.

Thus,

F (t, vt,∇v, v)(t) ≥
(

1
4−

√
δ
− 1

2ε

) ∫

RN

v2
t

w(x)

∣∣∣∣∇w1 − 2w1
∇w

w

∣∣∣∣
2

dx

+
(

1− ε

2
− 6δ

) ∫

RN

w(x)|∇v(t, x)|2dx (2.29)

is non-negative whenever ε > 0 and δ > 0 are such that

1
4−

√
δ
− 1

2ε
> 0 and

(
1− ε

2
− 6δ

)
> 0. (2.30)

The above inequalities are equivalent to
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2−
√

δ

2
< ε < 2− 12δ. (2.31)

This completes the proof since the relation

0 < 2−
√

δ

2
< 2− 12δ (2.32)

is satisfied for sufficiently small δ > 0. ¤

The above lemma and the weighted energy inequality (2.8), integrated over
[0, t], imply

E(vt,∇v, v)(t) ≤ E(vt,∇v, v)(0) = E0. (2.33)

Hence the weighted energy of v is a non-increasing function of t. Now we are in
position to get an important weighted estimate for χ.

Lemma 2.7. Let χ be defined in (2.2). The following estimate holds for
V0 ≥ N − 2 :

∫

RN

〈x〉m+1(χ2
t + |∇χ|2)dx + V0

∫

RN

〈x〉m−1χ2dx ≤ CE0.

Proof. First we prove the two auxiliary estimates (2.34) and (2.36).
Case 1: N ≥ 4. By means of Case 1 (i) in Lemma 2.5 and (2.17), we have

∫

RN

[
k〈x〉1−m(v2

t + |∇v|2) + 2〈x〉−mvtv + V0〈x〉−m−1v2
]
dx ≤ 2E0.

Since

−2〈x〉−mvtv ≤ 3
4
V0v

2〈x〉−m−1 +
4

3V0
v2

t 〈x〉1−m,

one also has

∫

RN

[(
k − 4

3V0

)
〈x〉1−mv2

t + k〈x〉1−m|∇v|2 +
(

V0 − 3V0

4

)
〈x〉−m−1v2

]
dx ≤ 2E0.

We take k and m from definitions (2.25) and (2.26), respectively, with a small
δ > 0. Thus we get the inequality
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∫

RN

{
2

3V0
〈x〉1−mv2

t +
2
V0
〈x〉1−m|∇v|2 +

V0

4
〈x〉−1−mv2

}
dx ≤ CE0, (2.34)

with some constant C > 0. Here, we used the fact that

k ≥ 2
V0

. (2.35)

Indeed,

k ≥ 2V0

(m + 1)2
≥ 2

V0
.

Case 2: N = 3. Applying similar arguments, we can prove that

∫

RN

{
2

3V0
〈x〉1+δv2

t +
2
V0
〈x〉1+δ|∇v|2 +

(
V0

4
−3kδ

)
〈x〉−1+δv2

}
dx ≤ CE0. (2.36)

Let us give some details. Set

J(t) :=
1
2

∫

RN

w1(x)|∇v(t, x)|2dx− 1
2

∫

RN

w(x)−1w1(x)∆w(x)v(t, x)2dx

and take a small δ > 0. It follows from simple computations that

J(t) ≥ k

2

∫

RN

〈x〉1+δ|∇v(t, x)|2dx− 3kδ

2

∫

RN

〈x〉δ−1v(t, x)2dx.

Now the definition of E(vt,∇v, v)(t) implies

2E(vt,∇v, v)(t) = k

∫

RN

〈x〉1+δv2
t dx + 2J(t) + 2

∫

RN

wvtvdx +
∫

RN

V (x)wv2dx

≥ k

∫

RN

〈x〉1+δ(v2
t + |∇v|2)dx + 2

∫

RN

wvtvdx

+ (V0 − 3kδ)
∫

RN

〈x〉−1+δv2dx.

One has the desired estimate using the fact that

k ≥ (4−
√

δ)V0

2(1− δ)2
≥ 2

V0
, (2.37)
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for δ > 0 small enough. Notice that condition (2.37) is weaker than (2.24) since
V0 > 1.

We can now complete the proof of Lemma 2.7 relying on estimates (2.34) and
(2.36). The elementary inequality

1
1 + ε

|f |2 − 1
ε
|g|2 ≤ |f − g|2, (ε > 0),

together with the definition of v(t, x) leads to

|∇v|2 = |w−1∇χ− w−2χ∇w|2

≥ 1
1 + ε

w−2|∇χ|2 − 1
ε
w−4χ2|∇w|2, (ε > 0). (2.38)

Thus, from (2.34) and (2.38) we get

2E0 ≥ 2
3V0

∫

RN

〈x〉1−mw−2χ2
t dx +

V0

4

∫

RN

〈x〉−1−mw−2χ2dx

+
2
V0

∫

RN

〈x〉1−m

{
1

1 + ε
w−2|∇χ|2 − 1

ε
w−4χ2|∇w|2

}
dx

≥ 2
3V0

∫

RN

〈x〉1−mw−2χ2
t dx +

2
(1 + ε)V0

∫

RN

〈x〉1−mw−2|∇χ|2dx

+
∫

RN

{
V0

4
〈x〉−1−mw−2 − 2

V0ε
w−4|∇w|2〈x〉1−m

}
χ2dx.

Since w = 〈x〉−m, one has ∇w = −m〈x〉−m−2x, so that we see

2E0 ≥ 2
3V0

∫

RN

〈x〉m+1χ2
t dx +

2
(1 + ε)V0

∫

RN

〈x〉m+1|∇χ|2dx

+
∫

RN

{
V0

4
〈x〉m−1 +

2m2

εV0
〈x〉m−3(−|x|2)

}
χ2dx

≥ C1

∫

RN

〈x〉m+1(χ2
t + |∇χ|2)dx +

∫

RN

{
V0

4
〈x〉m−1 − 2m2

εV0
〈x〉m−1

}
χ2dx

≥ C1

∫

RN

〈x〉m+1(χ2
t + |∇χ|2)dx + C2

∫

RN

V0〈x〉m−1χ2dx, (2.39)

where ε > 0 is a large number defined by
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V0

4
>

2m2

εV0
, (2.40)

and in that case we have just set

C1 = min
{

2
3V0

,
2

(1 + ε)V0

}
, C2 =

1
2

{
1
4
− 2m2

εV 2
0

}
.

This implies the desired estimate. ¤

Next we show that the weights 〈x〉m and tm are equivalent. We begin with
the following simple identity.

Lemma 2.8. Let N ≥ 3. Then χ satisfies

d

dt

∫

RN

(
χ2

t + |∇χ|2 + Wχtχ +
1
2
V (x)Wχ2

)
dx

+
∫

RN

{
(2V (x)−W (x))χ2

t + W (x)|∇χ|2 − 1
2
∆Wχ2

}
dx = 0,

where W ∈ BC2(RN ) is a function satisfying

|∇W (x)| = O(|x|−2), |x| → +∞.

Proof. Multiplying both sides of (2.4) by χt + 1/2W (x)χ, applying the
divergence theorem and rearranging the terms, we get

d

dt

∫

RN

(χ2
t + |∇χ|2 + χtχW )dx−

∫

RN

χ2
t Wdx + 2

∫

RN

V (x)χ2
t dx

+
∫

RN

(∇W · ∇χ)χdx +
∫

RN

W |∇χ|2dx +
1
2

d

dt

∫

RN

V Wχ2dx = 0. (2.41)

In the above we use (∆χ)Wχ = ∇ · (Wχ∇χ)− (∇W · ∇χ)χ−W |∇χ|2. Based on
the decay property (2.3) of χ, the boundary integral vanishes for large |x|

∣∣∣∣
∫

B(ρ)

∇ · (W (x)χ(t, x)∇χ(t, x))dx

∣∣∣∣ = O(ρ2−N ), ρ → +∞.

It is easy to see that
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(∇W · ∇χ)χ =
1
2
∇ · (χ2∇W )− 1

2
χ2∆W,

and the boundary integral also vanishes based on (2.3)

∣∣∣∣
∫

B(ρ)

∇ · (χ(t, x)2∇W (x))dx

∣∣∣∣ = O(ρ1−N ), ρ → +∞.

This completes the proof. ¤

The key results for transferring decay estimates at large |x| into decay esti-
mates at large t are the following two lemmas.

Lemma 2.9. Let N ≥ 3. Then there exists a constant C > 0 depending only
on V0 and the Hardy-Sobolev constant such that one has

∫ +∞

t

∫

RN

〈x〉−1(χt(s, x)2 + |∇χ(s, x)|2)dxds ≤ C

∫

RN

(χt(t, x)2 + |∇χ(t, x)|2)dx,

for t ≥ 0.

Proof. Set

G(t) :=
∫

RN

(
χ2

t + |∇χ|2 + Wχtχ +
1
2
V Wχ2

)
dx.

Choose

W (x) =
V0

2
〈x〉−1.

Then, it follows from Lemma 2.8 that

G(T ) +
∫ T

t

∫

RN

{
(2V −W )χ2

t + W |∇χ|2 − 1
2
(∆W )χ2

}
dxds = G(t),

0 ≤ t < T. (2.42)

Since

2V (x)−W (x) ≥ 3V0

2
〈x〉−1,

and
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−∆W (x) =
V0

2
(1 + |x|2)−3/2 N + (N − 3)|x|2

1 + |x|2 > 0,

we see that

G(T ) +
∫ T

t

∫

RN

(
3
2
V0〈x〉−1χ2

t +
V0

2
〈x〉−1|∇χ|2

)
dxds ≤ G(t). (2.43)

From

|Wχtχ| ≤ η

2
χ2

t +
1
2η

W 2χ2 ≤ η

2
χ2

t +
1
2η

WV χ2, (2.44)

with η = 3/2, it follows that

G(t) ≥
∫

RN

(
1
4
χ2

t + |∇χ|2 +
1
6
V Wχ2

)
dx > 0. (2.45)

Furthermore, by using (2.44) with η = 1 one has

G(t) ≤
∫

RN

(
3
2
χ2

t + |∇χ|2 + WV χ2

)
dx

≤ 3
2

∫

RN

(χ2
t + |∇χ|2)dx + C0

∫

RN

χ2

1 + |x|2 dx,

where we have also used that

V (x)W (x) ≤ C0

1 + |x|2 ,

with some constant C0 > 0. Applying the Hardy-Sobolev inequality (N ≥ 3) one
has

G(t) ≤ 3
2

∫

RN

(χ2
t + |∇χ|2)dx + C

∫

RN

|∇χ|2dx. (2.46)

Therefore, (2.43), (2.45) and (2.46) imply

∫ T

t

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dxds ≤ C

∫

RN

(χ2
t + |∇χ|2)dx,
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which is the desired inequality. ¤

Lemma 2.10. Let N ≥ 3. The following relations hold.
(a) lim

t→+∞
Eχ(t) = 0,

(b) Eχ(t) ≤ V1

∫ +∞

t

∫

RN

〈x〉−1(χt(s, x)2 + |∇χ(s, x)|2)dxds.

Proof. First, from the Hölder inequality with exponents (m + 2) and
((m + 2)/(m + 1)) we get

Eχ(t) ≤ C

( ∫

RN

〈x〉m+1(χ2
t + |∇χ|2)dx

)1/(m+2)

×
( ∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx

)(m+1)/(m+2)

.

By using Lemma 2.7 we have

Eχ(t) ≤ C{CE0}1/(m+2)

( ∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx

)(m+1)/(m+2)

.

On the other hand, it follows from Lemma 2.9 with t = 0 that

∫ ∞

0

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dxds ≤ C

∫

RN

(u2
0 + |∇h|2)dx < +∞.

This shows

lim inf
t→+∞

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx = 0.

Thus, the dissipation of the energy Eχ(t) leads to

lim
t→+∞

Eχ(t) ≤ CE
1/(m+2)
0

{
lim inf
t→+∞

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx

}(m+1)/(m+2)

= 0,

which implies (a). Note that m + 1 > 0.

Once we have obtained (a), the proof of (b) follows from (2.4) (see (1.3))
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Eχ(T ) +
∫ T

t

∫

RN

V (x)χ2
t dxds = Eχ(t),

for 0 ≤ t ≤ T . Letting T → +∞ (a) and the assumption (A) on the potential
V (x) lead to

Eχ(t) ≤ V1

∫ +∞

t

∫

RN

〈x〉−1χ2
t dxds

≤ V1

∫ +∞

t

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dxds,

which proves (b). ¤

Under these preparations we can prove Proposition 2.2 based on Lemmas 2.7,
2.9 and 2.10.

Proof of Proposition 2.2. Let N ≥ 3 and and m is as in Lemma 2.5,
namely

m = min{N − 3, V0 − 1} − δ

with small δ > 0. First, as in the proof of Lemma 2.10 from the Hölder inequality
we get

Eχ(t) ≤ C

( ∫

RN

〈x〉m+1(χ2
t + |∇χ|2)dx

)1/(m+2)

×
( ∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx

)(m+1)/(m+2)

,

where both exponents (m + 2) and ((m + 2)/(m + 1)) > 1 are greater than 1. Set

I(t) :=
∫ +∞

t

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dxds.

Then, it follows from Lemmas 2.7 and 2.9 that

I(t) ≤ CEχ(t) ≤ CE
1/(m+2)
0

( ∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx

)(m+1)/(m+2)

, (2.47)
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where the constant C > 0 depends on V0, V1, N,m, k. Since

− d

dt
I(t) =

∫

RN

〈x〉−1(χ2
t + |∇χ|2)dx > 0,

we can rewrite (2.47) in terms of I(t) and get

I(t) ≤ CE
1/(m+2)
0 (−I ′(t))(m+1)/(m+2). (2.48)

The estimate (2.48) implies the differential inequality:

E00 · I ′(t) ≤ −CI(t)(m+2)/(m+1), I(0) < +∞,

where (see the proof of Lemma 2.7)

0 < E00 :=
{ ∫

RN

〈x〉m+3(|u0(x)|+ |u1(x)|)2dx

}1/(m+1)

< +∞.

By solving this inequality we get the estimate:

I(t) ≤ CEm+1
00 · t−m−1.

The Proposition 2.2 follows from the above estimate and Lemma 2.10. ¤

Based on Proposition 2.2, we can prove (ii) of Theorem 1.1. The proof of this
part manifests the parabolic asymptotic profile of the equation (1.1) with large V0.
For this we shall prepare the following Proposition. This proposition is derived
by slightly modifying the result obtained by Radu-Todorova-Yordanov [21] which
has been derived in the case of subcritical potential V (x) ≈ V0(1 + |x|)−α with
α ∈ [0, 1).

Proposition 2.11. Let N ≥ 3 and V0 > µ + 2 (µ > −1). There exist
constants Ci0 (i = 0, 1), such that

∫ t

0

(R + s)µ+1Eu(s)ds ≤ C00 + C10

∫ t

0

(R + s)µ−1Eχ(s)ds,

where u ∈ X1(0,+∞) is the weak solution of (1.1)–(1.2), χ = χ(t, x) is the function
defined by (2.2), and R > 0 is a large number satisfying R > R0 + 1.
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Let us postpone the proof for a while and go back to the proof of Theorem
1.1 (ii).

Proof of Theorem 1.1 (ii) [in the case V0 ≥ N ]. Since V0 ≥ N − 2, we
use Proposition 2.2 to obtain

Eχ(t) ≤ C(1 + t)−(N−2−δ).

Then by Proposition 2.11 we have

∫ t

0

(R + s)µ+1Eu(s)ds ≤ C0 + C1,R

∫ t

0

(1 + s)µ−1(1 + s)−(N−2−δ)ds

≤ C0 + C1,R

∫ t

0

(1 + s)µ−N+1+δds

≤ C0 + C1,R
1

N − 2− µ− δ
,

where µ is such that

−1 < µ < N − 2− δ, µ + 2 < V0. (2.49)

Thus, the energy of u satisfies

∫ t

0

(R + s)µ+1Eu(s)ds ≤ C0 + C1,R,N,V0 ,

with some generous constant C1,R,N,V0 > 0. From the monotonicity of the energy
Eu(t), we get

∫ t

0

(R + s)µ+1ds · Eu(t) ≤ C0 + C1,R,N,V0 .

Thus we have

(R + t)µ+2

µ + 2
Eu(t) ≤ C0 + C1,R,N,V0 +

Rµ+2

µ + 2
Eu(0)

which implies

Eu(t) = O(t−(µ+2)), t → +∞.
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Since V0 ≥ N , it will be enough to choose µ = N − 2− 2δ. Resetting δ := 2δ, we
have the decay estimate in Theorem 1.1 (ii). ¤

Next we prove Theorem 1.1 (i) in the case 1 ≤ V0 < N . The proof is divided
into two parts:
(Step 1): The case N − 1 ≤ V0 < N ,
(Step 2): The case 1 ≤ V0 < N − 1.

Proof of (Step 1). Let v(t, x) = u(t, x)w(x)−1 in (2.6), where u ∈
X1(0,+∞) is the solution to the original problem (1.1)–(1.2) and the weights
are again

w(x) = 〈x〉−m, w1(x) = k〈x〉1−m.

Compared with χ(t, x), the solution u(t, x) can stand much higher powers m. The
restriction on the weights for χ (m < N − 3 ) comes from the slow decay of χ as
|x| → ∞ (see Lemmas 2.3 and 2.4). For u the FSP applies. Therefore, we can
afford much stronger weights and get a weighted energy identity for u similar to
(2.8) without the condition m < N − 2.

Taking m := V0−1 (see (2.22)) and k := k+ = 2/V0 (see (2.35)) we can show,
as in Lemma 2.6, that the first three terms of F (vt,∇v, v)(t) form a nonnegative-
definite quadratic form

∫

RN

(V w1 − w)v2
t dx +

∫

RN

vt

(
∇w1 − 2w1

∇w

w

)
· ∇vdx +

∫

RN

w|∇v|2dx ≥ 0.

Since we can not rely anymore on the positivity of the Laplacian term we rewrite
(2.8) as

d

dt
E(vt,∇v, v)(t) ≤ 1

2

∫

RN

(∆w(x))v(t, x)2dxdt. (2.50)

After integrating (2.50) over [0, t] we get

E(vt,∇v, v)(t) ≤ E0 +
1
2

sup
0≤t<+∞

∫ t

0

∫

RN

∆w(x)v(t, x)2dxdt =: E∗
0 .

We will prove in the sequel the following boundedness

sup
0≤t<+∞

∫ t

0

∫

RN

∆w(x)v(t, x)2dxdt < +∞, (2.51)
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which leads to E∗
0 < ∞. By using the representation formula (2.9) for

E(vt,∇v, v)(t) we get

1
2

∫

RN

[
w1(v2

t + |∇v|2) + 2wvtv + V (x)wv2
]
dx

≤ 1
2

sup
0≤t<+∞

∫

RN

w−1w1(∆w)v2dx + E∗
0 =: E∗∗

0 .

We will prove also that E∗∗
0 < +∞ which corresponds to Lemma 2.7 in the case

N − 1 ≤ V0 < N with χ(t, x) replaced by u(t, x). Further, by using the same
arguments as in the proofs of Lemmas 2.7, 2.8, 2.9, 2.10 and Proposition 2.2 with
χ(t, x) replaced by u(t, x) we can derive

Iu(t) :=
∫ ∞

t

∫

RN

〈x〉−1(u2
t + |∇u|2)dxds

≤ C(E∗∗
0 )1/(m+2)(−I ′u(t))(m+1)/(m+2),

so that (see (2.48))

Eu(t) ≤ Ct−(m+1) = Ct−V0 . (2.52)

Let us now prove (2.51) and

sup
0≤t<+∞

∫

RN

w−1w1(∆w)v2dx < +∞. (2.53)

Indeed, we have

∫ t

0

∫

RN

∆w(x)v(t, x)2dxdt

= m

∫ t

0

∫

RN

〈x〉−m−2

{
(2 + m)

r2

1 + r2
−N

}
〈x〉2mu2dxdt

≤ (V0 − 1)(V0 + 1−N)
∫ +∞

0

∫

RN

〈x〉V0−3u2dxdt =: (V0 − 1)(V0 + 1−N)I0.

At this stage we impose the assumptions V0 ≥ N − 1. To estimate I0, we use the
FSP of the solution u(t, x) and get
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I0 ≤ C

V0

∫ +∞

0

∫

RN

V (x)u(t, x)2(1 + |x|)V0−2dxdt, (V0 ≥ N − 1 ≥ 2)

≤ C

V0

∫ +∞

0

∫

RN

(R + t)V0−2V (x)u(t, x)2dxdt (1 + R0 < R)

=
C

V0

∫ +∞

0

∫

RN

(R + t)V0−2V (x)χt(t, x)2dxdt.

In the above

χ(t, x) =
∫ t

0

u(s, x)ds + h(x),

where h(x) is the unique solution of the Poisson problem (2.1) with f(x) =
V (x)u0(x) + u1(x). Thus we have

∫

RN

w−1w1(∆w)v2dx = km

∫

RN

〈x〉m−1

{
(2 + m)

r2

1 + r2
−N

}
u2dx

≤ 2
V0

(V0 − 1)(V0 + 1−N)
∫

RN

〈x〉V0−2u2dx

≤ 2
V0

(V0 − 1)(V0 + 1−N)
∫

RN

(1 + |x|)V0−2u2dx

≤ 2
V0

(V0 − 1)(V0 + 1−N)
∫

RN

(1 + R0 + t)V0−2u2dx

≤ 2
V0

(V0 − 1)(V0 + 1−N)(R + t)V0−2‖u(t, ·)‖2

≤ C0(V0, N)(R + t)V0−2Eχ(t) ≤ C0(V0, N)(R + t)V0−N+δ,

where R > R0 + 1, χt = u and the FSP are just used. In the last statement we
apply the decay rate of Eχ(t),

Eχ(t) ≤ C(R + t)−(N−2−δ), (2.54)

which has been already derived in Proposition 2.2. Then choosing δ > 0 such that
N − V0 > δ > 0 completes the proof of (2.53).

Further, from the equation (2.4) for χ we can derive the energy identity
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d

dt
Eχ(t) +

∫

RN

V (x)χ2
t dx = 0, (2.55)

and correspondingly the following weighted identity

[
(R + t)V0−2Eχ(t)

]t=t

t=0
+ G(t) = (V0 − 2)

∫ t

0

(R + t)V0−3Eχ(t)dt,

where

G(t) :=
∫ t

0

∫

RN

(R + t)V0−2V (x)χ2
t dxdt.

This can be rewritten as

(R + t)V0−2Eχ(t) + G(t) ≤ RV0−2Eχ(0) + (V0 − 2)
∫ t

0

(R + t)V0−3Eχ(t)dt,

(recall that N ≥ 3). Note that Eχ(0) depends on the function h(x). From Lemma
2.1 one can easily check that Eχ(0) < +∞. By using the decay rate (2.54) of
Eχ(t) and the choice for δ, namely N − V0 − δ > 0, we have

(R + t)V0−2Eχ(t) + G(t) ≤ C + C(1 + t)V0−N+δ, (N ≥ 3). (2.56)

Estimate (2.56) leads to

lim
t→+∞

G(t) < +∞,

so that I0 < +∞. This completes the proof of Step 1. ¤

Proof of (Step 2) [in the case 1 ≤ V0 < N − 1]. The proof is a slight
modification of the proof of Proposition 2.2. In this part, we do not use the
function χ(t, x) (see (2.2)) at all. Instead we directly use the solution u(t, x) to
the original problem (1.1)–(1.2), i.e., we set

v(t, x) := u(t, x)w(x)−1

in (2.6), where again

w(x) = 〈x〉−m, w1(x) = k〈x〉1−m.
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We choose m = V0 − 1 and

k = k+ =
2V0 + 2

√
V 2

0 − (m + 1)2

(m + 1)2
=

2
V0

. (2.57)

Then we can proceed with the same arguments as in Lemmas 2.7, 2.8, 2.9, 2.10
and in Proposition 2.2 with χ(t, x) replaced by u(t, x). Similar to Proposition 2.2,
we obtain that

I ′u(t) ≤ −CIu(t)(m+2)/(m+1), Iu(0) < +∞,

where

Iu(t) :=
∫ +∞

t

∫

RN

〈x〉−1(u2
t + |∇u|2)dxds.

Thus we have

Eu(t) ≤ Iu(t) ≤ Ct−m−1 = Ct−V0 . ¤

The last part of this section is the proof of Proposition 2.11. First we prepare
the following lemma. The proof is a slight modification of the argument in Radu-
Todorova-Yordanov [21]. Their result works in the subcritical case α ∈ [0, 1).

Lemma 2.12. Let N ≥ 1. Assume that a function W ∈ C2([0,+∞)) satisfies

( i ) W (t) ≤ inf
|x|≤R0+t

V (x),

( ii ) W ′′(t)−W ′(t)V (x) ≥ 0.

Then the following estimate holds

d

dt

∫

RN

(
u2

t + |∇u|2 + W (t)utu +
W (t)V (x)−W ′(t)

2
u2

)
dx

+
∫

RN

(W (t)u2
t + W (t)|∇u|2)dx ≤ 0.

Proof. By multiplying both sides of (1.1) by ut and integrating over RN

one has

d

dt
Eu(t) +

∫

RN

V (x)u2
t dx = 0. (2.58)
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Next, multiplying both sides of (1.1) by (1/2)W (t)u we see

1
2
W (t)

d

dt
(ut, u)− 1

2
W (t)‖ut‖2 +

1
2
W (t)‖∇u‖2 +

W (t)
4

d

dt

∫

RN

V (x)u2dx = 0,

so that

1
2

d

dt
{W (t)(ut, u)} − 1

4
W ′(t)

d

dt
‖u‖2 − 1

2
W (t)‖ut‖2

+
1
2
W (t)‖∇u‖2 +

d

dt

{
W (t)

4

∫

RN

V (x)u2dx

}
− W ′(t)

4

∫

RN

V (x)u2dx = 0.

Thus one has

1
2

d

dt
{W (t)(ut, u)} −

[
1
2

d

dt

{
W ′(t)

1
2
‖u‖2

}
− 1

4
W ′′(t)‖u‖2

]

+
{

W (t)
2

‖ut‖2 −W (t)‖ut‖2
}

+
1
2
W (t)‖∇u‖2

+
d

dt

{
W (t)

4

∫

RN

V (x)u2dx

}
− W ′(t)

4

∫

RN

V (x)u2dx = 0,

so that one has arrived at

1
2

d

dt

∫

RN

{
W (t)utu− W ′(t)

2
u2 +

1
2
W (x)V (x)u2

}
dx−

∫

RN

W (t)u2
t dx

+
1
2

∫

RN

{
W (t)u2

t + W (t)|∇u|2 +
W ′′(t)−W ′(t)V (x)

2
u2

}
dx = 0. (2.59)

By adding both sides of (2.58) and (2.59) one has

d

dt

∫

RN

(
u2

t + |∇u|2 + W (t)utu +
W (t)V (x)−W ′(t)

2
u2

)
dx

+ 2
∫

RN

(V (x)−W (t))u2
t dx

+
∫

RN

{
W (t)u2

t + W (t)|∇u|2 +
1
2
(W ′′(t)−W ′(t)V (x))u2

}
dx = 0. (2.60)

The desired estimate can be derived from (2.60) and the assumptions (i) and (ii).
¤
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Set

F (t, x) := ut(t, x)2 + |∇u(t, x)|2 +W (t)ut(t, x)u(t, x)+
W (t)V (x)−W ′(t)

2
u(t, x)2.

Then one has the following Lemma.

Lemma 2.13. Let N ≥ 1. Assume that a function W ∈ C2([0,+∞)) satisfies

(iii) F (t, x) ≥ 0,

(iv) F (t, x) ≤ (1 + ε)ut(t, x)2 + |∇u(t, x)|2 +
C∗

ε
W (t)V (x)u(t, x)2,

with large C∗ > 0 and small ε > 0 specified later. Then for any µ > −1 it is true
that

∫ t

0

∫

RN

(R + s)µ+2W (s)(u2
t + |∇u|2)dxds

≤ C1 + (µ + 2)(1 + ε)
∫ t

0

∫

RN

(R + s)µ+1(u2
t + |∇u|2)dxds

+ (µ + 2)
C∗

ε

∫ t

0

∫

RN

(R + s)µ+1W (s)V (x)u2dxds,

where C1 > 0 is a constant depending on the initial data (u0, u1), R > 0, µ, and
W (0).

Proof. It follows from Lemma 2.12 that for 0 ≤ t ≤ T ,

∫ T

0

(R+ t)µ+2 d

dt

∫

RN

F (t, x)dxdt+
∫ T

0

(R+ t)µ+2

∫

RN

W (t)(u2
t + |∇u|2)dxdt ≤ 0.

By integration by parts with respect to t we see that

(R + T )µ+2

∫

RN

F (T, x)dx +
∫ T

0

∫

RN

(R + t)µ+2W (t)(u2
t + |∇u|2)dxdt

≤ Rµ+2

∫

RN

F (0, x)dx + (µ + 2)
∫ T

0

∫

RN

(R + t)µ+1F (t, x)dxdt.

Thus the desired inequality can be derived by the conditions (iii) and (iv) as
follows:
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∫ T

0

∫

RN

(R + t)µ+2W (t)(u2
t + |∇u|2)dxdt

≤ C1 + (µ + 2)
∫ T

0

∫

RN

(R + t)µ+1

{
(1 + ε)u2

t + |∇u|2 +
C∗

ε
W (t)V (x)u2

}
dxdt

≤ C1 + (µ + 2)(1 + ε)
∫ T

0

∫

RN

(R + t)µ+1{u2
t + |∇u|2}dxdt

+ (µ + 2)
C∗

ε

∫ T

0

∫

RN

(R + t)µ+1W (t)V (x)u2dxdt,

where

C1 := Rµ+2

∫

RN

F (0, x)dx

= Rµ+2

∫

RN

(
u2

1 + |∇u0|2 + W (0)u1u0 +
W (0)V (x)−W ′(0)

2
u2

0

)
dx. ¤

Now we prove Proposition 2.11.

Proof of Proposition 2.11. Choose

W (t) :=
V0

R + t
. (2.61)

The auxiliary function W (t) satisfies all conditions (i)–(iv) in Lemmas 2.12, 2.13.
We postpone the check of these conditions and perform with the proof of the
Proposition 2.11. It follows from Lemma 2.13 that

{V0 − (1 + ε)(µ + 2)}
∫ t

0

∫

RN

(R + s)µ+1(u2
t + |∇u|2)dxds

≤ C1 + (µ + 2)
C∗

ε

∫ t

0

∫

RN

(R + s)µ+1W (s)V (x)u2dxds. (2.62)

On the other hand, by multiplying (2.55) by (R + t)µ it follows that

d

dt
{(R + t)µEχ(t)}+ (R + t)µ

∫

RN

V (x)χ2
t dx = µ(R + t)µ−1Eχ(t).

Integrating over [0, t] we have
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(R + t)µEχ(t) +
∫ t

0

∫

RN

(R + s)µV (x)χ2
t dxds

= RµEχ(0) + µ

∫ t

0

(R + s)µ−1Eχ(s)ds. (2.63)

Then χt = u, the definition of W (t), and (2.63) lead to

∫ t

0

∫

RN

(R + s)µ+1W (s)V (x)u2dxds = V0

∫ t

0

∫

RN

(R + s)µV (x)χ2
t dxds

≤ V0R
µEχ(0) + V0µ

∫ t

0

(R + s)µ−1Eχ(s)ds.

Therefore, from (2.62) it follows that

2{V0 − (1 + ε)(µ + 2)}
∫ t

0

(R + s)µ+1Eu(s)ds

≤ C1 + (µ + 2)V0R
µEχ(0)

C∗

ε
+ (µ + 2)V0|µ|C

∗

ε

∫ t

0

(R + s)µ−1Eχ(s)ds. (2.64)

Now, for fixed µ > −1, we take

V0 > µ + 2 > 1.

Furthermore, choose ε > 0 so small that

1
µ + 2

{V0 − (µ + 2)} > ε > 0.

Then, the estimate in Proposition 2.11 can be derived with

C00 :=
(

C1 + (µ + 2)V0R
µEχ(0)

C∗

ε

)
(2{V0 − (1 + ε)(µ + 2)})−1,

and

C10 := (µ + 2)V0|µ|C
∗

ε
(2{V0 − (1 + ε)(µ + 2)})−1.

In the above C∗ > 0 is a large number specified in the sequel in a way that the
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conditions (iv) of Lemma 2.13 holds for the function W (t).
What left is to check the conditions (i)–(iv) of Lemmas 2.12, 2.13 for the

function W (t). The condition (ii) trivially follows from the definition of W (t).
Concerning (i), we have

V (x) ≥ V0√
1 + |x|2 ≥

V0

1 + |x| ≥
V0

1 + R0 + t
≥ V0

R + t
= W (t)

for |x| ≤ R0 + t, which implies (i).

Since

−W (t)utu ≤ u2
t

2
+

W (t)2

2
u2,

we get

F (t, x) ≥ 1
2
u2

t + |∇u|2 +
W (t)V (x)−W ′(t)−W (t)2

2
u2.

Therefore, in order to check (iii) it is enough to show that

W (t)V (x)−W ′(t)−W (t)2 ≥ 0. (2.65)

The estimate (2.65) follows from (i) and W ′(t) < 0:

W (t)V (x)−W ′(t)−W (t)2 ≥ W (t)V (x)−W (t)2 = W (t)(V (x)−W (t)) ≥ 0.

Finally, let us check (iv). Note that (iv) if and only if

J(t, x) := εu2
t +

C∗

ε
W (t)V (x)u2 −W (t)utu− W (t)V (x)−W ′(t)

2
u2 ≥ 0. (2.66)

We rewrite J(t, x) as

J(t, x) =
(√

εut− 1
2
√

ε
W (t)u

)2

+u2

(
W ′(t)

2
−W (t)V (x)

2
+

C∗

ε
W (t)V (x)−W (t)2

4ε

)
,

and using the FSP we get the estimate
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J(t, x) ≥
{(

C∗

ε
− 1

2

)
W (t)V (x) +

W ′(t)
2

− W (t)2

4ε

}
u2

≥
{(

C∗

ε
− 1

2

)
V0

R + t

V0

1 + R0 + t
− V0

2(R + t)2
− V 2

0

4ε(R + t)2

}
u2

=
V0

(R + t)2

{(
C∗

ε
− 1

2
− 1

4ε

)
V0 − 1

2

}
u2 (R > R0 + 1). (2.67)

We get J(t, x) ≥ 0 if we choose C∗ > 0 large and ε > 0 small such that

C∗ >
1
4
,

(4C∗ − 1)
4ε

− 1
2

> 0,

1 ≥ 1
2

{
(4C∗ − 1)

4ε
− 1

2

}−1

. (2.68)

In particular, if (2.68) holds, then

V0 > µ + 2 > 1 ≥ 1
2

{
(4C∗ − 1)

4ε
− 1

2

}−1

,

which implies (see (2.67))

(
C∗

ε
− 1

4ε
− 1

2

)
V0 − 1

2
> 0.

This completes the proof of Proposition 2.11. ¤

3. Two-dimensional case.

In this section we prove Theorem 1.3 in order to obtain a sharp result in
the two dimensional case. Note that in Lemma 2.9 we used the Hardy-Sobolev
inequality. Here we will use the two dimensional Hardy-Sobolev inequality (see
Lemma 3.5 below).

In this two dimensional part the weights w, w1 are much simpler and can be
chosen as functions of t only: w = f(t) and w1 = g(t). Later on these weights f(t)
and g(t) will be specified. Now we first multiply the equation (1.1) by f(t)ut +
g(t)u, and integrate over RN and get the following Lemma:

Lemma 3.1. Let N ≥ 1, and let u ∈ X1(0,+∞) be the solution to (1.1)–
(1.2). Then it is true that
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d

dt
E(t) + F (t) = 0,

where

E(t) =
1
2

∫

RN

[
f(u2

t + |∇u|2) + 2guut + (V g − gt)u2
]
dx,

F (t) =
1
2

∫

RN

(2V f − ft − 2g)u2
t dx +

1
2

∫

RN

(2g − ft)|∇u|2 dx

+
1
2

∫

RN

(gtt − V gt)u2 dx.

Proof. The proof is similar to one in [6, Lemma 2.1] and we omit it. ¤

Since the finite speed of propagation applies again to solutions of the corre-
sponding problem (1.1)–(1.2) to estimate the functions E(t) and F (t) it is sufficient
to consider the spatial integration over the light cone

Ω(t) = {x ∈ RN : |x| ≤ R0 + t}.

Then we have the following lemma.

Lemma 3.2. Let N ≥ 1. Assume that the smooth functions f(t) and g(t)
satisfy the two conditions below : for t ≥ t0 ≥ 0,

( i ) 2fV − ft − 2g ≥ 0, x ∈ Ω(t),
( ii ) 2g − ft ≥ 0.

If u ∈ X1(0,+∞) is the solution to (1.1)–(1.2), then the following inequality holds

d

dt
{f(t)Eu(t) + g(t)(ut(t, ·), u(t, ·))}

≤ d

dt

{
1
2

∫

RN

(gt − V (x)g)|u(t, x)|2dx

}
+

1
2

∫

RN

V (x)gt|u(t, x)|2dx

+
1
2

∫

RN

(−gtt)|u(t, x)|2dx, (3.1)

for t ≥ t0 ≥ 0.

The proof of this lemma can be easily derived by relying on Lemma 3.1, so we
omit it.
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Furthermore, we have the estimates.

Lemma 3.3. In addition to the assumptions as in Lemma 3.2 we further as-
sume that the smooth functions f(t) and g(t) satisfy the following three conditions:
for t ≥ t0 ≥ 0,

(iii) −gtt ≤ C1

1 + t
, x ∈ RN ,

(iv) V (x)gt ≤ C2V (x), x ∈ RN ,
( v ) gt − V (x)g ≤ C3,

where Ci > 0 (i = 1, 2, 3) are some constants. If u ∈ X1(0,+∞) is the unique
solution to (1.1)–(1.2), then it is true that

f(t)Eu(t) + g(t)(ut(t, ·), u(t, ·))
≤ f(t0)Eu(t0) + g(t0)(ut(t0, ·), u(t0, ·))

+
C3

2

∫

RN

|u(t, x)|2dx− 1
2

∫

RN

(gt(t0)− V (x)g(t0))|u(t0, x)|2dx

+ C2

∫ t

t0

∫

RN

V (x)|u(s, x)|2dxds +
C1

2V0

∫ t

t0

∫

RN

V0

1 + s
|u(s, x)|2dxds,

for each t ≥ t0 ≥ 0.

Proof. By using the assumptions (i) and (ii) in Lemma 3.2 we can obtain
the inequality (3.1). Then we integrate both sides of (3.1) over [t0, t], apply the
additional conditions (iii)–(v) and get the desired estimate. ¤

Now we choose the functions f(t) and g(t) in Lemmas 3.2 and 3.3 as follows.
In the case 2 < V0 we set

f(t) = (1 + t)2, g(t) = (1 + t), (3.2)

and in the case 1 < V0 ≤ 2, for an arbitrarily fixed δ > 0 we choose

f(t) = (1 + t)V0−δ, g(t) =
V0 − δ

2
(1 + t)V0−1−δ. (3.3)

Lemma 3.4. Let f and g be defined by (3.2) in the case 2 < V0, and by (3.3)
in the case 1 < V0 ≤ 2. Then the conditions (i)–(v) in Lemmas 3.2 and 3.3 hold
on Ω(t) for t ≥ t0 À 1.
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Proof. First we check the conditions (i)–(v) in the case 2 < V0 (we choose
(3.2) in this case). Indeed,

2fV − ft − 2g ≥ 2(1 + t)2
V0

1 + |x| − 4(1 + t)

= 2(1 + t)
{

V0(1 + t)
1 + |x| − 2

}
≥ 2(1 + t)

{
V0t + V0

(1 + R0) + t
− 2

}
> 0

for all x ∈ Ω(t) with sufficiently large t ≥ t0 À 1, since

lim
t→+∞

(
V0t + V0

(1 + R0) + t
− 2

)
= V0 − 2 > 0.

(ii), (iii), (iv) and (v) follow from elementary calculations.
We omit the check of conditions (i)–(v) in the case 1 < V0 ≤ 2, since the

calculations are straightforward. ¤

It follows from Lemma 3.3 with large t0 (defined as in Lemma 3.4) and Lemma
3.4 that

f(t)Eu(t) + g(t)(u(t, ·), ut(t, ·))

≤ C4 +
C3

2

∫

RN

|u(t, x)|2dx +
C1

2V0

∫ t

t0

∫

RN

V0

1 + s
|u(s, x)|2dxds

+ C2

∫ t

t0

∫

RN

V (x)|u(s, x)|2dxds, (3.4)

where

C4 = f(t0)Eu(t0)+g(t0)(u(t0, ·), ut(t0, ·))− 1
2

∫

RN

(gt(t0)−V (x)g(t0))|u(t0, x)|2dx.

On the other hand, as in [4, Lemma 2.5] we can derive the following Lemma
based on the two dimensional Hardy-Sobolev inequality.

Lemma 3.5. Let N = 2, and let u ∈ X1(0,+∞) be the solution to (1.1)–
(1.2). Then the following estimate holds

‖u(t, ·)‖2 +
∫ t

t0

∫

R2
V (x)|u(s, x)|2dxds ≤ CR0(‖u0‖2 + ‖u1‖2), (3.5)
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for all t ≥ t0, where CR0 > 0 is a constant depending on R0.

Proof. We introduce an auxiliary function

χ(t, x) =
∫ t

0

u(s, x)ds.

Then χ(t, x) satisfies

χtt −∆χ + V (x)χt = V (x)u0 + u1, (t, x) ∈ (0,∞)×R2, (3.6)

χ(0, x) = 0, χt(0, x) = u0(x), x ∈ R2. (3.7)

Multiplying (3.6) by χt and integrating over [0, t]×R2 we get

1
2
(‖χt(t, ·)‖2 + ‖∇χ(t, ·)‖2) +

∫ t

0

∫

R2
V (x)χt(s, x)2dxds

=
1
2
‖u0‖2 +

∫

R2
(V (x)u0(x) + u1(x))χ(t, x)dx. (3.8)

Next step is to use the two dimensional Hardy-Sobolev inequality (see [11, Lemma
2]):

∫

R2

|w(x)|2
d(x)2

dx ≤ C

∫

R2
|∇w(x)|2dx, w ∈ H1(R2), (3.9)

where

d(x) := {1 + log(1 + |x|)}(1 + |x|).

The last term of (3.8) can be estimated by using (3.9) and the Schwartz inequality
as follows.

∫

R2
(V (x)u0(x) + u1(x))χ(t, x)dx

≤
∫

R2
d(x)(V (x)|u0(x)|+ |u1(x)|) |χ(t, x)|

d(x)
dx

≤
{ ∫

R2
d(x)2(V (x)|u0(x)|+ |u1(x)|)2dx

}1/2{ ∫

R2

|χ(t, x)|2
d(x)2

dx

}1/2
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≤ C

{ ∫

R2
d(x)2(V (x)|u0(x)|+ |u1(x)|)2dx

}1/2

‖∇χ(t, ·)‖

≤ 1
4
‖∇χ(t, ·)‖2 + CR0

∫

R2
(|u0(x)|2 + |u1(x)|2)dx, (3.10)

where CR0 > 0 is a constant depending on R0 > 0 and V0 > 0. Combining (3.8)
and (3.10) we derive

1
2
‖χt(t, ·)‖2 +

1
4
‖∇χ(t, ·)‖2 +

∫ t

0

∫

R2
V (x)χt(s, x)2dxds

≤ 1
2
‖u0‖2 + CR0(‖u0‖2 + ‖u1‖2).

The estimate (3.5) follows from above estimate and the fact that χt = u. ¤

As consequence of Lemma 3.5 and FSP, since

V (x) ≥ V0

1 + |x| ≥
V0

1 + R0 + t
≥ 1

(1 + R0)
V0

1 + t
,

we have

∫ t

t0

∫

R2

V0

1 + s
|u(s, x)|2dxds ≤ CR0(‖u0‖2 + ‖u1‖2), (3.11)

where CR0 > 0 is a constant dependent only on R0.
Now we present the proof of Theorem 1.3.

Proof of Theorem 1.3. It follows from Lemma 3.5, (3.4) and (3.11) that

f(t)Eu(t) + g(t)(u(t, ·), ut(t, ·)) ≤ CR0,δ,

where the constant CR0,δ > 0 depends on the L2-norm of the initial data, R0 and
δ (in the case when 1 < V0 ≤ 2). By using the Schwartz inequality, the definition
of the total energy and Lemma 3.5 we get

f(t)Eu(t) ≤ g(t)‖u(t, ·)‖‖ut(t, ·)‖+ C ≤ Cg(t)
√

Eu(t) + C, t ≥ t0

with a constant C > 0 dependent on R0, δ and the initial data. Further, we set
X(t) =

√
Eu(t) for t ∈ [0,+∞) and get
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f(t)X(t)2 − Cg(t)X(t)− C ≤ 0, t ≥ t0. (3.12)

By solving the quadratic inequality (3.12) for X(t) we have

√
Eu(t) ≤ Cg(t) +

√
C2g(t)2 + 4Cf(t)
2f(t)

.

This inequality leads to

Eu(t) ≤ C

(
g(t)
f(t)

)2

+ C

(
1

f(t)

)
, t ≥ t0,

which implies the needed decay estimates in both cases for V0. ¤

4. One-dimensional case.

In this section we prove Theorem 1.4. The proof is almost the same as the
proof of Theorem 1.3 except for Lemma 3.5. We modify the proof of Lemma 3.5
and use the following Morrey inequality instead of the two dimensional Hardy-
Sobolev inequality.

Lemma 4.1 (Morrey). The following estimate holds

|u(x)− u(y)| ≤ |x− y|1/2‖ux‖,

for all u ∈ H1(R).

Relying on Lemma 4.1 we can prove next Lemma (see [3]) which is similar to
Lemma 3.5.

Lemma 4.2. Let N = 1, and suppose (H1). Let u ∈ X1(0,+∞) be the
solution to problem (1.1)–(1.2). Then the following bound holds

‖u(t, ·)‖2 +
∫ t

0

∫

R

V (x)u(s, x)2dxds ≤ CR0(‖u0‖2 + ‖u1‖2),

with some constant CR0 > 0 depending only on R0 > 0.

Proof. For the solution u ∈ X1([0,+∞)) to problem (1.1)–(1.2), we intro-
duce a new function
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W (t, x) =
∫ t

0

u(s, x)ds.

Then W (t, x) satisfies

Wtt −Wxx + V (x)Wt = V (x)u0 + u1, (t, x) ∈ (0,∞)×R, (4.1)

W (0, x) = 0, Wt(0, x) = u0(x), x ∈ R. (4.2)

By multiplying both sides of (4.1)–(4.2) by Wt, and integration it over [0, t]×R,
one has the identity

1
2
(‖Wt(t, ·)‖2 + ‖Wx(t, ·)‖2) +

∫ t

0

∫

R

V (x)Wt(s, x)2dxds

=
1
2
‖u0‖2 +

∫

R

(V (x)u0(x) + u1(x))W (t, x)dx. (4.3)

Because of Lemma 4.1, one finds that

|W (t, x)−W (t, 0)| ≤ |x|1/2‖Wx(t, ·)‖ ≤
√

(|x|+ 1)‖Wx(t, ·)‖. (4.4)

Now the last term of (4.3) can be estimated as follows by using (H1), (4.4) and
the Schwarz inequality:

∫

R

(V (x)u0(x) + u1(x))W (t, x)dx

=
∫

R

(V (x)u0(x) + u1(x))(W (t, x)−W (t, 0))dx

+
∫

R

(V (x)u0(x) + u1(x))W (t, 0)dx

=
∫

R

(V (x)u0(x) + u1(x))(W (t, x)−W (t, 0))dx

+ W (t, 0)
∫

R

(V (x)u0(x) + u1(x))dx

=
∫

R

(V (x)u0(x) + u1(x))(W (t, x)−W (t, 0))dx

≤
∫

R

(V (x)|u0(x)|+ |u1(x)|)|W (t, x)−W (t, 0)|dx



Optimal decay for wave equations 227

=
∫

R

√
1 + |x|(V (x)|u0(x)|+ |u1(x)|) |W (t, x)−W (t, 0)|√

1 + |x| dx

≤
(

sup
x∈R

|W (t, x)−W (t, 0)|√
1 + |x|

) ∫

R

√
1 + R0(V (x)|u0(x)|+ |u1(x)|)dx

≤ ‖Wx(t, ·)‖ ·
√

CR0

{ ∫ R0

−R0

(|u0(x)|2 + |u1(x)|2)dx

}1/2

≤ 1
4
‖Wx(t, ·)‖2 + CR0

∫

R

(|u0(x)|2 + |u1(x)|2)dx, (4.5)

where CR0 > 0 is a constant depending on R0 > 0 and V0 > 0. The statement can
be derived by (4.3) and (4.5) because of Wt = u. The other parts of the proof are
similar to ones in the proof of Theorem 1.3. ¤

We omit the proof of Proposition 1.5 since it is similar to one in [6].

5. Exactness of the decay rate.

In this section we discuss the optimality of decay rates obtained in Theorems
1.1, 1.3 and 1.4. For simplicity of notations, in what follows we use R > 0 instead
of R0 > 0, where R0 > 0 is the size of support of the initial data (u0, u1).

Proof of Theorem 1.6. We use a positive radially symmetric smooth
solution φ(x) to the elliptic problem on RN :

∆φ = (1 + V (x))φ (5.1)

satisfying (5.10) below. The proof of existence of such solution φ(x) will be post-
poned for a while. Next, we set

v(t, x) := e−tφ(x).

Then the function v(t, x) solves the following equation with anti-damping term

vtt −∆v − V (x)vt = 0, (t, x) ∈ (0,∞)×RN , (5.2)

v(0, x) = φ(x), vt(0, x) = −φ(x), x ∈ RN . (5.3)

Cross multiplying with vt and ut we get
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(utt, vt)− (∆u, vt) + (V ut, vt) = 0, (5.4)

(vtt, ut)− (∆v, ut)− (V vt, ut) = 0. (5.5)

Since

d

dt
(ut, vt) = (utt, vt) + (vtt, ut),

d

dt
{∇u · ∇v} = ∇u · ∇vt +∇ut · ∇v,

by adding (5.4) and (5.5), and using integration by parts we obtain

d

dt

∫

RN

(utvt +∇u · ∇v)dx = 0. (5.6)

Now, let us choose the initial data [u0, u1] ∈ C∞0 (RN )× C∞0 (RN ) of the original
problem (1.1)–(1.2) to satisfy

P0 := −(u1, φ) + (∇u0,∇φ) 6= 0. (5.7)

The set of initial data [u0, u1] satisfying (5.7) is not empty. For example, if u1(x) ≤
0 and u0(x) ≡ 0, since φ is positive, we get P0 > 0. Then, by integrating (5.6)
over (0, t) we have

∫

RN

(utvt +∇u · ∇v)dx = P0 6= 0. (5.8)

Let ξ(x) be the characteristic function of the ball B(R + t):

ξ(x) =

{
1 |x| ≤ t + R,

0 |x| > t + R.

Then, it follows from the Schwarz inequality that

∣∣∣∣
∫

RN

(utvt +∇u · ∇v)dx

∣∣∣∣

≤
∫

B(R+t)

(|ut||ξvt|+ |∇u||ξ∇v|)dx
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≤ 2
∫

B(R+t)

√
u2

t + |∇u|2
√
|ξvt|2 + |ξ∇v|2dx

≤ 2
{ ∫

RN

(u2
t + |∇u|2)dx

}1/2{ ∫

RN

(|ξvt|2 + |ξ∇v|2)dx

}1/2

,

so that from (5.8) we have

P 2
0

4

{ ∫

RN

(|ξvt|2 + |ξ∇v|2)dx

}−1

≤
∫

RN

(u2
t + |∇u|2)dx. (5.9)

Now, if we can construct a positive smooth radially symmetric solution to
(5.1) satisfying:

φ(x) ∼ |x|(V0−N+1)/2e|x|,

|∇φ(x)| ∼ |x|(V0−N+1)/2e|x||1 +
V0 −N + 1

2|x| |, (|x| → ∞), (5.10)

for radial V (x) ∼ V0|x|−1 as |x| → +∞ we can show that v(t, x) = e−tφ(x) satisfies
the inequality

‖ξvt‖22 + ‖ξ∇v‖22 ≤ CtV0 , t →∞. (5.11)

The estimate (5.11) together with (5.9) will give us the desired estimate ‖ut‖22 +
‖∇u‖22 ≥ Ct−V0 . It remains to check that the problem (5.1) has a solution with
the properties (5.10) and (5.11).

Let us first derive (5.11) under the condition (5.1) and (5.10). Indeed we have

∫

RN

(|ξvt|2 + |ξ∇v|2)dx =
∫

|x|≤t+R

(v2
t + |∇v|2)dx

= e−2t

∫

|x|≤t+R

(φ(x)2 + |∇φ(x)|2)dx. (5.12)

The first term in the right hand side of (5.12) can be estimated by using integration
by parts and (5.10) as follows:

∫

|x|≤t+R

φ(x)2dx ≤
∫

|x|≤ρ0

φ(x)2dx +
∫

ρ0≤|x|≤t+R

e2|x||x|V0−(N−1)dx.
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Further we get

∫

ρ0≤|x|≤t+R

e2|x||x|V0−(N−1)dx

=
∫

|ω|=1

dω

∫ t+R

ρ0

e2rrV0−(N−1)rN−1dr =
∫

|ω|=1

dω

∫ t+R

ρ0

e2rrV0dr

=
∫

|ω|=1

{[
e2r

2
rV0

]t+R

ρ0

− V0

2

∫ t+R

ρ0

e2rrV0−1dr

}
dω ≤ e2R

2
C0e

2t(t + R)V0 ,

where ρ0 > 0 and t > 0 are sufficiently large numbers. Therefore,

∫

|x|≤t+R

φ(x)2dx ≤ C1 + CRe2t(t + R)V0 , (t À 1), (5.13)

where Cj > 0 (j = 0, 1, R) are some constants, which do not depend on t.
For the second term in the right hand side of (5.12), we get by using integration

by parts and (5.10) the following estimate:

∫

|x|≤t+R

|∇φ(x)|2dx

≤
∫

|x|≤ρ0

|∇φ(x)|2dx +
∫

ρ0≤|x|≤t+R

e2|x||x|V0−(N−1)

(
1 +

V0 −N + 1
2|x|

)2

dx

≤
∫

|x|≤ρ0

|∇φ(x)|2dx + C3

∫

ρ0≤|x|≤t+R

e2|x||x|V0−(N−1)dx, (ρ0 À 1, t À 1).

We can complete similar calculations to (5.13) and get

∫

|x|≤t+R

|∇φ(x)|2dx ≤ C4 + CRe2t(t + R)V0 , (5.14)

where Cj > 0 (j = 3, 4, R) are constants.
The estimate (5.11) can be derived from (5.12), (5.13) and (5.14).
Finally we discuss the existence of a positive radially symmetric solution to

(5.1) satisfying (5.10). The idea to construct an asymptotic solution to (5.1)
follows from Kato [8].

Since (5.1) is equivalent to the following equation in the framework of radial
symmetry
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φ′′(r) +
N − 1

r
φ′(r) = (1 + V (r))φ(r), (5.15)

we want to find a solution to (5.15) with initial data φ(0) = 1 and φ′(0) = 1. The
singular coefficient at r = 0 does not prevent the above problem from having C2

solutions. Indeed, φ can be obtained as a solution of the integral equation

φ(r) = 1 +
∫ r

0

KN (r, s)(1 + V (s))φ(s) ds, r > 0,

where

KN (r, s) =





s log r
s , if N = 2,

s
N−2

(
1− sN−2

rN−2

)
, if N ≥ 3.

It is easy to see that φ(r) ≥ 0 and φ′(r) ≥ 0 for all r. Hence we only need upper
bounds for these functions at large r ≥ 1.

The substitution of φ(r) = er+q(r) into (5.15) yields

q′′(r) + 2q′(r) + (q′(r))2 +
N − 1

r
q′(r) = V (r)− N − 1

r
.

We observe that

(q′(r))2 +
N − 1

r
q′(r) ≥ − (N − 1)2

4r2
,

which implies the linear OD inequality

q′′(r) + 2q′(r) ≤ V (r)− N − 1
r

+
(N − 1)2

4r2
. (5.16)

We multiply the above ODI by e2r and integrate over [1, r]:

e2rq′(r) ≤ e2q′(1) +
∫ r

1

e2s

(
V (s)− N − 1

s
+

(N − 1)2

4s2

)
ds, r ≥ 1.

The right-hand side is asymptotically

V0 − (N − 1)
2

r−1e2r + O(r−2)e2r,
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since V (r) ∼ V0r
−1 at large r. Thus, we have

q′(r) ≤ V0 − (N − 1)
2

r−1 + O(r−2), q(r) ≤ V0 − (N − 1)
2

log r + O(1).

These estimates lead to (5.10), since

φ′(r) = (1 + q′(r))er+q(r), φ(r) = er+q(r). ¤

6. Appendix: Weighted L2 − L2 estimates for ∆h = f .

In the appendix we present the outline of the proof of Lemma 2.1.
There are many estimates for ∆h = f in RN when f is a “nice” function;

our function f is only L2(RN ), but vanishes outside a ball with a radius R0.
Unfortunately there is no estimates available that involve powers of 〈x〉 as weights
and hold in all dimensions N ≥ 3. Therefore, we derive such Hardy and Rellich
inequalities by the method of [1]. The constants are not sharp but the calculations
are simple.

6.1. Preliminary facts.
Proposition 6.1. The following identities hold for suitable smooth func-

tions Q and h:

(i)
∫

RN

h2∆Q dx = −2
∫

RN

h∇h · ∇Q dx,

(ii)
∫

RN

|∇h|2Q dx = −
∫

RN

(∆h)hQ dx +
1
2

∫

RN

h2∆Q dx.

We can combine (ii) with |(∆h)hQ| ≤ εh2(∆Q)/2 + (∆h)2Q2/(2ε∆Q).

Proposition 6.2. Assume that Q and ∆Q are positive a.e. Then

(i)
∫

RN

h2∆Q dx ≤ 4
∫

RN

|∇h|2 |∇Q|2
∆Q

dx,

(ii)
∫

RN

|∇h|2
(

Q− 2(1 + ε)
|∇Q|2
∆Q

)
dx ≤ 1

2ε

∫

RN

(∆h)2
Q2

∆Q
dx,

where ε > 0. Moreover, (i) and (ii) imply a weighted estimate of h in terms of ∆h.

Example. Choose Q(x) = 〈x〉s, and let H(x) be the measurable function
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defined in (2.1) for f ∈ L2(RN ) with f(x) = 0 for |x| À 1. Then, since

H(x) = O(|x|−(N−2)), |∇H(x)| = O(|x|−(N−1)), |x| → +∞,

one has
∫

|x|=ρ

|∇Q(σ)||H(σ)|2dSσ = O(ρ−N+2+s), ρ → +∞,

∫

|x|=ρ

|Q(σ)||H(σ)||∇H(σ)|dSσ = O(ρ−N+2+s), ρ → +∞,

so that if we assume 0 < s < N − 2, then Propositions 6.1 and 6.2 hold with
h(x) := H(x).

6.2. Applications.
Let Q(x) = 〈x〉s. From ∆ = ∂2

r + (N − 1)r−1∂r, where r = |x|, we have

∇Q(x) = s〈x〉s−2x, ∆Q(x) = sN〈x〉s−2 + s(s− 2)〈x〉s−4|x|2.

We also notice that

s(N + s− 2)〈x〉s−4|x|2 ≤ ∆Q(x),

s〈x〉s−2 ≤ ∆Q(x),

if s > 0. These estimates and Proposition 6.2 (i) lead to the following Hardy
inequality.

Proposition 6.3. Assume that N ≥ 3 and (N − 2) > s > 0. If h ∈
H2

loc(R
N ) satisfies h(x) = O(r−(N−2)) and |∇h(x)| = O(r−(N−1)) as r → +∞,

then
∫

RN

h2(x)〈x〉s−2 dx ≤ 4
N − 2

∫

RN

|∇h(x)|2〈x〉s dx.

Let us turn to the generalized Rellich inequality. If s > 0, we find

|∇Q|2
∆Q

≤ s

N + s− 2
〈x〉s,

Q2

∆Q
≤ 1

s
〈x〉s+2.
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The first weight in Proposition 6.2 (ii) satisfies

Q− 2(1 + ε)
|∇Q|2
∆Q

≥
(

1− 2s(1 + ε)
N + s− 2

)
〈x〉s,

while the second weight satisfies

1
2ε

Q2

∆Q
≤ 1

2sε
〈x〉s+2.

Choosing ε := (1/2){(N + s− 2)/(2s)− 1}, we obtain the following. In this case
we note that for s ∈ (0, N − 2)

N + s− 2
2s

> 1.

Proposition 6.4. Assume that N ≥ 3 and N − 2 > s > 0. Then, under
the same assumption as in Proposition 6.3 the following estimate holds

∫

RN

|∇h(x)|2〈x〉s dx ≤ 4(N − 2 + s)
(N − 2− s)2

∫

RN

[∆h(x)]2〈x〉s+2 dx.

Corollary 6.5. Assume that N ≥ 3 and N − 2 > s > 0. Then, under the
same assumption as in Proposition 6.3 the bound holds

∫

RN

h2(x)〈x〉s−2 dx ≤ 16(N − 2 + s)
(N − 2)(N − 2− s)2

∫

RN

[∆h(x)]2〈x〉s+2 dx.
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