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Abstract. We establish a necessary and sufficient condition for spectral
bounds of a non-local Feynman-Kac semigroup being LP-independent. This
result is an extension of that in [24] to more general symmetric Markov pro-
cesses; in [24], we only treated a symmetric stable process on R?. For exam-
ple, we consider a symmetric stable process on the hyperbolic space, the jump
process generated by the fractional power of the Laplace-Beltrami operator,
and prove that by adding a non-local potential, the associated Feynman-Kac
semigroup satisfies the LP-independence.

1. Introduction.

In this paper, we consider the LP-independence of spectral bounds of
Schrédinger-type operators with non-local potential. The main objective is to
extend our results in [23] and [24] to more general Schrédinger-type operators.

Let X be a locally compact separable metric space and m a positive Radon
measure on X with full support. Let M = (X;, P,) be a conservative m-symmetric
Hunt process on X and denote by (N(z,dy), H;) the Lévy system of M ([10,
Definition A.3.7]). Let F' be a symmetric function on X x X in a certain class
' (see Definition 2.2) and define a discontinuous additive functional A.(F) by

A(F) =) FP(X,_, X,).

0<s<t

We denote by .% the L?-generator of M and define a Schrédinger-type operator
formally by

HEf=Lf+uaFf, unFf= /X (=¥ — 1) f(y)N (2, dy) ppr (da),
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where pp is the measure in the Revuz correspondence to the positive continuous
additive functional H;. We denote by {pf'};~0 the semigroup generated by #*,
pl'" = exp(ts#F). Then the semigroup {pf };~o is expressed by the non-local
Feynman-Kac semigroup,

Pt f(x) = Eylexp(A:(F)) f(Xy)]-

We define the LP-spectral bound of {p{"};~o by

1
Ap(F) = = lim —log [p;'[|,, 1<p< o0,

where ||pf’||,, is the operator norm from LP(X;m) to LP(X;m). The main theo-
rem in this paper is as follows: Suppose that the function F' belongs to the class
P Then A\, (F) is independent of p if and only if A(F) < 0. In [23], Takeda
proved this statement for Schrodinger-type operators with local potential, and in
[24] we did it for Schrodinger-type operators whose principal part is the fractional
Laplacian, —%(—A)%/2.

For a classical Schrodinger-type operator %A—&—V on R?, B. Simon [18] proved
the LP-independence and K.-Th. Sturm in [20], [21] extended it to Schrédinger-
type operator on Riemannian manifolds. For the proof of the LP-independence,
they used the heat kernel estimates of Schrédinger-type operators. Our method
in this paper is completely different from those in [18], [20] and [21]. The ap-
proach in this paper is similar to that in [23] and [24]. We shall use arguments in
Donsker-Varadhan’s large deviation theory. However, our method is more general
than that in [24]; we used in [24] the heat kernel estimate for the a-stable pro-
cess on R?, due to Bass and Levin [5]. However, it is not applicable for general
Hunt processes. Instead of the heat kernel estimate for the a-stable process, we
use facts that the Feynman-Kac semigroup {pf };~o possesses the doubly Feller
property, pf (Bp(X)) C Cp(X) and pf'(Coo(X)) C Coo(X). Here Coo(X) is the
space of continuous functions on X such that vanishing at infinity. Moreover, we
derive the invariance of C\,(X), pf'(C,(X)) C Cu(X), where C,(X) is the space
of uniformly continuous bounded functions on X such that lim,_ ., f(x) exists.
In our argument, the invariance of C,(X) plays a crucial role. In fact, we extend
the Markov process on the one-point compactification X, by making the adjoined
point co a trap, and use the upper bound of the large deviation for the extended
Markov process. Then the so-called Donsker-Varadhan’s I-function, say Ir, of
the extended Markov process is a function on the space of probability measures
on X, not X. We make a connection between the modified I-function and the
original one. To show that Ir(d.) = 0, that is, there exists no contribution of
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adjoined point co, we need the invariance of C,,(X). To prove the properties of
the Feynman-Kac semigroup stated above, we apply a result of Chung [8] which
was devoted to the stability of the doubly Feller property under transform by mul-
tiplicative functionals. We summarize in Proposition 3.1 properties equivalent to
the invariance of Coo(X), which is an extension of a result of Azencott [4].

We use qualitative properties of the Feynman-Kac semigroup for the proof of
the LP-independence. As a result, we can treat more general Schrodinger semi-
groups. In Section 5, we shall give an example of non-local Feynman-Kac semi-
group satisfying the LP-independence as follows: Employing results in McGillivray
[15] and Okura [16], we prove that our assumptions (I)-(IV) are preserved by a
certain subordination. We thus see that our main theorem is applicable for the
a-stable process on the hyperbolic space, that is, the subordinated process of the
Brownian motion generated by —1 (—A)®/2. Here A is the Laplace-Beltrami oper-
ator on the hyperbolic space. It is well-known that the spectral bounds of Laplace-
Beltrami operator on the hyperbolic space is equal to (d — 1)?/8 (e.g. Davies [9]).
By the spectral theorem, the L?-spectral bound of the a-stable process is equal to
(d —1)>/2' . We construct a function F' € _Z., such that Ay(F) < 0 by Lemmas
4.7 and 4.8. We thus conclude that the spectral bounds of —%(—A)“/2 +puyFis
LP-independent, where py is the Riemannian volume.

We close the introduction with some words on notation. For a topological
space X, we use #(X) to denote the set of all Borel set (or functions) on X. If
€ C B(X), then €} (resp. €;) denotes the set of bounded (resp. non-negative)
functions in ¥. For a subset A C X, we denote by 14 the indicator function of A
and by A€ the complement of A. We use ¢, C, ..., etc as positive constants which
may be different at different occurrences.

2. Notations.

Let X be a locally compact separable metric space and X, the one-point
compactification of X with adjoined point co. Let m be a positive Radon measure
on X with full support. Let M = (Q, 4, #;,0:, P, X;,() be an m-symmetric
Hunt process on (X, m). Here {#;};>¢ is the minimal (augmented) admissible
filtration, 0, t > 0 is the shift operator satisfying X(0;) = X1 identically for
s,t > 0, and ¢ is the lifetime of M. We denote that (N, H) = (N(x,dy), H;) is
the Lévy system of M, that is, IV is a kernel on X, X B(X,) and H is a positive
continuous additive functional of M such that for any nonnegative measurable
function F on X, X X vanishing on the diagonal set and any x € X,

E[ 3 F(Xs_,Xs>] :Ex[ / t /. N ) F(X, ),

0<s<t
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From Assumption (II) below, we may replace X, by X in the definition of the
Lévy system. Throughout this paper, we assume that the Hunt process M is
transient. Moreover, we assume that the semigroup of M, p,f(z) = E.[f(X})],
possesses the following properties:

(I) (Irreducibility) If a Borel set A is pi-invariant, that is, for any f €
L2(X;m) N By(X) and t > 0, pi(1af)(z) = 1a(x)pif(x) m-ae. z, then A
satisfies either m(A) =0 or m(X \ A) = 0.

(IT) (Conservativeness) p;1 = 1.
(IT1) (Strong Feller Property) p:(%y(X)) C Cp(X).
(IV) (Invariance of Coo (X)) pt(Coo (X)) C Coo(X).

Let us denote by (&,.%) the Dirichlet form on L?(X;m) generated by M;
by the right continuity of sample paths of M, {p:}+~o can be extended to an
L?(X;m)-strongly continuous semigroup, say {73} ([10, Lemma 1.4.3]). Then
(&,.7) is defined by

1
F = {u € L*(X;m) : limy_ ;(u — Tyu,u)m < oo}7
. 1
& (u,v) = lim;_g ;(u — Ty, 0)m, u,v € F.

It follows from Assumption (IV) that (&,.%) is regular and thus each function u in
Z admits a quasi-continuous version @ (cf. [10, Theorem 2.1.3]). In the sequel we
always assume that every function u € % is represented by its quasi-continuous
version.

We call a Borel measure p on X smooth if it satisfies the following conditions:

1. p charges no set of zero capacity,
2. there exists an increasing sequence {F),} of closed sets such that p(F,) < oo
for all n and lim,, . Cap(K \ F,,) = 0 for any compact set K.

For given smooth measure i, we denote by A;(u) the positive continuous additive
functional in the Revuz correspondence (cf. [10, Theorem 5.1.4]): For any f €
P+ (X) and ~v-excessive function h,

py 5 | tf(XsmAs(m] = [ @),

Under Assumption (II), we obtain the next expression of the Dirichlet form & due
to Beurling and Deny:
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£ (u,u) = 6 () + /X (@) = u(y)*N . dyan ().

Here, £(¢) is the continuous part of (&,.%) and pg is the Revuz measure of positive
additive functional H (see [10, Section 3.2]).

REMARK 2.1. We see from Assumption (III) and symmetry of {p; };+~¢ that
the semigroup {p;}:~o admits an integral kernel {p(t,z,y)} with respect to the
measure m.

Let {Gg(x,y)}s>0 the resolvent kernel defined by

Gga(z,y) :/ e Plp(t,x,y)dt, B> 0.
0
We simply write G(z,y) for the Green function Go(z,y). The existence of the
Green function follows from the transience of M.

DEFINITION 2.1 (Kato measure and Green tight measure). Suppose that p is
a signed smooth measure associated with a positive continuous additive functional

Ar(p).

1. A smooth measure p is said to be Kato measure (in notation, p € ) if

lim sup E,[A:(|u])] = 0.
tHOIGX

2. A measure p € J is said to be Green tight measure (in notation, u € #)
if for any € > 0 there exist a compact subset K and a positive constant § > 0
such that

sup [ G(z,y)|ul(dy) <e
zeX JKe

and for any Borel set B C K with |u|(B) < 6,

sup /B Gz, y) |l (dy) < e.

zeX

REMARK 2.2. A Green tight measure p is Green-bounded:
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sup / G, y) |1l (dy) < o0
zeX JX

(see Chen [6, Remark 2.1]).

DEFINITION 2.2 (Class 7). Let F be a bounded measurable function on
X x X vanishing on the diagonal A = {(x,z) : € X}. We say that F' belongs
to the class 7, if

e (da) = < /X F(x,y)N(x,dy)) s (d) € oo, (2.1)

Here, pp is the Revuz measure corresponding to H.

In the remainder of this paper, we assume that F' is symmetric, F(z,y) =
F(y,z). For F € f., we define a symmetric Dirichlet form (&,.%) by

1

Er(u,u) = ) (u,u) + 3 /X X(u(m) —u(y))?e" VN (2, dy)pn (de).

Furthermore, we set F; = e’ —1 ¢ o, and define another bilinear form & F by

(”@F(uvu) = (g)F(ua U) - / uzd,ufFl
X

=)= [ u@u) @)V (), we 7.

We see that (&F,.%) is a lower semi-bounded closed symmetric form by Albeverio
and Ma [2, Theorem 4.1], [3, Proposition 3.3]. Denote by .Z¥ the self-adjoint
operator associated with (&,.#) and J#% the self-adjoint operator associated
with (6F,.%). Then £F and #F are formally written by

P ( G- 1ri y)N(x,dm)uH(dx)

and
A f=Lf+uaFf=2L"f+uaV'f,

where
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unFf = ( /. f(y)ﬂ(w)N(adw)uH(da:),
V"5 = ([ Fit )N ) faun(a)

(Chen and Song [7, Remark 1]). Indeed, we have by the formal calculation,

§(£.9) =690+ 5 [ D)~ F@)o0) - 9@ (o dy)n(da)

XxX

— L+ [ ()~ H@)9) - 9(a) N, dyyin(do)
XxX

45 [P <11 ) = F@)ow) - 9(a))N w,dyun (o)
X

=(=Zf,9)m + %/ (@Y —1)(f(y)g(y) + f(x)g(z))N(z, dy)py (dz)
XxX
_ %/XXX(eF(z,y) —D(f(y)g(x) + f(x)g(y))N(z, dy)pw (dx)

where Z(¢) is the self-adjoint operator associated with (£(¢),.%). Furthermore,
by the symmetry of the Lévy system,

— (L. D) + / Fi(, 9) £ (2)9(2) N (2, dy) s (der)

XxX

- /X B ) W)o(@)N e, dy)us ()

= (~Zfr g — / Fi(e, 9)(F(y) — £(2))g(2)N (&, dy) s (d)

XxX

Analogously, & (f,g9) = (=Y f,9)m.

Let {pI'}i~0 be the L?-semigroup generated by % : pl'" = exp(t#F).
Then, using the discontinuous additive functional A;(F) = > _ ., F(X—, Xs),
the semigroup {p! };+~o is expressed by -

pff(x) = E,[exp(A:(F)) f(X4)]. (2.2)
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In fact, for F' € 7o, let My = Ay (Fy) — A7 (Fy), where

) - | t ( /. F1<Xs,y>N<Xs,dy>)st. (2.3)

By the definition of the Lévy system, we see that M; is a local martingale. Then
the Doléans-Dade exponential M/ of M; is defined by

M =exp(My;) [ (1+ AM,)exp(—AM,), AM, = M, — M,_

0<s<t

(cf. He, Wang and Yan [13, Theorem 9.39]). Noting that AM,_ = Fy(X,_, X,),
we have

M = exp (Ay(F) — AY(F) + A(F) — Ay(F))
— exp (Ad(F) — AL(F). (2.0

The semigroup
T] f(x) = B [M] f(X0)]

is identical to the one generated by (&, %) (cf. [7, Theorem 4.8]). Let (X;, PM)
be the transformed process of M by M}: PM(dw) = MF - P.(dw). We then
see from (2.4) that the transformed semigroup by the non-local Feynman-Kac
functional exp(A;(F)) is identical to the transformed semigroup of PM by the
Feynman-Kac functional exp(AY(F})):

pi f(z) = B} [exp(A} (F1)) f(X4)]- (2.5)

3. Non-local Feynman-Kac semigroups.

In this section, we shall show some properties of the non-local Feynman-Kac
semigroup {p{ }+~¢ transformed by F € 7. Let K be a Borel set and o the
first hitting time of K, ox = inf{t > 0 : X; € K}. The next proposition is an
extension of Proposition 3.1 in Azencott [4]. We think that the proposition is of
independent interest. Hence we state the proposition in a complete way, while we
only use a part of Proposition 3.1.
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PROPOSITION 3.1.  Let M be a Hunt process that satisfies the properties (1I)
and (III). Then the following properties are equivalent to each other:

(A): M possesses the property (IV), that is, for each t >0 and f € Co(X),
lim p:f(x) =0.
(B): For each >0 and f € Cso(X),

lim Ggf(z) =0.

(C): For each t > 0 and compact set K,

lim P,(ox <t)=0.

Tr—00

(D): For each 8 > 0 and compact set K,

lim E,[e”?7%] =0.

Tr—00

PROOF.

(A) = (B): Let f be a strictly positive function in C, (X). By properties (IT)
and (IV), Ggf is a strictly positive continuous function in Cy (X).

(B) = (C): Put ¢ = inf e g Gaf(x) > 0. Since for 3 > 0,

P, [JK < t] < eﬁtEx [eiﬁgk] < %mEr [67501{ G,G‘f(XoK)]
and
E.[e 77 Gyf(Xo,)] = B [e"” Ex,, [ s e"tﬂxt)dtﬂ
0

<E, [ / N eﬁtf(xodt} < Gpfla),

K

we have the implication.

(C) = (A): Let f be a nonnegative function in Co (X). By the property (III),
we only have to show that lim,_, . psf(2) = 0. For any € > 0, there exists compact
set K such that f(z) < eforall 2z ¢ K. Then f(X;) < ||fllocl{or<t} +€lfor>ty <
I Flloc Loty + . Thus,
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pif (@) = By [f(Xe)] < || fllooPe(or < t) +e.

(C) = (D): By the property (C), for arbitrary 8 > 0, compact set K and
€ > 0, there exist t > 0 and U C K¢ such that e #* < € and P,(cx <t) < € for
all z € U. Hence we have,

E, [eiﬁ‘”{] =FE, [efﬁgK;oK < t] + E, [eiﬁUK;oK > t}

< P(og <t)+e PP (0 > t) < 2e.
We get desired claim.
(D) = (C): It follows from the following inequality:

E,[e7?7%] > E,[e7 77" 1, <] > e PP (0x < 1). O

THEOREM 3.2. Let F e 7.

(i) There exist constants ¢ and k(F') such that

< eIt 1 <Vp< oo, t>0.

d
Hpt pp =

Here || - ||p,q means the operator norm from LP(X;m) to LY(X;m),

(i) {pf}i=0 is a strongly continuous symmetric semigroup on L?(X;m) and the
closed form corresponding to pf is identical to (8, F),

(iii) pf (#y(X)) C Cyp(X),

(i) pF(Coo(X)) C CoulX),

(v) pF(Cu(X)) C Cu(X) and lim,_ o pf' f(z) = lim, .o f(x), where C,(X)
is the space of uniformly continuous bounded functions on X such that
lim, o f(x) exists.

PrROOF. The statements (i) and (ii) follow from results in Albeverio, Blan-
chard and Ma [1]. Next, we show the invariance of Coo(X) and the strong Feller
property of {pf'};~¢ using Theorem 3 in Chung [8]. By the definition of the Lévy
system, we have

BA(R) - B [ t ([ PGV () ) at.] = B, ),

lim sup E,[A:(|F1])] = lim sup E,[A:(|um])] =0
t—=0zeXx t—0eXx
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for all F1 € Z. We have

Ex[exp(At(F))] = EI[GXP( > F(XS,XS)H

0<s<t

Ex[ 11 (1+F1(Xs_,Xs))]. (3.1)

0<s<t

Furthermore, the Stieltjes exponential of A;(F1) is equal to o, (1 +
F1(X,-,X;)) (see e.g. Sharpe [17, Section 71] and Ying [25]). Lemma 2.1
in [25] says that the right hand side of (3.1) is less than or equal to (1 —
sup,cx Ez[A:(F1)])~*. Thus, exp(A:(F)) satisfies conditions (a)-(c) in [8], that
is, Theorem 3 in [8] is applicable for exp(A;(F')). Hence we show properties (iii)
and (iv).

(v) Since f(z) — f(o0) € Cal(X) and pff(z) = pF(f(x) — F(0)) +
f(o0)pE1(z), it is enough to prove that

lim pf'1(z) = lim E,[exp(A:(F))] = 1.

Tr— 00 Tr— 00

For a non-negative function F' € _#., and a compact set K C X, define F (z,y) =
1k (x)F(x,y). We then have

E,[exp(Ai(Fk))] = E,[exp(Ai(Fk)); 0% > t] + Ey [ exp(Ay(Fg)); 0% < t]
= P, (0% > t) + E,[exp(A(Fg)); 0% < t].

Here, 0}, = inf{t > 0: X;_ € K}. By Theorem A.2.3 in [10] and Proposition 3.1,
lim, oo Py(oh >t) > lim,_,o Py(okx >t) = 1. Since

E.[exp(Ai(Fx)):i o < t] < Eulexp(A(2F))]Y? P, (o < )7

we see

lim E,[exp(A:(Fk))] = 1.

T— 00

Moreover, using Lemma 2.1 in [25] again, we have
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su}g E,[exp(Ai(Fe))] = sup B, [1 + Fi ke (Xs—, X))
EAS z

1
< .
- 1- supl_eX Ei[At(Fl,KC)]

By the definition of Z.,, for any € > 0 there exists a compact set K such that

sup E [A¢(F1 k)] < sup | G(2,y)(ur)(dy)
rxeX zeX JKc

<e.

We then see that

lim sup E, [exp(A:(F))] = limsup E,, [exp(At (Fr)) exp(A¢(Fke ))]

Tr—00 Tr—00

< limsup [E, lexp(A(2Fk))]?E, [eXp(At(QFKC))]1/2]

Tr— 00

<1.
In addition,

liminf E,[exp(A+(F))] > liminf E,[exp(—A:(F7)]

Tr—00 Tr—00

> {limsupEm[exp(At(F*)]}_1 > 1.

r—00

Hence we see that for any F' € fo, lim, .o E;exp(A:(F))] = 1. O

4. [LP-independence of spectral bounds.

In this section, we give the sketch of the proof of the main theorem (see [23]
and [24] for more details) and proofs of two lemmas (Lemmas 4.7 and 4.8) which
play the important role of producing of the LP-independence.

Let Z(X) be the set of probability measures on X equipped with the weak
topology. Define a function Izr on Z(X) by

EF , ifv=/f-dm,
i) — { VIVT) itv=f

00 otherwise.

Let {RE}Q>H(F) be the resolvent of the Schrédinger-type operator %, that is,
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for f € By(X),

REf@) = [ et payar
0
_ B, |:/Oooexp(—at—|— A(F) F(X0)dt .
Here, x(F) is the constant in Theorem 3.2 (i). Set
Dy (HF)={d=REg:a>k(F),g € Cu(X) with g > € for some € > 0}.
For ¢ = REg € 9, (#F), let
A =ap—g,

and define a function Ir on £(X) by

F
Ip(v)=— inf a ¢du
$ED 1 (HT) Ix P

It is known in Takeda [22, Proposition 4.3] that
Ier(v) =1Ip(v), Yve 2(X).

We define a transition probability pi(z,dy) on (Xeo, B(Xs)); for E € B(X o),

pt(xaE =

pi(x, B\ {0}), x€X,
0o (E), T = 00.

Let M be a Markov process on X, with transition probability p;(x,dy). M is
an extension of M with oo being a trap. Furthermore, for F' € ¢, we define

{pf }i>0 and {RE}os(p) by
pr fz) =

E,[exp(Ay(F)) f(X1)],
RE f(x) / —tpE f(x)dt, f € By(Xoo).
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Then RE f(z) = RE f(x) for z € X and RE f(c0) = f(00)/aw. Set
Dy (AT = {o= REg:a>k(F), g€ C(Xy) with g(z) > 0}.
We see that for ¢ = REg € 2, (7)), lim, .o ¢(2) = g(o0)/a by Theorem 3.2

(v). Let us define a function on & (X,) the set of probability measures on X,
by

o F
Ir(v) = — inf _ / “a ¢dl/, veP(X)
624 (HT) Ix,, @

where #F¢ =aRlg— g for g = REg € 2, (A#F). We then have
IF((SOO) =0, (41)

because S ¢(c0) = 0 for any ¢ € 2, (ST,
Let L; be the occupation distribution, that is,

Lo(A) = 1/; 14(X,)ds, t>0, Ac B(X). (4.2)

Then L; € Z(X).
PROPOSITION 4.1 (Kim [14, Theorem 4.1 and Remark 4.1]). Let F € 7.
Then for a closed set K C P(Xx) and an open set G C P (X)

1 _
limsup - log sup E,[exp(A+(F)); L; € K] < — 13{ Ir(v),

t—oo 1 z€X

1
— inf Ir(v) <liminf - log E,[exp(A:(F)); Lt € G].
veG t—oo t

Note that Z(X) \ {0so } and (0, 1] x £ (X) are in one-to-one correspondence
through the map:

vE P(Xoo) \ {0} — (v(X),0(0) = v(e)/v(X)) € (0,1] x 2(X). (4.3)

Then, the next lemma can be proved by the same manner as that in [23, Lemma
3.1] and [24, Lemma 3.3]:
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LEMMA 4.2. Forv e Z(Xo) \ {00},
Tr(v) = Ir(v) = v(X) - Ler ().
We have the next inequality through the one-to-one map (4.3).

Ir(v)

inf o1 <0.
veP (XN} T (01gr(v)) <

= inf
0<0<1,0eP(X)

Moreover, Ir(ds) = 0 from (4.1). Thus, the next corollary holds as follows.

COROLLARY 4.3.

Veéw%w) Irlv) = 0g9§11,g£@(x)(91£F(y)) B ognéfg (9 Vel;fx) IéaF(V))' (44)

Let us denote by |pf’
define

».p the operator norm of pf” from LP(X) to LP(X) and

1
Ap(F) = _tlgrolo T log ||pf||p7pa 1<p< oo
Noting that sup,¢ x Ey[exp(A¢(F))] equals |[pf||oo,00, We see that

lim 1log sup E.lexp(Ai(F))] = — Ao (F).

t—oo t z€EX

Hence we have

S . . .
Ao(F) 2 ogelfg (9 uelﬁt(PX) le (V)) (45)

by Proposition 4.1 and the equation (4.4).
By the spectral theorem, Ao (F) is identical to the bottom of the spectrum of
— " and by the variational formula for the bottom of spectrum

No(F) = inf ILer(v). (4.6)

veZ(X)

Combining (4.5) and (4.6), we then have the following inequality: For any F' €

Hoos
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Ao(F) 2 inf (9 nf IgF(u)) = it (0Xa(F). (4.7)

If Xo(F) <0, then info<g<1(0A2(F)) = A2(F). Hence we have:

COROLLARY 4.4. If Ao(F) <0, then

Aoo(F) > Aa(F).

The inequality, A2(F) > Ao (F), holds generally because
1Pt |2 < 1P [l o o
by the symmetry and the positivity of pf". Since
P s < 1P, < 11PE ]l o

by the Riesz-Thorin interpolation theorem, we can conclude that if Ao(F) < 0,
then the LP-independence holds. Now we state main theorem.

THEOREM 4.5. Let F' € fFo. Then Ao(F) = A\(F) for all1 < p < oo if
and only if A2(F) < 0.

ProOOF. On account of Corollary 4.4, we have only to prove the “only if”
part. Suppose that A\y(F) > 0. Then

. . _ . _
AOO(F)_O%g;@uGI;fX)IgF(V) odnf 0(r2(F)) =0

by (4.7). By Theorem 3.2 (v), lim, ., pf'1(x) = 1, which implies that ||pf||cc.co >

1 and Ao (F) < 0. Therefore if Ao(F) > 0, then Ao (F') = 0. O

COROLLARY 4.6.  Suppose that A2(0) = 0. If F € Z, then Xo(F) = A\, (F)
for all1l <p < oo.

PROOF. By Theorem 4.5, we only have to prove that \y(F) < 0 for any
F € 7. That is, for any positive y € J5,

Ao(p) = inf{gp(u,u) —l—/ widp i u € F,||ul2 = 1} =0.
X
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We see from [19, Theorem 3.1], for all v € .% such that |ull2 = 1,
[ wdu < ClGult .
X

Since the boundedness of F, there exists a constant C’ such that &r(u,u) <
C'&(u,u) for all u € F. We then have

el < (8t + [ i)

< (C"+ C||Gplloo) & (u, ).

We get desired claim. O

Next two lemmas play the important role of producing of the LP-
independence.

LemMma 4.7, If
inf {é”(u,u) Tu € 9’,/}( . w(x)u(y)F1(z,y)N(x, dy)pg (dz) = 1} <1, (4.8)

then
inf {&F (u,u) 1w e F,||ulla =1} <O0.

PROOF. Let ¢ be a function such that (4.8) holds. Let ¢ = ¢/||¢||. Then

we have

oww:ﬁww—/ b)) Fy (2, 9)N (z, dy)ps (dx)

XxX

1

LeEMMA 4.8. Let F € Zy, F >0 and F # 0 and define FY = 7 — 1.
Then there exists uw € F such that

&(u,u) <1 and w(z)u(y)FY (x,y)N (z, dy)pg (dz) = 1 (4.9)
XxX
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holds for sufficiently large 6.

PROOF. Let v € % such that v > 0, [v(z)v(y)Fi(z,y)N(z,dy)p(de) =1
and

_ Jo@w@)Fi(2,y)N (2, dy)pu (do)
Ju(@)u(y)F{ (z,y)N(z, dy)pm (dz)
1
= Ju(@)o(y)F{ (z,y)N(z, dy)pup (dz)

k(6)

Obviously, k(#) — 0 as § — oco. Thus u = \/k(f)v satisfies (4.9) for sufficiently
large 6. 0
5. Examples.

5.1. «-stable processes on Euclidean space.

Let (X, P,) be a symmetric a-stable process on R? (0 < a < 2, a < d), the
pure jump process generated by %(—A)a/? Let (&(®),.#(®) be the symmetric
Dirichlet form generated by (X, P;). Then A2(0) = 0. We thus have by Corollary
4.6;

THEOREM 5.1 ([24, Theorem 3.8]). Let F € fZ. Then
Ap(F)=X(F) 1<Vp<oo.
5.2. Subordination.
In this section, we consider “a-stable processes” on (X, m) generated by the
subordination procedure ([15] and [16]). Let (X%, P,) be a Hunt process on (X, m)

satisfying assumptions (I)—(IV). Let v*(s) (s > 0,0 < a < 2) be the unique
continuous function satisfying

e—ta*’? :/ ey (s)ds, a,t>0
0
(see Yosida [26, Chapter IX Section 11] for more details). Define

Pt f(a) = /OooEx[f(Xs)hﬁ“)(s)ds, t>0. (5.1)

Then {pga)}bo is a strongly continuous sub-Markovian semigroup on L?(X;m).
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We have the corresponding Dirichlet form by
&) (u,u) :/ A2 A(Byu,u), ue F @,
0

o
Fla) — {u € L*(X;m): / A2 d(Eyu,u) < oo}.
0

Furthermore, there exists a Hunt process M (®) properly associated to (&), 7 (0‘))
([15, Theorem 3.2]).

THEOREM 5.2 ([16, Theorem 3.2]).  If a Hunt process M 1is transient, then
50 is M(®),

THEOREM 5.3.  If a Hunt process M satisfies (I)~(IV), then so is M(®).

Proor. (I): Take any pga)—invariant set A and f € L?(X;m), f > 0.

L@@ f(2)) = 1a() / T B (X)) (s)ds

oo

La(2) By [f (X)) (s)ds

I
S— S

oo

La(2)ps f ()7 (s)ds.

Furthermore,

P as) = | " pe(La @) (s)ds.
0

Since vt(a)(s) > 0, ps(laf(x)) = 1apsf(z) a.e. s and the irreducibility of p,
m(A) =0or m(X\ A)=0.
(II): It is obvious by the conservativeness of {p;};~0 and [~ 'yt(a)(s)ds =1.
(III) and (IV): From yt(u)(s)ds being bounded measure and the dominated
convergence theorem, (IIT) and (IV) hold. d

REMARK 5.1.  In Theorem 5.3, each property (I)-(IV) holds independent on
other properties.
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5.3. “a-stable process” on the hyperbolic space.

Let H? be a hyperbolic space of dimension d (d > 2) with volume element
v. Let M be a Brownian motion on H? with the Dirichlet form (&,.%). Then
the Brownian motion is transient (see e.g. Grigor’yan [11, pp. 148-149]) and the
corresponding transition density has an exact expression (see e.g. Grigor’yan and
Noguchi [12, Theorem 1.1]). The corresponding Dirichlet form is expressed by

1 (o9}
E(u,u) = 3 /Hd(Vu, Vu)dv = /0 M(Eyu,u), ué€.ZF, (5.2)

where .7 is the closure of C§°(H?) with respect to the norm; &(-,-)"/? = (&(, )+
(-, ~))1/ 2. We construct an example of producing the LP-independence for non-local
Feynman-Kac semigroups:

EXAMPLE 5.1. Let M be the Brownian motion on H¢ where the corre-
sponding Dirichlet form is defined as in (5.2). Let M(® be a Hunt process defined
as in (5.1). It is well-known that

12\ @/2
{5 ue 70, [aran =1} = (U

from

1
inf{é”(u,u) :uef,/uZdU: }:24

(see [9, p.177]). Thus, A2(0) > 0, i.e. the LP-independence does not hold. Let F
bein f#. such that F' > 0 and F' # 0. Lemmas 4.7 and 4.8 yield that

inf {@@(a)ﬂF(u,u) Ju € F, udv = 1} <0 (5.3)

Ha

for sufficiently large §. We can conclude that \,(6F) is independent of p for large
6.
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