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Abstract. When a homogeneous convex cone is given, a natural partial order is
introduced in the cone. We shall show that a homogeneous convex cone is a symmetric
cone if and only if Vinberg’s ∗-map and its inverse reverse the order. Actually our
theorem is formulated in terms of the family of pseudoinverse maps including the
∗-map, and states that the above order-reversing property is typical of the ∗-map
of a symmetric cone which coincides with the inverse map of the Jordan algebra
associated with the symmetric cone.

1. Introduction.

Let Ω be an open convex cone in a finite-dimensional real vector space V

which is regular, that is, Ω ∩ (−Ω) = {0}, where Ω stands for the closure of Ω.
For x, y ∈ Ω, we write x ºΩ y if x − y ∈ Ω. Clearly, this defines a partial order
in Ω. In the special case that Ω is the one-dimensional symmetric cone R>0, the
order ºΩ is the usual one and is reversed by taking inverse numbers in R>0. In
general, let a symmetric cone Ω ⊂ V be given. Then V has a structure of the
Jordan algebra associated with Ω. In this case, the Jordan algebra inverse map is
an involution on Ω and reverses the order ºΩ. This order-reversing property helps
our geometric understanding of the Jordan algebra inverse map. In this paper, we
shall investigate this order-reversing property in a more general setting and give a
characterization of symmetric cones.

One of natural ways to generalize a symmetric cone is to consider a homoge-
neous convex cone, that is, a regular open convex cone Ω ⊂ V on which its linear
automorphism group

G(Ω) := {g ∈ GL(V ) | gΩ = Ω}
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acts transitively. For a non-symmetric homogeneous convex cone, no algebraic
structure of V associated with Ω is known where a natural inverse map arises.
However, it is known that the Jordan algebra inverse map associated with a sym-
metric cone can be generalized to an analytic map on a homogeneous convex cone
which is called Vinberg’s ∗-map [17].

Let us recall its definition briefly to present our main theorem. Let Ω ⊂ V be
a homogeneous convex cone. We denote by Ω∗ the dual cone of Ω:

Ω∗ := {f ∈ V ∗ | ∀x ∈ Ω \ {0}, 〈x, f〉 > 0},

which is also a homogeneous convex cone. Let φ : Ω → R>0 be the characteristic
function of Ω defined by

φ(x) :=
∫

Ω∗
e−〈x,f〉 df (x ∈ Ω),

where df stands for a Euclidean measure on V ∗. Vinberg’s ∗-map Ω 3 x 7→ x∗ ∈ V ∗

is introduced by

〈v, x∗〉 = −Dv log φ(x) (v ∈ V, x ∈ Ω), (1.1)

where DvF (w) := d/dtF (w + tv)
∣∣
t=0

(v ∈ V,w ∈ Ω) for functions F on Ω. This ∗-
map is known to be a bijection from Ω onto Ω∗. When Ω is a symmetric cone, the
∗-map coincides with the Jordan algebra inverse map under a suitable identification
of V ∗ with V , so that the ∗-map reverses the order (see Section 3). For x, y ∈ Ω
(resp. x, y ∈ Ω∗), the pair (x, y) is said to be comparable if one has x ºΩ y or
y ºΩ x (resp. x ºΩ∗ y or y ºΩ∗ x). First we state a simple version of our main
theorem:

Theorem A. Let Ω be a homogeneous convex cone. Then the following
conditions are equivalent :

(I) The cone Ω is a symmetric cone.
(II) For x, y ∈ Ω, we have x ºΩ y if and only if y∗ ºΩ∗ x∗.

(III) For x, y ∈ Ω, the pair (x, y) is comparable if and only if (x∗, y∗) is compa-
rable.

Actually our theorem is stronger and is formulated in terms of the family of
pseudoinverse maps introduced in [10] which contains Vinberg’s ∗-map as a special
member. This family is defined as follows. By [17, Chapter I, Theorem 1], we
know that there exists a maximal connected split solvable subgroup H ⊂ G(Ω)
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acting simply transitively on Ω. Let ∆ : Ω → R>0 be any H-relatively invariant
function. The pseudoinverse map I∆ : Ω → V ∗ is introduced by

〈v, I∆(x)〉 = −Dv log ∆(x) (x ∈ Ω, v ∈ V ). (1.2)

When I∆(Ω) ⊂ Ω∗, we say that ∆ is admissible. In fact, ∆ is admissible
if and only if I∆ is a bijection from Ω onto Ω∗. The characteristic function φ

is one of such functions on Ω. Another example comes from the Bergman (resp.
Szegö) kernel of a homogeneous Siegel domain whose base cone is Ω, and the
corresponding pseudoinverse map appears in [4] and [9] (resp. [11]). While the
family of pseudoinverse maps defined above is an interesting object in itself, it
is also used to define the family of Cayley transforms for a homogeneous Siegel
domain. For the study in this direction, see [12], [9], [10], [11] and [7].

Now our main theorem in its precise form is stated as follows.

Theorem B. Let Ω be an irreducible homogeneous convex cone and ∆ : Ω →
R>0 an admissible H-relatively invariant function. Then the following conditions
are equivalent :

(I) The cone Ω is a symmetric cone and ∆(x) = φ(x)p (x ∈ Ω) for some p > 0
up to a constant multiple.

(II) For x, y ∈ Ω, one has x ºΩ y if and only if I∆(y) ºΩ∗ I∆(x).
(III) For x, y ∈ Ω, the pair (x, y) is comparable if and only if (I∆(x), I∆(y)) is

comparable.

Concerning the order-reversing property, we would like to mention Güler’s
work [6] which deals with pseudoinverse maps associated with certain polynomials
called hyperbolic homogeneous polynomials. In the paper, it is shown that for
every homogeneous convex cone Ω ⊂ V , there exists a hyperbolic homogeneous
polynomial p(x) on V such that Ω is one of the connected components of the set
{p(x) 6= 0}. As in (1.2), a map Ĩp−1 : Ω → Ω∗ is introduced by

〈v, Ĩp−1(x)〉 = −Dv log p(x)−1 (x ∈ Ω, v ∈ V ).

While our pseudoinverse maps are associated with relatively invariant functions on
Ω and Theorem B is a characterization of symmetric cones by the order-reversing
property, it is interesting to note that [6, Corollary 6.1] states that, for x, y ∈ Ω,
x ºΩ y always implies Ĩp−1(y) ºΩ∗ Ĩp−1(x). It should be noted that when Ω is
a symmetric cone, a negative power of the characteristic function is a hyperbolic
homogeneous polynomial defining Ω. However, if Ω is non-symmetric, this is no
longer true, as we will see in Section 6. Additionally, in [6], F (x) := log p(x)−1 (x ∈
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Ω) is called a hyperbolic barrier function for Ω, and the following characterization
is given: if the Legendre transform of F (x) is also a hyperbolic barrier function
for Ω∗, then Ω is symmetric.

Our previous paper [8] is also related to the pseudoinverse maps, where we
characterized symmetric cones by the condition that the analytic continuation of
I∆ to the complexification VC maps the tube domain V + iΩ onto V ∗+ iΩ∗. Here
are some of characterizations of symmetric cones: a characterization by a con-
stancy of the dimensions of a certain eigenspace decomposition of V [18, Proposi-
tion 3] which we quote in the present paper as Proposition 4.8, a characterization
by the condition that the Riemannian curvature tensor for a standard Riemannian
metric of Ω is parallel ([14], [15]), and some Jordan-theoretic characterizations ([3,
Theorem 4.7], [16]).

We organize this paper as follows. Section 2 is preliminary. In Section 2.1
we review the theory of a non-commutative left-symmetric algebra called a clan
associated with a homogeneous convex cone. Then, in Section 2.2, we introduce
the family of pseudoinverse maps and its parametrization for the convenience of
computation. We describe the parameter of Vinberg’s ∗-map in Section 2.3.

In Section 3 we deal with the case of symmetric cones Ω ⊂ V . First we present
how to introduce into V the structure of Jordan algebra associated with Ω. Then,
using the Hua identity, we verify that the Jordan algebra inverse maps and the
∗-maps are order-reversing.

After we collect basic formulas and some criterions in Section 4, we prove
Theorem B in Section 5. It is easy to see that (II) is equivalent to (III) and that
(I) implies (II). In Section 5.2, we prove that (II) implies (I). The proof is divided
into several steps of computations. First we show that the assumption (II) restricts
the parameter of the pseudoinverse map. Continuing the computation, finally we
obtain (I) by Vinberg’s criterion, Proposition 4.8.

In Section 6 we verify directly that the ∗-map associated with the dual Vinberg
cone which is one of the lowest-dimensional non-symmetric cones is not order-
reversing by giving a pair x, y ∈ Ω with x ºΩ y and y∗ 6ºΩ∗ x∗.

The author is grateful to Professor Takaaki Nomura and Professor Hideyuki
Ishi for many fruitful discussions about the contents of the present paper.

2. Preliminaries.

Let Ω be a homogeneous convex cone in a finite-dimensional real vector space
V . If the dual cone Ω∗ coincides with Ω under the identification of V ∗ with V by
means of a positive definite inner product 〈·|·〉 on V , then Ω is said to be self-dual
relative to 〈·|·〉. As usual, we call a self-dual homogeneous convex cone a symmetric
cone. Symmetric cones form a special subclass in the class of homogeneous convex
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cones.

2.1. Clan associated with a homogeneous convex cone.
Let Ω ⊂ V be a homogeneous convex cone. Then, V has a structure of a non-

commutative left-symmetric algebra called a clan as follows. Our basic reference
is [17]. We know by [17, Chapter I, Theorem 1] that there exists a maximal
connected split solvable subgroup H ⊂ G(Ω) which acts simply transitively on Ω.
Moreover, by [17, Chapter I, Propositions 8, 9], H acts simply transitively also
on Ω∗ by the contragradient action. We take any E ∈ Ω and fix it. Then the
orbit map H 3 h 7→ hE ∈ Ω is a diffeomorphism. Differentiating it at the unit
element of H, we obtain the linear isomorphism h := Lie(H) 3 T 7→ TE ∈ V ,
where we identify the tangent space of Ω at E with V . We denote its inverse
map by V 3 x 7→ Lx ∈ h, that is, LxE = x (x ∈ V ). We introduce a product
(x, y) 7→ x4y on V by x4y := Lxy. Then the (non-associative) algebra (V,4)
has the following properties:

(C1) [Lx, Ly] = L(x4y−y4x),
(C2) the bilinear form (x, y) 7→ TrLx4y defines a positive definite inner product

on V ,
(C3) for every x ∈ V , the linear operator Lx has only real eigenvalues.

Moreover, it follows that E is the unit element. In general, we call a non-associative
algebra with the properties (C1) to (C3) a clan after Vinberg. Thus we have
constructed a clan with the unit element E associated with Ω. It is known that any
homogeneous convex cone arises from the associated clan with the unit element
and that there is a one-to-one correspondence up to isomorphisms between the
class of homogeneous convex cones and that of clans with the unit element.

The clan V has a direct sum decomposition called a normal decomposition.
Namely, there exist a positive integer r, and primitive idempotents E1, . . . , Er such
that V decomposes into

V =
∑

1≤j≤k≤r

Vkj , (2.1)

where, for each pair (k, j) of integers with 1 ≤ j ≤ k ≤ r, we have put

Vkj :=
{

x ∈ V ; ∀c =
r∑

m=1

cmEm, c4x =
1
2
(cj + ck)x, x4c = cjx

}
. (2.2)

In this case, it follows that E = E1 + · · · + Er and Vii = REi (i = 1, . . . , r). We
obtain the following multiplication table:
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• Vlk4Vkj ⊂ Vlj ,

• if k 6= i, j, then Vlk4Vij = 0,

• Vlk4Vmk ⊂ Vlm or Vml according to l ≥ m or m ≥ l.

(2.3)

2.2. Pseudoinverse maps.
First we shall parametrize H-relatively invariant functions on Ω. We put

a := {Lx ∈ h | x ∈ ∑r
m=1 REm} and n := {Lx ∈ h | x ∈ ∑

1≤j<k≤r Vkj}.
Then a (resp. n) is an abelian (resp. nilpotent) subalgebra of h. Moreover we
have h = a n n, so that H = A n N , where A := exp a and N := exp n. For
s = (s1, . . . , sr) ∈ Rr, we define a one-dimensional representation χs of A by

χs

(
exp

( ∑
tmLEm

))
:= exp

( ∑
smtm

)
(tm ∈ R). (2.4)

Since H = AnN , we can extend χs to a one-dimensional representation of H by
defining χs

∣∣
N
≡ 1. Using the diffeomorphism H 3 h 7→ hE ∈ Ω, we transfer χs to

a function ∆s on Ω: ∆s(hE) := χs(h) (h ∈ H). It is clear that

∆s(hx) = χs(h)∆s(x) (h ∈ H, x ∈ Ω), (2.5)

that is, ∆s is H-relatively invariant. In particular, putting h := exp(log λLE) for
any λ > 0, we see that

∆s(λx) = λ|s|∆s(x) (x ∈ Ω), (2.6)

where |s| := s1 + · · · + sr. Every H-relatively invariant real function on Ω arises
as a constant multiple of ∆s for some s ∈ Rr.

For x ∈ Ω, we define the pseudoinverse Is(x) ∈ V ∗ by

〈v, Is(x)〉 = −Dv log ∆−s(x) (v ∈ V ). (2.7)

We call Is : Ω → V ∗ the pseudoinverse map. It is easy to show by (2.5) that

Is(hx) = h ·Is(x) (x ∈ Ω, h ∈ H), (2.8)

where the action in the right-hand side is the contragradient action of H on V ∗:
for f ∈ V ∗ and h ∈ H, 〈v, h · f〉 := 〈h−1v, f〉 (v ∈ V ). Moreover we see the
following. We define E∗

i ∈ V ∗ (i = 1, . . . , r) by
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〈 r∑
m=1

λmEm +
∑

1≤j<k≤r

Xkj , E
∗
i

〉
:= λi (λm ∈ R, Xkj ∈ Vkj)

and set E∗
s :=

∑
siE

∗
i . Then it follows from [10, Lemma 3.10 (ii)] that

Is(E) = E∗
s . (2.9)

Here we refer the reader to [2, Section 2] for the translation of the normal j-algebra
language into our language of clan. In addition, we know easily by (2.6) that

〈x,Is(x)〉 = |s| (x ∈ Ω). (2.10)

For every s ∈ Rr, we introduce a symmetric bilinear form 〈·|·〉s on V by

〈x|y〉s = DxDy log ∆−s(E) (x, y ∈ V ).

It is easy to see by the proof of [10, Lemma 3.11] that

〈x|y〉s = 〈x4y, E∗
s 〉 (x, y ∈ V ). (2.11)

We say that a parameter s = (s1, . . . , sr) ∈ Rr is positive, if s1, . . . , sr > 0.
Actually, it follows that

E∗
s ∈ Ω∗ if and only if s is positive, (2.12)

as we shall see later at the end of Section 2.3. This together with [10, Lemma
3.3], (2.8), (2.9) and the fact that H acts simply transitively on Ω and Ω∗ tells us
the following lemma.

Lemma 2.1. The following conditions are equivalent :

(i) s is positive.
(ii) E∗

s ∈ Ω∗.
(iii) The H-relatively invariant function ∆−s is admissible, that is, Is(Ω) ⊂ Ω∗.
(iv) Is is a bijection from Ω onto Ω∗.
(v) The bilinear form 〈·|·〉s defines a positive definite inner product on V .

From now on, we consider only the pseudoinverse maps Is with positive
parameters s. Let s ∈ Rr be positive. In this case, we can give explicitly I −1

s in
the following way. We introduce a function ∆∗

s on Ω∗ by
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∆∗
s(h · E∗

s ) := χs(h) (h ∈ H).

Then we have clearly

∆∗
s(h · f) = χs(h)∆∗

s(f) (h ∈ H, f ∈ Ω∗). (2.13)

Let us define the dual pseudoinverse map I ∗
s : Ω∗ → V by

〈I ∗
s (ξ), f〉 = −Df log ∆∗

s(ξ) (ξ ∈ Ω∗, f ∈ V ∗).

By (2.13), one has I ∗
s (h · ξ) = hI ∗

s (ξ) (h ∈ H, ξ ∈ Ω∗). Moreover, it follows
from [10, Lemma 3.13] that I ∗

s (E∗
s ) = E. Hence we know by (2.8) and (2.9) that

I −1
s = I ∗

s .

2.3. Vinberg’s ∗-map as a pseudoinverse map.
By [5, Proposition I.3.1], one has

φ(gx) = (Det g)−1φ(x) (g ∈ G(Ω), x ∈ Ω), (2.14)

which clearly implies that φ is H-relatively invariant. Hence the ∗-map is a member
of the family of pseudoinverse maps. Moreover, by [17, Chapter I, Proposition 5],
the bilinear form

〈x|y〉φ := DxDy log φ(E) (x, y ∈ V )

defines a positive definite inner product on V . We introduce a parameter d =
(d1, . . . , dr) ∈ Rr by

di := Tr LEi (i = 1, . . . , r).

Then we know by (2.1) that

di = 1 +
1
2

∑

α>i

nαi +
1
2

∑

α<i

niα (i = 1, . . . , r), (2.15)

where we have put

nkj := dimVkj (1 ≤ j < k ≤ r). (2.16)
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Clearly, d is positive. It follows from (2.4) that χd(a) = Det a (a ∈ A). Since
H = AnN and N is nilpotent, we have χd(h) = Det h (h ∈ H). Hence we obtain

∆d(hx) = Det h ∆d(x) (h ∈ H, x ∈ Ω).

This together with (2.14) gives

φ(x) = ∆−d(x) (x ∈ Ω) (2.17)

up to a positive constant multiple. Therefore it holds that

〈·|·〉φ = 〈·|·〉d, x∗ = Id(x) (x ∈ Ω). (2.18)

Proof of (2.12). Since
∑

etmEm = exp
(∑

tmLEm

)
E ∈ Ω (tm ∈ R), we

have

∑
λmEm ∈ Ω (λm ≥ 0). (2.19)

In particular, Em ∈ Ω (m = 1, . . . , r). Hence, if E∗
s ∈ Ω∗, then sm = 〈Em, E∗

s 〉 > 0
(m = 1, . . . , r). Conversely, let s be positive. Then we see easily that E∗

s =
exp(−∑

log(sm/dm)LEm) · E∗
d. Hence we have E∗

s ∈ Ω∗, because E∗
d = E∗ ∈ Ω∗

by [17, Chapter I, Proposition 7]. ¤

3. The case of symmetric cones.

In this section we assume that the homogeneous convex cone Ω ⊂ V is a
symmetric cone.

3.1. Coincidence of Vinberg’s ∗-map and the Jordan algebra in-
verse map.

Since Ω is a symmetric cone, V has a structure of a Jordan algebra associated
with Ω as follows. First, it follows from [13, Chapter I, Section 8, Theorem 8.5]
and [13, Chapter I, Section 8, Exercise 5] that Ω is self-dual with respect to 〈·|·〉φ.
We transfer the image of Vinberg’s ∗-map by means of the inner product 〈·|·〉φ
and denote this map by Ω 3 x 7→ xφ ∈ Ω:

〈xφ|y〉φ = −Dy log φ(x) (x ∈ Ω, y ∈ V ). (3.1)

We see easily that Eφ = E.
We introduce a commutative product (x, y) 7→ x ◦ y on V by



1116 C. Kai

〈x ◦ y|z〉φ = −1
2
DxDyDz log φ(E) (x, y, z ∈ V ).

In view of Eφ = E, we see by [5, Theorem III.3.1] and [5, Chapter III, Exercise
5] that V with the product ◦ is a Jordan algebra (we note that the third equality
in [5, Chapter III, Exercise 5] has an error and its right-hand side should be
−1/2DuDvDw log φ(e)). This means that in addition to the commutativity of the
product, one has

x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) (x, y ∈ V ).

Moreover, E is the unit element of the Jordan algebra V , and one has

〈x|y〉φ = TrL(xy) (x, y ∈ V ),

where, for v, w ∈ V , we define L(v)w := v ◦ w. Therefore it follows from [5,
Proposition III.4.2 (i)] and [5, Proposition III.4.3] that for every x ∈ Ω,

xφ = x−1, (3.2)

where x−1 denotes the Jordan algebra inverse of x. In particular we know that
the Jordan algebra inverse map x 7→ x−1 is an involution on Ω.

In addition, the structure of Jordan algebra is related to that of clan as follows:
for all x ∈ V , one has

L(x) =
1
2
(Lx + φLx),

where φLx is the transpose of Lx relative to the inner product 〈·|·〉φ. See [9, Lemma
4.1] for the proof.

3.2. Order-reversing property of the Jordan algebra inverse maps.
For x ∈ V , we define a linear operator P (x) on V by

P (x) := 2L(x)2 − L(x2).

It follows from [5, Proposition III.2.2] that for every invertible x ∈ V , P (x) belongs
to G(Ω). We quote the following identity called Hua’s identity (see [5, Chapter II,
Exercise 5]).
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Lemma 3.1. For a ∈ Ω, one has

(a + P (a)b−1)−1 + (a + b)−1 = a−1,

when b, a + b, a + P (a)b−1 are invertible.

Proposition 3.2. For every x, y ∈ Ω, one has x ºΩ y if and only if y−1 ºΩ

x−1.

Proof. Since the Jordan algebra inverse map is an involution on Ω, it
suffices to prove that x ºΩ y implies y−1 ºΩ x−1. First we assume z := x−y ∈ Ω.
Since y ∈ Ω, we know that y is invertible, so that P (y) ∈ G(Ω). This together with
z−1 ∈ Ω gives P (y)z−1 ∈ Ω. Hence y + P (y)z−1 belongs to Ω and is invertible. In
Lemma 3.1 we set a := y and b := z. Then we know that

y−1 − x−1 = (y + P (y)z−1)−1,

which implies y−1 − x−1 ∈ Ω.
Next we suppose x ºΩ y, that is, z := x − y ∈ Ω. Let {zm} be a sequence

in Ω which converges to z. We put xm := zm + y. Then {xm} is a sequence
in Ω converging to x. Since xm, y and xm − y = zm belong to Ω, we know by
the above argument that y−1 − x−1

m ∈ Ω. Moreover the sequence {y−1 − x−1
m }

converges to y−1−x−1, because the inverse map is continuous in Ω. Thus we have
y−1 − x−1 ∈ Ω, that is, y−1 ºΩ x−1. ¤

By (3.2), we have a conclusion similar to Proposition 3.2 for the original ∗-map
Ω ∼→ Ω∗, that is, for every x, y ∈ Ω, one has x ºΩ y if and only if y∗ ºΩ∗ x∗.

4. Basic formulas and some criterions.

In this section, we identify V ∗ with V by means of the positive definite inner
product 〈·|·〉s to simplify the notation. Under this identification, we denote by Ωs

the dual cone of Ω:

Ωs := {x ∈ V | ∀y ∈ Ω \ {0}, 〈x|y〉s > 0}.

The Lie group H acts on Ωs simply transitively by the action x 7→ sh−1x (h ∈
H,x ∈ Ωs), where sh stands for the transpose of h relative to 〈·|·〉s. It follows from
(2.11) and (2.3) that the subspaces Vkj (1 ≤ j ≤ k ≤ r) are orthogonal to each
other with respect to 〈·|·〉s. Moreover, for vkj , wkj ∈ Vkj (1 ≤ j < k ≤ r), we see
easily by (2.11) and (2.3) that
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vkj4wkj = s−1
k 〈vkj |wkj〉sEk. (4.1)

In addition, for all x =
∑

xmEm +
∑

β>α xβα ∈ V (xm ∈ R, xβα ∈ Vβα), we have

〈x,E∗
i 〉 = xi = 〈x|s−1

i Ei〉s (i = 1, . . . , r). (4.2)

Hence,

E∗
s ∈ Ω∗ is identified with E ∈ Ωs. (4.3)

From now on, we always assume that the integers j, k, l satisfy 1 ≤ j < k <

l ≤ r. We quote the following Propositions 4.1 and 4.2 to compute the actions of
H on Ω and Ωs. For wkj ∈ Vkj , wlj ∈ Vlj , we set

Slk := wlj4wkj ∈ Vlk,

where we note that Slk = (wlj4wkj+wkj4wlj)/2. Indeed, since Tlk := wlj4wkj−
wkj4wlj belongs to Vlk, it follows from (2.2) and (C1) that

Tlk = Tlk4Ek = L(wlj4wkj−wkj4wlj)Ek = [Lwlj
, Lwkj

]Ek = 0.

Proposition 4.1 ([8, Proposition 4.2]). Let tj , tk, tl ∈ R and wkj ∈
Vkj , wlj ∈ Vlj and wlk ∈ Vlk. Then one has

exp(Lwlj
+ Lwkj

) exp(Lwlk
) exp(tjLEj + tkLEk

+ tlLEl
)E

=
∑

m 6=j,k,l

Em + etj Ej +
(
etk + etj (2sk)−1‖wkj‖2s

)
Ek

+
(
etl + etk(2sl)−1‖wlk‖2s + etj (2sl)−1‖wlj‖2s

)
El

+ etj wlj + etj wkj +
(
etj Slk + etkwlk

)
.

Proposition 4.2 ([8, Proposition 4.6]). Let tj , tk, tl ∈ R and wkj ∈ Vkj,
wlj ∈ Vlj and wlk ∈ Vlk. Then one has

s
(
exp(Lwlj

+ Lwkj
) exp(Lwlk

) exp(tjLEj + tkLEk
+ tlLEl

)
)−1

E

=
∑

m 6=j,k,l

Em +
(
e−tj +

(
e−tk + e−tl(2sk)−1‖wlk‖2s

)
(2sj)−1‖wkj‖2s

+ e−tl(2sj)−1‖wlj‖2s − e−tls−1
j 〈Slk|wlk〉s

)
Ej
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+
(
e−tk + e−tl(2sk)−1‖wlk‖2s

)
Ek + e−tlEl

+
(
e−tl sLwlj

wlk −
(
e−tk + e−tl(2sk)−1‖wlk‖2s

)
wkj

)

+ e−tl(sLwkj
wlk − wlj)− e−tlwlk.

We present some formulas to prove Proposition 4.6.

Lemma 4.3. For every x =
∑

xmEm +
∑

β>α xβα (xm ∈ R, xβα ∈ Vβα),
wlj ∈ Vlj and wlk ∈ Vlk, one has

exp(Lwlj
+ Lwlk

)x

= x + (xjwlj + wlk4xkj) + (xkwlk + wlj4xkj)

+
∑

α<j

wlj4xjα +
∑

β>j,β 6=k

wlj4xβj +
∑

α<k,α 6=j

wlk4xkα +
∑

β>k

wlk4xβk

+ (2sl)−1
(
xj‖wlj‖2s + xk‖wlk‖2s + 〈wlk|wlj4xkj〉s + 〈wlj |wlk4xkj〉s

)
El.

Proof. First we know by (2.3) that

Lwlj
x = wlj4

(
xjEj + xkj +

∑

α<j

xjα +
∑

β>j,β 6=k

xβj

)

= xjwlj + wlj4xkj +
∑

α<j

wlj4xjα +
∑

β>j,β 6=k

wlj4xβj .

By a similar argument for Lwlk
x, we have

(Lwlj
+ Lwlk

)x = xjwlj + xkwlk + wlj4xkj + wlk4xkj

+
∑

α<j

wlj4xjα +
∑

β>j,β 6=k

wlj4xβj +
∑

α<k,α 6=j

wlk4xkα +
∑

β>k

wlk4xβk.

Further we see by (2.3) that

(Lwlj
+ Lwlk

)
( ∑

α<j

wlj4xjα +
∑

β>j,β 6=k

wlj4xβj

+
∑

α<k,α 6=j

wlk4xkα +
∑

β>k

wlk4xβk

)
= 0.
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Hence it follows from (2.3) and (4.1) that

(Lwlj
+ Lwlk

)2x

= xjwlj4wlj + xkwlk4wlk + wlk4(wlj4xkj) + wlj4(wlk4xkj)

= s−1
l

(
xj‖wlj‖2s + xk‖wlk‖2s + 〈wlk|wlj4xkj〉s + 〈wlj |wlk4xkj〉s

)
El.

Clearly one has (Lwlj
+ Lwlk

)3x = 0. Now the proof is complete. ¤

Lemma 4.4. Let am ∈ R (m = 1, . . . , r), vkj ∈ Vkj, vlj, wlj ∈ Vlj and
vlk, wlk ∈ Vlk. Then one has

sexp(Lwlj
+ Lwlk

)
( ∑

amEm + vkj + vlj + vlk

)

=
∑

m 6=j,k

amEm +
(
aj + al(2sj)−1‖wlj‖2s + s−1

j 〈vlj |wlj〉s
)
Ej

+
(
ak + al(2sk)−1‖wlk‖2s + s−1

k 〈vlk|wlk〉s
)
Ek

+
(
vkj + al

sLwlj
wlk + sLwlk

vlj + sLwlj
vlk

)
+ (vlj + alwlj) + (vlk + alwlk).

Proof. Let us take any x =
∑

xmEm +
∑

β>α xβα ∈ V (xm ∈ R, xβα ∈
Vβα). Since the subspaces Vβα (1 ≤ α ≤ β ≤ r) are orthogonal to each other with
respect to 〈·|·〉s, it follows from Lemma 4.3 and (2.3) that

〈
sexp(Lwlj

+ Lwlk
)
( ∑

amEm

)
|x

〉
s

=
〈 ∑

amEm | x + wlj4xlj + wlk4xlk

+ (2sl)−1
(
xj‖wlj‖2s + xk‖wlk‖2s + 〈wlk|wlj4xkj〉s + 〈wlj |wlk4xkj〉s

)
El

〉
s
.

We see by (4.1) and (2.11) that the last term equals

〈∑
amEm|x

〉
s

+ al

(〈wlj |xlj〉s + 〈wlk|xlk〉s

+
1
2
(
xj‖wlj‖2s + xk‖wlk‖2s + 〈sLwlj

wlk|xkj〉s + 〈sLwlk
wlj |xkj〉s

))
. (4.4)

It follows from [8, Lemma 7.7] and [8, Lemma 4.4] that sLwlj
wlk = sLwlk

wlj ∈ Vkj .
Hence we know by (4.2) that (4.4) is equal to
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〈∑
amEm + al

(
wlj + wlk + (2sj)−1‖wlj‖2sEj

+ (2sk)−1‖wlk‖2sEk + sLwlj
wlk

)|x
〉

s
.

This implies

sexp(Lwlj
+ Lwlk

)
( ∑

amEm

)

=
∑

amEm + al

(
wlj + wlk + (2sj)−1‖wlj‖2sEj

+ (2sk)−1‖wlk‖2sEk + sLwlj
wlk

)
.

By a similar argument we have

sexp(Lwlj
+ Lwlk

)vkj = vkj ,

sexp(Lwlj
+ Lwlk

)vlj = vlj + s−1
j 〈vlj |wlj〉sEj + sLwlk

vlj ,

sexp(Lwlj
+ Lwlk

)vlk = vlk + s−1
k 〈vlk|wlk〉sEk + sLwlj

vlk.

Summing up these results, we obtain the assertion. ¤

4.1. Some criterions.
In this section we improve [7, Lemma 5.9] and [8, Lemma 7.6]. Before pro-

ceeding, we note that for any x =
∑

xmEm+
∑

β>α xβα ∈ Ω (xm ∈ R, xβα ∈ Vβα),
one has xm > 0 (m = 1, . . . , r). In fact, we know by (2.12) that E∗

m ∈ Ω∗ \ {0}, so
that xm = 〈x,E∗

m〉 > 0 because Ω = (Ω∗)∗. In view of (2.19), we have a similar
conclusion for the elements of Ωs.

Proposition 4.5. Let am ∈ R (m = 1, . . . , r), vkj ∈ Vkj, vlj ∈ Vlj and
vlk ∈ Vlk. We set Ulk := vlj4vkj ∈ Vlk. Then we have

∑
amEm+vkj+vlj+vlk ∈ Ω

if and only if

(i) am > 0 (m = 1, . . . , r),
(ii) ajak − (2sk)−1‖vkj‖2s > 0, ajal − (2sl)−1‖vlj‖2s > 0,
(iii) (ajak − (2sk)−1‖vkj‖2s)(ajal − (2sl)−1‖vlj‖2s)− (2sl)−1‖ajvlk − Ulk‖2s > 0.

Proof. For simplicity, we set v1 :=
∑

amEm + vkj + vlj + vlk. Let us
assume that v1 ∈ Ω. Then we have am > 0 (m = 1, . . . , r). In [8, Lemma
4.1], we set wlj := −a−1

j vlj , wkj := −a−1
j vkj and x := v1, where we note that

Ulk = (vlj4vkj + vkj4vlj)/2. Then, it follows from (4.1) that
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v2 : = exp(Lwlj
+ Lwkj

)v1

=
∑

m 6=k,l

amEm +
(
ak − a−1

j (2sk)−1‖vkj‖2s
)
Ek +

(
al − a−1

j (2sl)−1‖vlj‖2s
)
El

+ vlk − a−1
j Ulk.

Since exp(Lwlj
+ Lwkj

) ∈ H, one has v2 ∈ Ω. Therefore we obtain (ii) and (iii) by
[8, Lemma 7.5].

Conversely we assume that (i), (ii) and (iii) hold. Then we have v2 ∈ Ω, so
that v1 = (exp(Lwlj

+ Lwkj
))−1v2 ∈ Ω. ¤

Proposition 4.6. Let am ∈ R (m = 1, . . . , r), vkj ∈ Vkj, vlj ∈ Vlj and
vlk ∈ Vlk. Then we have

∑
amEm + vkj + vlj + vlk ∈ Ωs if and only if

(i) am > 0 (m = 1, . . . , r),
(ii) ajal − (2sj)−1‖vlj‖2s > 0, akal − (2sk)−1‖vlk‖2s > 0,
(iii) (ajal− (2sj)−1‖vlj‖2s)(akal− (2sk)−1‖vlk‖2s)− (2sj)−1‖alvkj − sLvlk

vlj‖2s >

0.

Proof. For simplicity, we set v1 :=
∑

amEm + vkj + vlj + vlk. We suppose
that v1 ∈ Ωs. Then one has am > 0 (m = 1, . . . , r). In Lemma 4.4, we set
wlj := −a−1

l vlj , wlk := −a−1
l vlk. Then we obtain by (4.1) and [8, Lemma 7.7]

that

v2 : = s(exp Lwlj
+ Lwlk

)v1

=
∑

m 6=j,k

amEm +
(
aj − a−1

l (2sj)−1‖vlj‖2s
)
Ej +

(
ak − a−1

l (2sk)−1‖vlk‖2s
)
Ek

+
(
vkj − a−1

l
sLvlk

vlj

)
.

Since exp(Lwlj
+ Lwlk

) ∈ H and Ωs = {shE | h ∈ H}, one has v2 ∈ Ωs. Hence (ii)
and (iii) follow from [8, Lemma 7.6].

Conversely we assume that (i), (ii) and (iii) hold. Then one has v2 ∈ Ωs, so
that v1 = s(exp Lwlj

+ Lwlk
)−1v2 ∈ Ωs. ¤

Also we use the following criterions. Recall the definition (2.16) of the numbers
nkj (1 ≤ j < k ≤ r).

Proposition 4.7 ([1, Theorem 4]). The homogeneous convex cone Ω is
irreducible if and only if for each pair (j, k) of integers with 1 ≤ j < k ≤ r, there
exists a series j0, . . . , jm of distinct positive integers such that j0 = k, jm = j and
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njλ−1jλ
6= 0 for λ = 1, . . . , m, where if jλ−1 < jλ, then one puts njλ−1jλ

:= njλjλ−1 .

Proposition 4.8 ([18, Proposition 3]). Let us suppose that the homoge-
neous convex cone Ω is irreducible. Then Ω is a symmetric cone if and only if the
numbers nkj (1 ≤ j < k ≤ r) are independent of j, k.

5. Proof of the main theorem.

Before proving Theorem B, we note that Theorem A follows actually from
Theorem B, though the homogeneous convex cone Ω is not assumed to be irre-
ducible in Theorem A. Indeed, if Ω is a direct product of irreducible homogeneous
convex cones Ωi (i = 1, . . . , m), we see easily that Ω∗ = Ω∗1 × · · · × Ω∗m. Hence
it follows that φ(x1, . . . , xm) = φ1(x1) · · ·φm(xm) (xi ∈ Ωi), where φi stands for
the characteristic function of Ωi. Therefore, we have (x1, . . . , xm)∗ = (x∗1, . . . , x

∗
m)

(xi ∈ Ωi), so that each of (II) and (III) of Theorem A holds if and only if it holds
for all Ωi (i = 1, . . . , m). Moreover, if Ωi (i = 1, . . . , m) are symmetric cones, ob-
viously Ω is a symmetric cone. Conversely, if Ω is a symmetric cone, it is self-dual
with respect to the inner product 〈·|·〉φ (see Section 3.1), so that Ωi (i = 1, . . . ,m)
are self-dual with respect to 〈·|·〉φi .

Now we start proving Theorem B. As in Theorem B, we assume that Ω ⊂ V

is an irreducible homogeneous convex cone and ∆ : Ω → R>0 an admissible
H-relatively invariant function. We know by Lemma 2.1, (1.2) and (2.7) that
∆ = ∆−s with a positive s = (s1, . . . , sr) ∈ Rr up to a positive constant multiple,
so that I∆ = Is.

5.1. Proof of the equivalence of (II) and (III).
It is clear that (II) implies (III). To show that (III) implies (II), we prove the

following fact:

Lemma 5.1. Let x, y ∈ Ω. If x ºΩ y and Is(x) ºΩ∗ Is(y), then one has
x = y.

Proof. We put v := x − y ∈ Ω. It follows from Is(x) ∈ Ω∗ that
〈v, Is(x)〉 ≥ 0. This together with (2.10) gives

〈y, Is(x)−Is(y)〉 = 〈y, Is(x)〉 − |s| ≤ 〈x, Is(x)〉 − |s| = 0.

Since y ∈ Ω = (Ω∗)∗, one has 〈y, f〉 > 0 for any f ∈ Ω∗ \ {0}. In view of
Is(x)−Is(y) ∈ Ω∗, we know that Is(x) = Is(y), which implies x = y. ¤

The above lemma tells us that if x ºΩ y and Is(y) 6ºΩ∗ Is(x), then
Is(x) 6ºΩ∗ Is(y). Let us suppose that (III) holds. If x ºΩ y, then the pair
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(Is(x),Is(y)) is comparable, so that we must have Is(y) ºΩ∗ Is(x). By a sim-
ilar argument for I ∗

s = I −1
s , it follows that Is(y) ºΩ∗ Is(x) implies x ºΩ y.

Now we have (II).

5.2. Proof of the equivalence of (I) and (II).
First we suppose that (I) holds. Then we see by (1.1) and (1.2) that Is(x) =

px∗ (x ∈ Ω). Therefore we know by Section 3 that (II) holds.
Now we suppose that (II) holds. As in Section 4, we identify V ∗ with V by

means of the positive definite inner product 〈·|·〉s, and denote the pseudoinverse
map by the same symbol Is : Ω → Ωs. Then we see by (2.8), (2.9) and (4.3) that

Is(hE) = sh−1E (h ∈ H). (5.1)

Also we assume that the integers j, k, l always satisfy 1 ≤ j < k < l ≤ r.

5.2.1 First step.
We shall show that s1 = · · · = sr.

Lemma 5.2. If nkj 6= 0, then one has sj ≥ sk.

Proof. We suppose nkj 6= 0. Let us take any non-zero vkj ∈ Vkj and
ξj , ξk > 0 satisfying

ξjξk − (2sk)−1‖vkj‖2s = 0. (5.2)

For simplicity we set v := ξjEj + ξkEk + vkj . Then we see that v ∈ Ω. In fact, we
know by Proposition 4.5 that vε :=

∑
m 6=j,k εEm+(ξj +ε)Ej +(ξk +ε)Ek +vkj ∈ Ω

for any ε > 0, and vε converges to ξjEj + ξkEk + vkj when ε approaches 0.
Thus we have E + v ºΩ E, so that E ºΩs Is(E + v) by the assumption. In

Proposition 4.1 we set

tj := log(1 + ξj), tk := log
(
1 + ξk − (1 + ξj)−1(2sk)−1‖vkj‖2s

)
,

tl := 0, wkj := (1 + ξj)−1vkj , wlj = wlk = 0,
(5.3)

where we note that tk is a real number by (5.2). Then, the right-hand side of the
formula in Proposition 4.1 becomes E + v. Hence we see by (5.1) and Proposition
4.2 that

Is(E + v) =
∑

m 6=j,k

Em +
(
e−tj + e−tk(2sj)−1‖wkj‖2s

)
Ej + e−tkEk − e−tkwkj .
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It follows from E ºΩs Is(E + v) that

(
1− (

e−tj + e−tk(2sj)−1‖wkj‖2s
))

Ej + (1− e−tk)Ek + e−tkwkj ∈ Ωs.

Hence we know by Proposition 4.6 that

(
e−tj + e−tk(2sj)−1‖wkj‖2s − 1

)
(e−tk − 1)− e−2tk(2sj)−1‖wkj‖2s ≥ 0.

After some simplification, we obtain

(e−tj − 1)(e−tk − 1)− e−tk(2sj)−1‖wkj‖2s ≥ 0.

We multiply both sides by e2tj etk . Then we have by (5.3) that

ξj

(
(1 + ξj)ξk − (2sk)−1‖vkj‖2s

)− (2sj)−1‖vkj‖2s ≥ 0.

This together with (5.2) gives

(sj − sk)(2sjsk)−1‖vkj‖2s ≥ 0.

This implies sj ≥ sk, because vkj 6= 0. ¤

Lemma 5.3. If nkj 6= 0, then one has sj ≤ sk.

Proof. The proof is similar to that of Lemma 5.2. We suppose nkj 6= 0.
Let us take any non-zero vkj ∈ Vkj and ξj , ξk > 0 satisfying

ξjξk − (2sj)−1‖vkj‖2s = 0. (5.4)

Discussing as in the proof of Lemma 5.2, we see that v := ξjEj + ξkEk + vkj ∈ Ωs.
Hence it follows that E + v ºΩs E, so that E ºΩ I ∗

s (E + v) by the assumption.
In Proposition 4.2 we set

tj := − log
(
1 + ξj − (1 + ξk)−1(2sj)−1‖vkj‖2s

)
, tk := − log(1 + ξk),

tl := 0, wkj := −(1 + ξk)−1vkj , wlj = wlk = 0,
(5.5)

where we have tj ∈ R by (5.4). Then, the right-hand side of the formula in
Proposition 4.2 becomes E + v. It follows from (5.1) and Proposition 4.1 that
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I ∗
s (E + v) =

∑

m 6=j,k

Em + etj Ej +
(
etk + etj (2sk)−1‖wkj‖2s

)
Ek + etj wkj .

Since E ºΩ I ∗
s (E + v), we obtain

(1− etj )Ej +
(
1− (

etk + etj (2sk)−1‖wkj‖2s
))

Ek − etj wkj ∈ Ω.

We know by Proposition 4.5 that

(etj − 1)
(
etk + etj (2sk)−1‖wkj‖2s − 1

)− e2tj (2sk)−1‖wkj‖2s ≥ 0.

After some simplification, we obtain

(etj − 1)(etk − 1)− etj (2sk)−1‖wkj‖2s ≥ 0.

We multiply both sides by e−tj e−2tk . Then we have by (5.5) that

(
(1 + ξk)ξj − (2sj)−1‖vkj‖2s

)
ξk − (2sk)−1‖vkj‖2s ≥ 0.

It follows from (5.4) that

(sk − sj)(2sjsk)−1‖vkj‖2s ≥ 0,

which implies sk ≥ sj , because vkj 6= 0. ¤

Lemmas 5.2 and 5.3 yield

Proposition 5.4. If nkj 6= 0, then one has sj = sk.

This together with Proposition 4.7 tells us that s1 = · · · = sr. In fact, let
j, k be any integers with 1 ≤ j < k ≤ r. Let j0, . . . , jm be a series appearing
in Proposition 4.7. Then it follows from Proposition 5.4 that sjλ−1 = sjλ

for
λ = 1, . . . ,m, so that one has sj = sk.

5.2.2 Second step.
We set s := s1 = · · · = sr. The purpose of this section is to show that if

nlk 6= 0, then nlj ≤ nkj . For vlk ∈ Vlk, we consider the linear map

Vlj 3 vlj 7→ sLvlk
vlj ∈ Vkj ,
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where we know indeed by [8, Lemma 4.4] and [8, Lemma 7.7] that sLvlk
vlj ∈ Vkj .

Lemma 5.5. Let us suppose nlk 6= 0. Then, for every non-zero vlk ∈ Vlk,
the linear map Vlj 3 vlj 7→ sLvlk

vlj ∈ Vkj is injective. Hence one has nlj ≤ nkj.

Proof. We assume that sLvlk
vlj = 0. We shall show that vlj = 0. Contrary

we suppose that vlj 6= 0. Then, there exist ξj , ξk, ξl > 0 such that

ξjξl − (2s)−1‖vlj‖2s = 0, ξkξl − (2s)−1‖vlk‖2s = 0. (5.6)

Discussing as in the proof of Lemma 5.2, we see by Proposition 4.6 and the as-
sumption sLvlk

vlj = 0 that

v := ξjEj + ξkEk + ξlEl + vlj + vlk ∈ Ωs.

Hence we have E + v ºΩs E, so that E ºΩ I ∗
s (E + v). In Proposition 4.2 we set

tj := − log
(
1 + ξj − (1 + ξl)−1(2s)−1‖vlj‖2s

)
,

tk := − log
(
1 + ξk − (1 + ξl)−1(2s)−1‖vlk‖2s

)
, tl := − log(1 + ξl),

wkj := 0, wlj := −(1 + ξl)−1vlj , wlk := −(1 + ξl)−1vlk,

(5.7)

where tj , tk are real numbers by (5.6). Then, the right-hand side of the formula
in Proposition 4.2 becomes E + v, because sLvlk

vlj = 0. We obtain by (5.1) and
Proposition 4.1 that

I ∗
s (E + v) =

∑

m 6=j,k,l

Em + etj Ej + etkEk

+
(
etl + etk(2s)−1‖wlk‖2s + etj (2s)−1‖wlj‖2s

)
El + etj wlj + etkwlk.

Since E ºΩ I ∗
s (E + v), one has

(1− etj )Ej + (1− etk)Ek +
(
1− (

etl + etk(2s)−1‖wlk‖2s + etj (2s)−1‖wlj‖2s
))

El

− etj wlj − etkwlk ∈ Ω.

Hence it follows from Proposition 4.5 (iii) that
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(1− etj )(1− etk)
{
(1− etj )

(
1− (

etl + etk(2s)−1‖wlk‖2s + etj (2s)−1‖wlj‖2s
))

− e2tj (2s)−1‖wlj‖2s
}− (1− etj )2e2tk(2s)−1‖wlk‖2s ≥ 0.

We divide both sides by (1 − etj ), where we note that 1 − etj > 0 by (5.7) and
(5.6). After some simplification we obtain

(1− etj )(1− etk)(1− etl)

− (1− etj )etk(2s)−1‖wlk‖2s − (1− etk)etj (2s)−1‖wlj‖2s ≥ 0.

Multiplying both sides by e−tj e−tke−3tl , we have by (5.7) that

e−tl(e−tj − 1)e−tl(e−tk − 1)(e−tl − 1)

− e−tl(e−tj − 1)(2s)−1‖vlk‖2s − e−tl(e−tk − 1)(2s)−1‖vlj‖2s ≥ 0.

Here we see by (5.7) and (5.6) that

e−tl − 1 = ξl, e−tl(e−tj − 1) = ξj , e−tl(e−tk − 1) = ξk.

Then it follows that

ξjξkξl − ξj(2s)−1‖vlk‖2s − ξk(2s)−1‖vlj‖2s ≥ 0.

This together with (5.6) gives −ξjξkξl ≥ 0, which is a contradiction. Therefore we
have vlj 6= 0. ¤

5.2.3 Third step.
Lemma 5.6. We suppose nkj 6= 0. Then, for every non-zero vkj 6= 0, the

linear map

Vlj 3 vlj 7→ Ulk := vlj4vkj ∈ Vlk

is injective. Hence we have nlj ≤ nlk.

Proof. Let us assume that Ulk = 0 for some vlj ∈ Vlj . We shall show that
vlj = 0. Contrary we suppose vlj 6= 0.

We can take ξj , ξk, ξl > 0 satisfying

ξjξk − (2s)−1‖vkj‖2s = 0, ξjξl − (2s)−1‖vlj‖2s = 0. (5.8)
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Then we see by Proposition 4.5 and the assumption Ulk = 0 that

v := ξjEj + ξkEk + ξlEl + vlj + vkj ∈ Ω.

Hence we have E + v ºΩ E, so that E ºΩs Is(E + v). In Proposition 4.1 we set

tj := log(1 + ξj), tk := log
(
1 + ξk − (1 + ξj)−1(2s)−1‖vkj‖2s

)
,

tl := log
(
1 + ξl − (1 + ξj)−1(2s)−1‖vlj‖2s

)
,

wkj := (1 + ξj)−1vkj , wlj := (1 + ξj)−1vlj , wlk := 0,

(5.9)

where tk, tl are real numbers by (5.8). Then, since Ulk = 0, the right-hand side
of the formula in Proposition 4.1 becomes E + v. Hence we know by (5.1) and
Proposition 4.2 that

Is(E + v) =
∑

m 6=j,k,l

Em +
(
e−tj + e−tk(2s)−1‖wkj‖2s + e−tl(2s)−1‖wlj‖2s

)
Ej

+ e−tkEk + e−tlEl − e−tkwkj − e−tlwlj .

Since E ºΩs Is(E + v), one has

(
1− (

e−tj + e−tk(2s)−1‖wkj‖2s + e−tl(2s)−1‖wlj‖2s
))

Ej

+ (1− e−tk)Ek + (1− e−tl)El + e−tkwkj + e−tlwlj ∈ Ωs.

It follows from Proposition 4.6 (iii) that

{(
1− (

e−tj + e−tk(2s)−1‖wkj‖2s + e−tl(2s)−1‖wlj‖2s
))

(1− e−tl)

− e−2tl(2s)−1‖wlj‖2s
}
(1− e−tk)(1− e−tl)

− (1− e−tl)2e−2tk(2s)−1‖wkj‖2s ≥ 0.

We divide both sides by (1− e−tl), where we note that 1− e−tl > 0 by (5.9) and
(5.8). After some simplification we have

(1− e−tj )(1− e−tk)(1− e−tl)

− (1− e−tl)e−tk(2s)−1‖wkj‖2s − (1− e−tk)e−tl(2s)−1‖wlj‖2s ≥ 0.
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Multiplying both sides by e3tj etketl , we obtain by (5.9) that

(etj − 1)etj (etk − 1)etj (etl − 1)

− etj (etl − 1)(2s)−1‖vkj‖2s − etj (etk − 1)(2s)−1‖vlj‖2s ≥ 0.

It follows from (5.9) and (5.8) that

etj − 1 = ξj , etj (etk − 1) = ξk, etj (etl − 1) = ξl.

Hence we have

ξjξkξl − ξl(2s)−1‖vkj‖2s − ξk(2s)−1‖vlj‖2s ≥ 0.

Therefore it holds by (5.8) that −ξjξkξl ≥ 0, which is a contradiction. Now we
have vlj = 0, which we had to show. ¤

5.2.4 Last step.
Now that we have Lemmas 5.5 and 5.6, we can prove that the numbers nkj

(1 ≤ j < k ≤ r) are independent of j, k as in [11, Lemma 5.15] and [11, Proposition
5.16]. Here we give a sketch of the proof. First, by Lemmas 5.5 and 5.6 we know
the following.

Lemma 5.7. Fix integers j, k, l with j < k < l. If at least two of nkj , nlj , nlk

are non-zero, then they are all equal.

A discussion using Lemma 5.7 and Proposition 4.7 gives that nkj 6= 0 for all
j < k. Then we see easily by Lemma 5.7 that the numbers nkj (1 ≤ j < k ≤ r)
are all equal. Therefore Proposition 4.8 tells us that the irreducible homogeneous
convex cone Ω is a symmetric cone. Moreover, since s1 = · · · = sr and d1 = · · · =
dr by (2.15), we have s = pd for some p > 0. Hence it follows from (2.17) that
∆(x) = ∆−s(x) = φ(x)p (x ∈ Ω) up to a positive constant multiple. Now (I) of
Theorem B holds.

6. Example of non-order-reversing Vinberg’s ∗-map.

In this section, we shall verify directly that Vinberg’s ∗-map associated with
the dual Vinberg cone is not order-reversing. We note that the ∗-map associated
with the Vinberg cone is not either, though we do not show it here. See [9, Section
5] for an explicit computation of the ∗-map associated with the Vinberg cone. Let
V be the real vector space defined by



A characterization of symmetric cones 1131

V :=



v =




v1 0 v2

0 v3 v4

v2 v4 v5


 ; vi ∈ R



 .

The dual Vinberg cone is given by

Ω := {v ∈ V | v is positive definite},

which is one of the lowest-dimensional non-symmetric cones.
Let us define a Lie group H by

H :=



h =




h1 0 0
0 h3 0
h2 h4 h5


 ∈ GL(3, R) ; h1, h3, h5 > 0



 .

We see easily that H is a split solvable Lie group acting on V by v 7→ ρ(h)v := hvth

(h ∈ H, v ∈ V ). It is clear that ρ(h) ∈ G(Ω). In addition, H acts on Ω simply
transitively. We take the unit matrix in V as the base point E. Then the product
of the clan induced by the action of H is described as

v4w = v̌w + wv̂ (v, w ∈ V ),

where

v̌ :=




v1/2 0 0
0 v3/2 0
v2 v4 v5/2


 , v̂ :=




v1/2 0 v2

0 v3/2 v4

0 0 v5/2


 .

The normal decomposition is given by

E1 =




1 0 0
0 0 0
0 0 0


 , E2 =




0 0 0
0 1 0
0 0 0


 , E3 =




0 0 0
0 0 0
0 0 1


 ,

V21 = {0}, V31 =








0 0 v2

0 0 0
v2 0 0






 , V32 =








0 0 0
0 0 v4

0 v4 0






 .

Hence it follows from (2.15) that d1 = 3/2, d2 = 3/2, d3 = 2. Thus we know by
(2.11) and (2.17) that
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〈v|w〉φ =
3
2
v1w1 + 4v2w2 +

3
2
v3w3 + 4v4w4 + 2v5w5 (v, w ∈ V ).

Let us compute the ∗-map explicitly. For x ∈ Ω, let h(x) be the element
of H such that ρ(h(x))E = x. Then we see that h(x) is given by h(x)i := αi

(i = 1, . . . , 5), where we have set

α1 :=
√

x1, α3 :=
√

x3, α5 :=
√

x5 − x2
2/x1 − x2

4/x3,

α2 := x2/
√

x1, α4 := x4/
√

x3.

Since xφ = (ρ(h(x))E)φ = φρ(h(x))−1E by (5.1), a straightforward computation
yields

xφ =




α−2
1 + 4

3 (α2/(α1α5))2 0 −α2/(α1α
2
5)

0 α−2
3 + 4

3 (α4/(α3α5))2 −α4/(α3α
2
5)

−α2/(α1α
2
5) −α4/(α3α

2
5) α−2

5


 (x ∈ Ω).

(6.1)

Additionally, we know by (2.14) that for x ∈ Ω,

φ(x) = α−3
1 α−3

3 α−4
5 φ(E) = x

1/2
1 x

1/2
3

(
x1x3x5 − x2

2x3 − x2
4x1

)−2
φ(E).

We shall give a pair x, y ∈ Ω such that x ºΩ y and yφ 6ºΩφ xφ. We set y := E.
It is clear that

v1 :=




0 0 0
0 1 2
0 2 4


 ∈ Ω,

so that we have x := y + v1 ºΩ y. We know by (6.1) that

v2 := yφ − xφ =




0 0 0

0 1
18

1
3

0 1
3

2
3


 .

However, it holds that
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v3 :=




0 0 0
0 4 −2
0 −2 1


 ∈ Ω

and 〈v2|v3〉φ = −1, which implies v2 /∈ Ωφ. Thus we obtain yφ 6ºΩφ xφ.
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