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Abstract. Given a positive integer n > 2, an arbitrary field K and an n-
block ¢ = [q<1)\ e |q(”)] of n X n square matrices ¢(1), ..., ¢(™ with coefficients in K
satisfying certain conditions, we define a multiplication - : Myp(K) @ x Mn(K) —
M,,(K) on the K-module M, (K) of all square n x n matrices with coefficients in K in
such a way that -4 defines a K-algebra structure on My, (K). We denote it by M, (K),
and we call it a minor g-degeneration of the full matrix K-algebra My, (K). The class
of minor degenerations of the algebra M, (K) and their modules are investigated in
the paper by means of the properties of ¢ and by applying quivers with relations. The
Gabriel quiver of M/} (K) is described and conditions for ¢ to be M,l(K) a Frobenius
algebra are given. In case K is an infinite field, for each n > 4 a one-parameter K-
algebraic family {C},cx* of basic pairwise non-isomorphic Frobenius K-algebras
of the form C,, = M*(K) is constructed. We also show that if A; = MI(K) is a
Frobenius algebra such that J(Aq)3 =0, then A4 is representation-finite if and only
if n = 3, and A4 is tame representation-infinite if and only if n = 4.

1. Introduction.

Let R be a discrete valuation ring with a unique maximal ideal 7 R. It is standard to
reduce homological properties of R-orders A to those of factor algebras A/mA. For exam-
ple, Gorenstein R-orders can be reduced to quasi-Frobenius R/mR-algebras. However,
the study of such factor algebras is very limited, while its importance is well-recognized
by many authors, see e.g. [16] and [24] for the relationship of homological dimensions,
[6] and [25] for Gorenstein tiled R-orders and their factor algebras, and [14] and [17] for
further information. In [7], Fujita introduced full matrix algebras with structure systems
as a framework for such factor algebras A/wA of tiled R-orders A.

Let n > 2 be an integer and K a field. A structure system is an n-tuple of n x n
matrices over K with certain properties. A full matrix algebra with a structure system
is an n2-dimensional K-vector space with an associative multiplication defined by a
structure system. In [7] and [8], we mainly studied full matrix algebras with (0,1)-
structure systems, that is, their components are 0 or 1, just as structure systems of
factor algebras A/mA of tiled D-orders A, and we are interested in Frobenius full matrix
algebras and showed that the class of Frobenius full matrix algebras is a strictry larger
class than that of the factor algebras of Gorenstein tiled orders. Then one may ask, as a
next step, whether there are full matrix algebras which are not isomorphic to ones with
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(0, 1)-structure systems at all. This is one of the motivations for our study. In this paper,
we provide such examples in Sections 4 and 5.

The other motivation for our study is the fact that we are able to treat the class of full
matrix algebras with structure systems by an elementary algebraic geometry technique
and study them in a deformation theory context [13]. It turns out that, for suitable
choice of the structure matrix ¢, the algebra MJ?(K) is a degeneration of the full matrix
algebra M, (K), see [12] and Section 2. So, in this paper, we consider the class of full
matrix algebras with structure systems as a subclass of minor degenerations of the full
matrix algebra M, (K), see Section 2 for definition. We would like to note here that we
are also following an old idea of the skew matrix ring construction by Kupisch in [19]
and [20], see also Oshiro and Rim [22].

There is also another motivation coming from the fact proved in [28] that, given a
prime p > 2 and an algebraically closed field K of characteristic zero, any Hopf K-algebra
of dimension p? is semisimple or is isomorphic to the Taft Hopf algebra. In connection
with this result and the facts that Hopf algebras are Frobenius algebras and the Taft Hopf
algebra is a Nakayama algebra, the existence of a Hopf algebra structure on a Frobenius
algebra of the form MZ(K) (of dimension n?!), seems to be a natural problem to solve,
see (2.8). We do not solve it here, but we shall study it in a subsequent paper. Here we
only describe Nakayama algebras (Section 3) and Frobenius algebras (Section 5) of the
form MI(K) for a class of matrices q.

Section 2 contains basic definitions, examples and properties of minor g¢-
degenerations MI(K) of the full matrix K-algebra M, (K). In particular, we give a
criterion for the existence of a K-algebra isomorphism MY(K) = M9 (K) in terms of
an action

s Gp(K) x STy (K) — ST, (K)

of an algebraic group G, (K) = J,,x S, (containing the symmetric group S,, and the torus
) on the algebraic K-variety ST,,(K) C M,,x,2(K) of the minor constant matrices
q=[qgM]---1¢™)], see (2.16), (2.17) and (2.18). The algebras MJ(K) and their modules
are investigated by means of the properties of ¢ and by applying quivers with relations.
In case the algebra is basic, the Gabriel quiver of MJ(K) is described.

A complete classification, up to isomorphism, of basic algebras M4 (K) in case n = 2
and n = 3 is given in Section 4. The matrices ¢ = [¢(V]---[¢™)] in ST}, (K) such that
MY (K) is a Nakayama algebra are described in Section 3, where also (0, 1)-limits of
algebras M4(K) are studied.

Conditions for the matrices ¢ = [¢V)]---]|¢(™)] in ST,,(K) to be 4, = MI(K) a
Frobenius algebra are given in Section 5, by extending some of the Fujita’s results in [7,
Section 4]. All matrices ¢ such that A, is a Frobenius algebra and the cube J(A,)? of
the Jacobson radical J(A,) of A, = MJ(K) is zero are described in Theorem 5.5. In
case K is an infinite field, for each n > 4, we construct a one-parameter K-algebraic
family {C,}uck+ of basic pairwise non-isomorphic Frobenius K-algebras of the form
C, = M (K).

Finally, we show that if A, = MJ(K) is a Frobenius algebra such that J(4,)% = 0,
then the representation type of A, is completely determined as follows:
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(i) A, is representation-finite if and only if n = 3,
(if) A, is tame representation-infinite [26, Section 14.4] if and only if n = 4, and
(ili) A4 is representation-wild [26, Section 14.2] if and only if n > 5,

where we assume in (ii) and in (iii) that the field K is algebraically closed.

Throughout this paper K is a field and R is a ring with an identity element. We
denote by J(R) the Jacobson radical of R, and by mod(R) the category of finitely gen-
erated right R-modules. Given n > 1, we denote by M, (R) the full matrix R-algebra
consisiting of all square n x n matrices with coeflicients in R and by e;; the matrix unit
in M, (R) with 1 on the (i,j) entry, and zero elsewhere. We denote by eq,...,e, the
standard matrix idempotents ej1,. .., en, of M, (R).

2. Minor constant structure matrices and minor degenerations.

Throughout, we fix an integer n > 2. We suppose that K is an arbitrary field and R
is a ring with an identity element. We recall that, given a finite dimensional K-algebra A
and a complete set e1, .. ., e, of pairwise orthogonal primitive idempotents of A, we define
the Cartan matrix of A to be the matrix C4 = [¢;;] € M, (Z), where ¢;; = dimg e; Ae;.
The algebra A is said to be basic if e; A 2 e; A for ¢ # j, and A is said to be connected
if A is not a direct product of two K-algebras (see [1] and [2]).

Following Fujita [7], we introduce the following definition.

DEFINITION 2.1. Assume that n > 2. A minor constant structure matrix of size
n x n?, with coefficients in a ring R, is the n-block matrix

q= [q(1)|q(2)| - |q(n)] (2.2)
where ¢1) = [qg)], o™ =g (")} € M, (R) are n X n square matrices with coefficients
in the center Z(R) of R satisfying the following two conditions

(r) _ :
(C1) qT] lLand ¢;,” =1, for all j,r € {1,...,n}.
(C2) qf;)ql(g) = qf:)qrs ,for all 4,4,r,s € {1 ,n}.

We call ¢ basic if, in addition, the following condltlon is satisfied
(C3) qj(;) =0, forr=1,...,nand all j € {1,...,n} such that j # r.

The minor constant structure matrix ¢ is called (0,1)-matrix, if each entry q( "
either 0 or 1. Throughout this paper, a minor constant structure matrix will be often
called a structure matrix of M, (R), in short. We denote by

ST, (R) € M, xp2(R) (2.3)

the set of all minor constant structure matrices ¢ of size n x n?, with coefficients in R.

LEMMA 2.4.
(a) Letn > 2 and let ¢ = [¢V|qP|---|¢™)] be a matriz of the form (2.2) satisfying
the condition (C1). Then the equality qu)ql(s) = qg)qﬁﬂ) in (C2) holds, ifi =1, or
r=j,orj=s, and i, j,r,s € {1,...,n}.
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(b) Assume that q = [¢(D|qP|---|¢'™] is a structure matriz (2.2) in ST,(R).

(b1) q%) = qﬂ), for all j,r € {1,...,n}.

(b2) q%) = q§g)q£§) = qg)qg), for any triple of elements j,r,s € {1,...,n}.

(b3) Assume that R is a domain. If q](-;) #0 and qgg) %0, then qgi) = q;-j) # 0.
(¢) Ifn > 3 and the matriz ¢ = [¢M|¢P|---1¢™™)] is basic then, for any i,j,7 €

{1,...,n}, qg)qg) =014 j#r, and q,(o?qg) =0ifi#r.

PROOF.
(a) Let ¢ = r. Then (Cl) yields qig) =1, qﬁ? = 1 and we get qg»)qg) = qﬁg) =
¢ = ¢i"q9) . 1t r = jor j = s, the equality qg)qg) = ¢"q4% follows in a

similar way.
(b) (b1) Apply (C2) with i = j, s = r and then use (C1).
(b2) By (C2), we have qJ(»;)qj(-i) = qg)q?(%). Since qj(é) = 1, the first equality holds.
The second one follows in a similar way.
(b3) By (C2), we have qgi)qgg) = qgjs)q§g). Sincg qj(;) # 0 then, according to (b2),
qgﬁ-) is non-zero and the equation yields qgjs) #+ 0.
(c) By applying (C2) with s = r we get qg)qi(i) = qg)qﬂ) =0, because j # r implies
qﬁ) =0, by (C3). The equality q,(.zj) qg) = 0 follows in a similar way. O
Now we introduce the minor ¢-degeneration M2(R) of the algebra M, (R).

DEFINITION 2.5. Let n > 2 be an integer and let ¢ = [¢V)]---|¢™)] be a minor
constant structure matrix (2.2) in ST, (R) with coefficients in the center of a ring R.
A g-degeneration MZ(R) of the full matrix ring M, (R) is defined to be the R-module
M, (R) equipped with the g-multiplication

g+ M (R) @ M,,(R) —— M,(R)

that associates to any pair of matrices \' = [A[;], \"" = [\[}] € M,,(R) the matrix

(2.6)

isQij sjs

N g X' = [Agj], where Aij = > Mgl N,
s=1

for 4,j € {1,...,n}. Throughout, we simply write A’\"” instead of X" -; A".

A straightforward computation shows that MJZ(R) is a ring and the identity matrix
E = diag(1,...,1) of M, (R) is the identity of MJ(R).

By a minor degeneration of the full matrix ring M,,(R) we mean a ¢-degeneration
ring MJ(R), where n > 2 and ¢ is a structure matrix (2.2) in ST, (R).

Elementary properties of the K-algebra M2(K) are collected in Theorem 2.9 below.
In particular, it follows that M2(K) is a non-semisimple basic K-algebra, if ¢ is basic,
n > 2, and K is a field.

We remark that if ¢ = [¢(V)]- - |¢(™] is the matrix (2.2) with qg) =1foralli,j,s¢€
{1,...,n}, then the conditions (C1) and (C2) are satisfied, but the condition (C3) is
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not. In this case, we have M2(R) = M, (R), because the formula (2.6) defines the usual
matrix multiplication on M, (R).

It turns out that, under a suitable choice of g, the algebra MJ(K) is a degeneration
of M, (K) in the sense of [13], if K is a field, see Examples 2.8 and 2.14. We recall
from [13] and [11] that given two K-algebras A; and Ay (with an underlying K-space
K™) defined by the constant structure matrices p; and pg, respectively, u1 and pg are
viewed as elements of the algebraic variety «/lg(K™) of associative unitary K-algebra
structures on the vector space K™. The general linear group GI(K™) acts on /lg(K™)
by the transport of structures, see also [18, p.225]. An algebra A; is said to be a
deformation of the algebra Ay (or Ay is a degeneration of the algebra Ay), if ug lies in
the closure of the GI(K™)-orbit of 1 in &/lg(K™), see [11], [12] and [18]. We note that
the set ST,,(K) C M,,«,2(K) of minor constant structure matrices (2.2) of size n x n?
is an algebraic K-variety. Moreover, there is a variety embedding

ST, (K) C o/lg(K™) = o/lg(M,,(K)) (2.7)

defined by attaching to any minor constant structure matrix ¢ the matrix of constants of
the multiplication - : MI(K)® MI(K) — MJ(K) in the matrix unit basis, see (2.10)
below. It is clear that ST, (K) is a locally closed subset of Mlg(K”Q).

In this paper we study the basic K-algebras MJ(K) and their modules by means
of quivers with relations. We recall that, given a quiver @ = (Qo,Q1), by an oriented
paths in @ starting from the vertex i = iy and ending at the vertex j = i,, we mean a
formal composition

B . B Bm .
ﬁlﬁz"'ﬁmE(l()—1721—2>"'—>%m>

of arrows fB1,...,8n. We denote by KQ the path K-algebra, that is, the K-algebra
generated by all oriented paths in @, see [1, Chapter II], [2], [26, Chapter 14], and [30].

Now we illustrate the notion of a minor degeneration algebra by the following ex-
ample.

ExXAMPLE 2.8. Assume that n = 2 and R is a ring with identity. It follows from
Lemma 2.4(b) and the conditions (C1) and (C2) in Definition 2.1 that ¢ = [q(1)|q(2)] is a
structure matrix (2.2) in STy(R) if and only if ¢ has the form ¢(u) = [ |4 }], where

11
w = qéQ) = qgl) is a scalar in R. The matrix ¢ = ¢(0 [ | ] is a unique basic

structure matrix in STy(R).
Assume that K is a field, q(u) is the structure matrix presented above with p € K,
and let A(p) = Mg(“)(K). We claim that:

e The K-algebra A(y) is semisimple and A(p) = A(1) = My(K) if and only if p # 0.

e For each 1 € K, A(u) is a degeneration of the full matrix algebra A(1) = My (K).

e A(0) is a non-semisimple self-injective Nakayama K-algebra of finite representation
type.

e The algebra A(0) admits a Hopf algebra structure (by [28]). If char K # 2, then
the Hopf algebra A(0) is isomorphic to the Sweedler Hopf algebra, see [21, p. 8].
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The first statement and the second one are easily verified. To see the third one we
note that, by the multiplication rule (2.6), the Jacobson radical J(A) of the K-algebra
A = A(0) has the form J(A) = (IO( IO() = Keja ® Keay. Note also that J(A)? = 0 and
soc Ay = J(A). Hence we easily conclude that there is a K-algebra isomorphism

A= A0) = KQ/I,

where @ is the quiver

and I = (812021, 021512) is the two-sided ideal of the path K-algebra KQ of Q) generated
by two zero relations (12021 and (21512 (see [1], [26, Chapter 14]). The K-algebra
isomorphism A(0) & KQ@/I is given by the formulae e; — €1, ea — €9, €12 — [i12
and es; — 21, where €1 and €9 are the primitive idempotent of the path algebra K@
defined by the stationary paths at the vertices 1 and 2. Hence easily follows that A is a
non-semisimple self-injective Nakayama K-algebra of finite representation type.

We extend [7, 1.2(1)-1.3] as follows.

THEOREM 2.9.  Assume that K is a field, n > 2 is an integer, ¢ = [¢V]---|q™)]
is a minor constant structure matriz (2.2) in ST, (K), and let A, = MI(K).

(a) Aq is an associative K -algebra such that

(s)
q:.’ €, fors=t,
eis qe; =14 0 " 4 (2.10)
0, for s #t,
and e; -q €;; = e = €5 -q €5, for all i,7,s,t € {1,...,n}, where e;; is the (3, j)-

matriz unit.

(b) The standard matriz idempotents e; = eiy1,...,en = enn of the algebra M, (K)
are patrwise orthogonal primitive idempotents of the algebra A,;. Moreover, there
is a right ideal decomposition Ay, = e1Aq @ -+ B e, Aq, there are K-algebra iso-
morphisms Endy, (e;Aq) = e;Age; = K, for i = 1,...,n, and an isomorphism
Homa, (ejAq, eiAy) = e;Aqe; = Keyj of K-vector spaces, for i # j. Moreover,
there is an isomorphism e; Ay = e; Ay of right ideals if and only if qj(»? = qg) #0.

(c) The algebra Aq is basic if and only if the matriz q is basic.

(d) If A, is basic then

(i) Aq is connected, the ideal J of A, consisting of all matrices A = [\;;] with
M1 == Apy = 0 is the Jacobson radical J(A,) of Aq, and J(A,)" =0,

(ii) the group Gl(Aq) of units of Aq consists of all matrices X\ = [\;;] € M, (K)
with )\11')\22- )\nn 750,

(iii) every non-zero two-sided ideal of Aq is generated by a finite subset of the set
{eij;1,7 =1,...,n} of the matriz units e;; of Aq, and

(iv) the global dimension of the algebra A, is infinite.
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Proor.
The definition of the multiplication -, (2.6) in A, = MJ(K) yields the formula
(2.10). Hence, in view of (C1), we get the equalities e; -q e;; = €;; = €i; -¢ €;.
It follows that the matrix of structure constants of MJ(K) in the matrix units
basis {e;;}: ; is obtained from ¢ = [¢M)] - |¢(™] by completing it with zeros at the
remaining entries, see [23]. Moreover, the multiplication rule (2.6) yields

; ) (¢t
(€is g €87) "q €5t = 43 €3 g €50 = 433 a3 eie and

€is 'q (€55 "q €jt) = €is °q (qg)est) = qg:)qgi)eib

Hence we easily conclude that the multiplication -, in A, = MJ(K) defined by
(2.6) is associative if and only if the condition (C2) is satisfied, see [23, Section
1.5]. It follows that A, = M2(K) is an associative K-algebra, the identity matrix
E = diag(1,...,1) of M, (K) is the identity of A, and the equalities (2.10) hold.
Given a matrix A = [);;] € A, = MJ(K) and p < n, we have A = >_, ; Aije;;

and, according to (2.10), we get e, ¢ A g €y = ey g (32, ANijeij) g €p =
)\,,pqz(f;)qé’;) €p = App€p, because ql(,];) = 1. It follows that the map e, g A g ep = App

defines a K-algebra isomorphism e,Aqze, = K. The K-algebra isomorphism
Endy, (epAq) = epAqep is given by f — f(e,). The vector space isomorphisms
Homy, (ejAq, eiAy) = ejAge; = Ke;j; follow in a similar way.

To prove the remaining part of (b), assume that q%) # 0, where i # j.
By Lemma 2.4(a), qﬁ? = qz(f ) # 0. Consider the Ajz-module homomorphisms

€ji

ey (e:> ejA, defined as the left hand side multiplication by ej; and by
ij"

eij, respectively. Since ej;-g€;j-q€; = equ) and e;j-g€ji-qg€; = eiq%) then the right

ideals e; A, and ejA, of A, are isomorphic. Conversely, assume that there exists

an isomorphism h : e;A; — e;A,, and let h(e;) = e; -4 a, where a = ZS,T Asr€sr

and A\g- € K. Then

07 hleij) = h(ei g eij) = h(ei) g i = € 4 @ q €35 = Njiji -q €35 = 5 Njidl)

In view of Lemma 2.4(a), this yields q](-z-) = qg) #0.
Assume that A, is basic and suppose, to the contrary, that ¢ is not basic, that is,
q§§) # 0, for some r and j # r. Then n > 2 and by Lemma 2.4(b), q%) = qi(g) #0.
It follows from (b) that the right ideals e;A, and e;A; of A, are isomorphic;
contrary to the assumption that A, is basic.

Conversely, assume that ¢ is basic. By (b), there is a right ideal decomposition
Ay =e1Ay®---®e,Ag and the vector space Homy, (ej Ay, e;A44) is non-zero, for all
i,j € {1,...,n}. It follows that A, is connected. Moreover, a simple calculation
shows that J is a two-sided ideal of A, such that J* =0and 4,/J = K x---x K.
Hence we conclude that J = J(A,) and the algebra A, is basic.
Assume that ¢ is basic. The statement (i) is proved above. To prove (ii), assume
that A = [\;;] € MI(K). First we show that
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A is invertible in A, if and only if A - Agg - -+ - App # 0.
To prove the sufficiency, assume that Aj; - Aog - <++ - Ay # 0 and con-
sider the diagonal matrix d) := diag(A1,Aa2,..., Apn) € MI(K) with the
coefficients A11, A22,..., A\pn, on the main diagonal. Now we view the matrix

dyt oA = diag(A1, Asg s - - s Apt) g\ in the form dy 'y A = E—), where A € J(4,),

Y nn

see (i). Tt follows that A = 0 and therefore
AN g (E+ A+ N+ 4 A ) = (E=X) g (E+A+ X+ + A" 1) =E.
This shows that A is invertible in A, and the matrix

A l=dy (B+A+ X+ 43"

is the inverse of A in A,. Conversely, assume that A is invertible in A, and assume,
to the contrary, that A1 - Aga - <+« - App = 0; say A1; = 0. It follows from (i) that
X has the form A = Agges + -+ + A\pnen + A, where A € J(A,) and N =0. If pis
an inverse of A in A, then

E:)"QM:()\22€2+"'+)\nnen+5‘) q M

:)\2262'q,ui+"'+Annen'q/—ll+5"q/1'2022€2+"'+0nn€n+A/a

where cog,...,chn € K and X € J(A,). It follows that the coeflicient at the (1,1)
entry of the matrix coges + - -+ + cpnen + N is zero, and we get a contradiction.
This finishes the proof of (ii).

(iii) Assume that 2 is a non-zero two-sided ideal of A,. If A = [\;;] is a non-
zero matrix in A, with A;; € K, then A = Z” Aijeij. It follows that, given ¢ and j
such that A;; # 0, the element e; -4 A -5 e; = Ajje;; belongs to 2 and, consequently,
the matrix unit e;; belongs to 2, because \;; # 0. Hence (iii) follows.

(iv) Since, by (b), e;Aqe; = Keyj, for all 4,5 € {1,...,n}, then Cy4, has the
form

On the other hand, it is well-known that the determinant of the Cartan matrix of
any K-algebra R is 1 or —1, if R is basic of finite global dimension, see [1, Chapter
I]. Then (iv) follows and the proof of the theorem is complete. O

COROLLARY 2.11. If K is a field and q = [¢V|---|¢"™)] € ST,.(K) is a structure

matriz. There is a K-algebra isomorphism MI(K) = M, (K) if and only if qéé) #0,
@ £ 1) £
433 7é y oy Qnn 7é .
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PRoOF. Let A, = MJ(K). We recall from Lemma 2.4(b) that ¢\ = ¢4, for

all j,7 € {1,...,n}. Hence, in view of Theorem 2.9(b), there are isomorphisms e; 4, =
- = e, A, of right ideals of A, if and only if qé? # 0, CI:%) #0,.. .,qﬁ},? # 0. Since
End e; A, = K, the corollary follows. O

DEFINITION 2.12.
(a) Given a matrix A = [A,,] € M, (R) and a permutation o € S,, of the set {1,...,n},
we denote by o * A = [\7 ]| the matrix in M, (R) with A7, = A;—1() o-1(r)-
(b) Given a structure matrix ¢ = [¢™|---|¢™] € ST}, (K) and o € S,,, we set

. .
We also define the transpose of ¢ to be the n-block matrix ¢/ = § = [gV)|-- - [g(™],
where g) = [¢U)]*" is the transpose of ¢U), for j =1,...,n.

It is clear that the map (o, q) — o * ¢ defines an action
x: 5, Xx ST, (K) — ST, (K) (2.13)

of the symmetric group S, on the K-variety ST, (K) of all minor constant structure

2

matrices ¢ (2.2) of size n x n®. The subsets consisting of all basic matrices and of all

basic (0, 1)-matrices are S,-invariant.

ExXAMPLE 2.14. A simple calculation shows that, in case n = 3, every matrix
q=[¢M|¢P|¢®] in ST3(K) has one of the following four forms, up to the Ss-action,

r A £ -

111 A1 5 €31 111 A14 001
=1 p 111 %:—51 . = |1Ap 111 001],

lve 2125 111 1v0 210 111

L v g L

[111 010 001 [111 01X 001
3= |10p 111 001/, ga= 100 111 701/,

120 010 111 (120 010 111

where A\, p, v, €, 7 € K; and we assume that ur # 0 in the matrices ¢; and ¢. Note
that ¢o = qile=0 and ¢3 = ¢2|r=¢. It follows from Corollary 2.11 that, if A # 0,

then the algebra A; = M{'(K) is isomorphic to M,,(K), because (ql)%) =\ # 0 and
(ql)é? = ¢ # 0. Note also that the algebra As = MJZ?(K) is Morita equivalent to
the algebra A(0) = MQL](O)(K) of Example 2.8. Indeed, by Theorem 2.9(b), there is an
isomorphism ey Ay 2 ex As, because (qg)gzl) = (qg)é;) = X\ # 0. Moreover, the right ideals
e1As and ez A, are not isomorphic, because (qg)%) =0.

The following simple result is very useful.

LEMMA 2.15.  Let n > 2 and let ¢ = [¢V| - |¢™)] be a basic structure matriz (2.2)
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in ST, (K), with coefficients in K. Let MI(K) be the q-degeneration of M, (K).

(a) The transpose ¢ = q = [¢V]---|g™)] of q is a basic structure matriz in
ST, (K) and the K-linear map MI(R) — M2 (K), defined by A\ — AT,
is a K-algebra anti-isomorphism, that is, it defines a K-algebra isomorphism
(M2(K))™ = M (K).

(b) Ifo €S, is a permutation of the set {1,...,n} then oxq is a basic structure matriz
in ST, (K) and the map A — o % X defines an isomorphism M2(R) =2 MZ*1(R)
of R-algebras such that e;; — e,-1(;)o-1(j), for all i and j.

PrOOF. The proof is straightforward, and is left to the reader. O

Now we extend the action x : S, x ST,,(K) — ST,,(K) of the symmetric group S,
to an action of the following semidirect product algebraic group

Gn(K) = T, % Sy (2.16)
containing S,,, where .7, x S,, = .7, x S, is the Cartesian product,
% = {T = [tij] S Mn(K);tll =.--=ty,, =1 and tij 7é 0, for all Z,]}

is viewed as a group with the coordinate-wise multiplication [t;;] - [t;;] = [ti;t;;] and the
multiplication in G, (K) is defined by the formula (T,0) - (T",0’) = (T - (6 xT"), o0’),
for T,7' € 7, and 0,0’ € S,,.

It is clear that the group Z, is isomorphic to the (n® — n)-dimensional K-torus
Th2on(K) = K* x K* x --- x K* (the product of n? — n copies of the multiplicative
group K* = K \ {0} of K).

We define the algebraic group action

2

%1 Gn(K) x ST, (K) — ST, (K) (2.17)

by the formula (T,0) * ¢ = [gV|---|g™)], where T' = [t;;] € F,, 0 € Sy, and ") =
4] € M, (K) is defined by the formula

) _ (7)) —1, -1
Q" = g-1(i)o-1(j) " tir tistej

fori,j,r € {1,...,n}.

The following result shows that the G,, (K )-orbits of ST,,(K) classify the isomorhism
classes of the basic algebras MJ(K) of dimension n?.

THEOREM 2.18.  Assume that K is a field and that n > 2 is an integer.

(a) The map (2.17) is an action of the algebraic group G, (K) (2.16) on the algebraic
K -variety ST, (K) of structure matrices q¢ = [q/V)|---|q¢™] (2.2). The subvariety
of ST, (K) consisting of the basic structure matrices is G, (K)-invariant.

(b) Given two basic structure matrices ¢ = [¢V]---|¢™] and ¢’ = [¢’D|---|¢'™] in
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ST, (K), the following statements are equivalent.

(b1) The K-algebras MY(K) and MY (K) are isomorphic.

(b2) The matrices q and q' belong to the same Gy, (K)-orbit.

(b3) There exist a permutation o : {1,...,n} — {1,...,n} and a square matriz
T = [t;;] € M,,(K) such that

ety =--=th, =1,
o ti; #0, foralli,je{l,...,n}, and
o tip gy try = q((;zg?(j) “tij, for alli,r,j € {1,...,n}.
Proor.

(a) The proof is straightforward and we leave it to the reader.

(b) A simple calculation shows that ¢’ belongs to the G,,(K)-orbit of ¢ if and only if
there exist a permutation o € S,, and a matrix 7' = [t;;] € M, (K) such that the
conditions stated in (b3) are satisfied. Consequently, the statements (b2) and (b3)
are equivalent.

(b3)=-(bl) Suppose that T' = [t;;] € M,(K) and o € S, are such that the
conditions stated in (b3) are satisfied. Then the map e,(;) o(;) = tijei; defines a
K-algebra isomorphism MY(K) =~ MY (K).

(b1)=(b3) Assume that there is an K-algebra isomorphism h : M2(K) —
MY (K). The elements h(e1),...,h(e,) are primitive orthogonal idempotents of
MY (R) such that 1 = h(ey) + --- + h(e,). By [5, Theorem 3.4.1], there exist a
permutation o : {1,...,n} — {1,...,n} and an invertible element B € MY (K)
such that e; = B - h(ey;)) - B~', for j = 1,...,n. Hence we conclude that
there exists a K-algebra isomorphism h' : M4(K) — MY (K) such that e; =
hl(eg(l)),...,en = h’(eg(n)). Since h/(eg(i)g(j)) = h/(eg(i) . eg(i)g(j) . eg(j)) =
e; h'(ea(i)g(j)) - ej, then there exists a non-zero element t;; € K™ such that
b (esi)o(s)) = tijeij, for i,j € {1,...,n}. It is clear that t;; = --- = t,, = L.
Moreover, the equality h'(€s(i)o(r) * €o(r)o(j)) = M (€o@i)or)) - M (€a(r) o()) Yields
q((;zi()r?(j)tij = tirq/E;)trj, for all i,r,j € {1,...,n}. Consequently, the matrix T =
[ti;] € M, (K) satisfies the conditions stated in (b3) and (T, 0) is an element of
the group G,,(K). This completes the proof. O

As a consequence of Theorem 2.18 we get the following isomorphism criterion.

COROLLARY 2.19. Let K be a field, n > 2, and let ¢ = [¢V]---|¢™)], ¢ =
(D] |¢’™] be basic structure (0,1)-matrices (2.2) in ST, (K). The K-algebras
MI(K) and M,‘{/(K) are isomorphic if and only if ¢ and ¢’ are in the same S, -orbit,
that is, there exists a permutation o : {1,...,n} — {1,...,n} such that qg;)r?(j) =

(r) . .
q'ij , foralli,r,j € {1,...,n}.

PRrROOF. In this case the matrix T' = [t;;] € 7, (K) required in Theorem 2.18(b)
has ¢;; = 1, for all ¢ and j. O

Following P. Gabriel [10], we associate to any basic and connected finite dimensional
K-algebra A, with a complete set of primitive orthogonal idempotents {e1,ea,...,e,},
the Gabriel quiver 2(A) = (2(A)o, 2(A)1) as follows. The set 2(A)y = {1,2,...,n}
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is the set of points of 2(A), its elements are in bijective correspondence with the
idempotents eq,es,...,e,. Given two points i,j € 2(A)y, the arrows § : i — j in
Q(A); are in bijective correspondence with the vectors in a basis of the K-vector space
ei[J(A)/J(A)?]e;, see [1, Chapter II]. For a completeness of the presentation we include
here a proof of the following result presented in [7, 1.2(2)—(3)].

COROLLARY 2.20. Letn > 2 and let ¢ = [¢WV|-- - |¢™)] € ST,,(K) be a basic minor
constant structure matriz (2.2). Let A, = MJI(K) be the g-degeneration K-algebra of
M, (K) and let 2(A,) = (2(Ay)o, 2(Ay)1) be the Gabriel quiver of A.

(a) 2(A9)o0={1,...,n}
(b) Given i,j € 2(Ay)o, there exists an arrow i — j in 2(Ay)1 if and only if i # j

and qg) =0, for all v & {i,j}. In this case, there is a unique arrow B;; 11 — j
that corresponds to the coset €;; € e;[J(Ay)/J(Aq)%)e; of the matriz unit e;;.

(c) The quiver 2(Ay) is connected and has no loops.

PROOF.

(a) It follows from Theorem 2.9 that the algebra A, =
Ay/J(Ay) = Ke, & --- & Ke,. The points of the quiver
the primitive idempotents ey, ..., e, of A, and (a) follows.

(b) It follows from Theorem 2.9 that, given two primitive idempotents e; and e;, we
have Homa, (e;A4,e;44) = K, if i = j, and Homy, (ejAq, e;4,) = e;Agej = e K,
if ¢ # j. Hence we get e;J(Ay)e; = 0, that is, the quiver 2(4,) has no loops. If
i # j, we get e;J(A,)e; = e;; K and therefore e;.J(Ag)%e; = e;J(A)e; if and only if
there is an s € {1,...,n}\ {7, j} such that e;; = pe;sesj, for some non-zero p € K.
Since e;se5; = qgj)eij, then 0 # €;; € e;[J(A,)/J(A4)?]e; if and only if qgj) =0,
for all s ¢ {4, j}. Hence (b) follows.

(c) By Theorem 2.9(¢), the algebra A, is connected. Hence we conclude that the
quiver Q(Ag) is connected (see [1, Corollary II.3.4]). Since, by (C3), qj(»;) =0, for
r=1,...,nand all j € {1,...,n} such that j # r then, according to (b), the
quiver Q(Aq) has no loops. This finishes the proof. O

(K) is basic and

M
2(A,) correspond to

Now assume that A = M2(K) is a minor degeneration of the algebra M, (K), where
q = [¢gM]---]¢"™)]. Let I be a non-empty subset of {1,...,n}. Assume that s = |I| is
the cardinality of I and I = {41,...,4s}. Define ¢; to be the s-block matrix

ar = [¢"]- - 1¢1"] (2.21)

obtained from ¢ by the restriction to I, that is, each matrix qgis) € M,(K) is obtained
from ¢() € M, (K) by deleting the j-th row and the j-th column, for all j ¢ I. Tt is
clear that ¢; is a structure matrix of size s x s2. We set

Ay = M (K).

Let e = Zjel ej = e, + -+ ¢;,, where are the standard primitive idempotents of A.
Then e is an idempotent of A = M?(K) and there is a K-algebra isomorphism
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€IA€]ZEIME(K)e]gMgI(K):AI (222)

given by associating to any matrix e;Ae; € efMZ(K)er the restriction of A = [\;;] €
MI(K) to I ={i1,...,is}.
Now we define three additive K-linear covariant functors

mod M (K) ————— mod M!(K) (2.23)

by the formulae res;(—) = (—)es, Tr(—=) = — Qe ae; €14, Li(—) = Home, g, (Aer, —),
where A = MI(K). If f : X — X’ is a homomorphism of A-modules, we define a
homomorphism of M% (K )-modules resy(f) : res;(X) —— res;(X’) by the formula
xer — f(x)ey, that is, resy(f) is the restriction of f to the subspace Xey of X, see [1,
Section 1.6] and [26, Section 17.5].

The following result is very useful in applications.

THEOREM 2.24.  Suppose that A = MJ(K) and A; = M} (K) are as above. Then
there is a K-algebra isomorphism A; = eyAey described above and the functors Ty, Ly
(2.23) associated to I satisfy the following conditions.

(a) Tr and Ly are full and faithful K -linear functors such that resyoTy = id = resjoLy,
the functor Ly is right adjoint to resy and Ty is left adjoint to resy.

(b) The restriction functor resy is exact, Ty is right exact and Ly is left exact.

(¢) The functors Tr and Ly preserve indecomposability, Tt carries projectives to pro-
jectives and Ly carries injectives to injectives.

(d) An A-module X is in the category Im Ty if and only if there is an exact sequence
P A+, Py — X — 0, where Py and Py are direct sums of summands of the
A-module efA =€, A® - Be; A

PROOF. Apply [1, Theorem 1.6.8] and [26, Section 17.5], and the arguments used
there. The details are left to the reader. O

COROLLARY 2.25.  Suppose that A = MJ(K) and A = M} (K) are as above.

(a) If A is representation-finite, then Ay is also representation-finite.

(b) If K = K and A is representation-tame, then Aj is also representation-tame [26,
Section 14.4], [31, Chapter XIX].

(c) If K = K and Ay is representation-wild, then A is representation-wild [26, Section
14.2], [31, Chapter XIX].

Proor.

(a) Assume that A is representation-finite and consider the fully faithful functor 77 :
mod A; — mod A, see (2.23) and Theorem 2.24. Since T carries indecomposable
Ar-modules to indecomposable A-modules, and nonisomorphic A;-modules to non-
isomorphic Aj-modules, then (a) follows.

(b) Assume that the field K is algebraically closed and A is representation-tame. Fix
a dimension d € N and consider the functors 77 and resy presented in (2.23).
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First we show that, given a module X in mod A; with dimg X = d, the
K-dimension of the A-module T7(X) is not greater than d = d - p;, where
pr = max{dimg e;A;i € I}. To see this we note that the Aj;-projective cover
of X has the form @, ;(e;Ar)% — X — 0, where d; = dimg (top X)e; < d.
By Theorem 2.24, the functor 77 is right exact and there is an A-module isomor-
phism Ty(e;Ar) =2 e; A, for all i € I. Tt follows that 77 induces an epimorphism
@D, c;(eiAd)% — T1(X) — 0 of right A-modules. Hence we get the inequalies

dimK T](X) < dlmK @(eiA)dl < Z(dz . dil’IlK 6114) < <Z dz> *PrI < d~p1 = E,
il iel iel
and our claim follows.

Since the algebra A is representation-tame then, given the K-dimension d =
d-py, there exist a non-zero polynomial h € K|[t] and a family of K-linear functors

mod A

(-)®s NV, ... (=) ®s N :ind(mod S)

where S = K[t,h~and NV, ... N() are S- A-bimodules satisfying the following
two conditions:

(T0) The left S-modules sN™), ..., §N) are finitely generated and free.

(T1) All but finitely many indecomposable modules in mod A of K-dimension < d
are isomorphic to modules in Im(—) ®s NV U --- UTIm(—) ®5 N see [26,
Section 14.4] and [31, Chapter XIX].

Here ind(mod S) is the category of indecomposable S-modules of finite dimen-
sion. Consider the restricted S-A;-bimodules res; NV = NWe; . res; N =
N®e;. Tt is clear that the S-module res; NU) is finitely generated and free, for
each j, because the functor res; is exact. Now, if X is an indecomposable module
in mod A; with dimg X = d then, according to Theorem 2.24 and our claim above,
the A-module T7(X) is indecomposable and dimg T7(X) < d. It follows that there
exists an S-module N in ind(mod S) such that T;(X) 2 NogNW) = NogNWe;,
for some j < r. In view of Theorem 2.24(a), we get Ar-module isomorphisms

X > res;(Tr(X)) X resy (N ®s N(j))

= (N®sNW)e; 2 N®g (NW)e; 2 N ®@gres; N,

This shows that the algebra A is representation-tame.

Assume that the field K is algebraically closed and that the algebra Aj is
representation-wild. By the tame-wild dichotomy [4], [26, Theorem 14.14], [31,
Chapter XIX], the algebra A is not representation-tame. It follows from (b), that
the algebra A is not representation-tame. Hence, A is representation-wild, by the
tame-wild dichotomy. O

COROLLARY 2.26.  Assume that K is a field, ¢ = [¢(|---|¢"™)] is a minor constant

structure matriz in ST, (K) and let T = {i1,...,is} be a mazimal subset of {1,...,n}
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such that qj; = 0, whenever j,r € I and j # r. Then the minor constant matrix qr in
ST, (K) is basic, the K-algebra M3 (K) is basic and is Morita equivalent to the algebra

Proor. Let A= MJ(K) and suppose that I = {iy,...,is} satisfies the maximal-
ity conditions. It follows that the constant matrix gy is basic and, in view of Theorem 2.9,
the K-algebra A is basic and e; A % e, A, for all j,r € I such that j # r. By the maximal-
ity of I, given r & I there exists j € I such that qj(-;) = 0. Since q](-;) = q,(n]}), by Lemma 2.4,
then e, A = ¢; A, see Theorem 2.9. Consequently, for each r € {1,...,n} there is i, € T
such that e, A = e; A and the modules e;, A, ..., e; A are pairwise non-isomorphic. In
view of Theorem 2.24(d), it follows that the functor 77 : Mod M (K) — Mod M1(K)
is dense. Since, according to Theorem 2.24(a), the functor T; is fully faithful then it is
an equivalence of categories. This shows that the K-algebras M% (K) and MJ(K) are
Morita equivalent. O

3. (0,1)-limits and Nakayama algebras.
Throughout this paper the following definition is of importance.

DEFINITION 3.1. Let A, = M2(K) be a minor degeneration algebra of M, (K)
with a structure matrix ¢ = [¢(V]-- - [¢™)], where ¢(*) = [ql(]s)]

(a) We define a (0,1)-limit of ¢ to be the structure (0,1)-matrix g = [g"]-- - [g™)],
where the matrix g(®) = [qu)] is defined by the formulae

_(s) 1, if ql(;) #0,
Gij” = e (s) _
0, ifg; =0.

(b) The algebra A, = Az = MI(K) is called the (0,1)-limit of A, = MI(K).

We recall that a finite dimensional K-algebra A is a Frobenius algebra if there exists
a K-linear map 1 : A — K such that Ker does not contain non-zero right (or left)
ideals of A, see [35]. It is clear that a basic K-algebra A is Frobenius if and only if A is
self-injective, see [33].

PROPOSITION 3.2.  Assume that K is a field, Ay, = M2(K) is a basic minor de-

generation of M, (K) and A, = MI(K) is the (0,1)-limit of A,.

(a) A wvector K-subspace A of M, (K) is a two-sided ideal of A, if and only if A is a
two-sided ideal of Aq. In particular, J(Ay)® = J(Aq)®, for each s > 1.

(b) The Gabriel quivers of A, and A, coincide.

(c) Assume that the field K is algebraically closed and {Ag, }.cx is a 1-parameter
algebraic family [18] of minor degenerations A, = My"(K) of My,(K) such
that Aqy = Ay and almost all algebras A,, are isomorphic. If the algebra Ay is
representation-finite (resp. representation-tame) then Ag, is representation-finite
(resp. representation-tame), for almost all structure matrices Q-
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PROOF.
Let 2 be a non-zero vector K-subspace of M, (K). Suppose that 2 is a two-sided
ideal of A,. It follows from Theorem 2.9(e) that 2 is generated by a finite set of
the matrix units e;; of A;. We show that 2 is a two-sided ideal of Zlq. Denote by
/and " the multiplication in A, and in A, respectively.

Since the matrix units form a K-basis of A, it is sufficient to show that
est - e;; € A and e;; " e, € A, for any e;; € A and any ey, €, € Eq. Recall that
est ' ei; =0, for t # 4, and e;; " e,, = 0, for j # r. Therefore, we can assume that
t =1 and j = r. In this case, we get

v e if 7 #0,
€si* €45 = qu €sj = (@)
0; if g,; =0.

Assume that q 7é 0, that is, qi) 1. Then q 7é 0 and the element eg; -/

€ij = qgj)esj belongs to 2, because 2 is a tW0—81ded ideal of A,4. It follows that

esj = e " e;; € A. Similarly, we show that e;; - e;, € A. Consequently, 2 is a
two-sided ideal of Eq. The same type of arguments shows that 2 is a two-sided
ideal of A,, if A is a two-sided ideal of Zq. This finishes the proof of the first
statement in (a). The second one follows from the first one by applying it to
A= J(A,)".

Since J(A,) = J(A,) and J(4,)? = J(A,)?, then

€ [J(Aq)/J(Aq)z} €j =6 [J(Aq)/J(Zq)Q]ejv

for all 4, j, and hence 2(A,) = 2(4,).

Since, according to [11], the algebras of finite representation type define an open
subset in o7 lg(K ”2), then almost all algebras A,, are of finite representation type
if so is A, = A,,, see also [18, Chapter III]. Further, according to Geiss [12],
the tameness of A, = A, implies the tameness of A,,, for almost all structure
matrices g,. Hence (c) follows and the proof is complete. O

We recall that a finite dimensional K-algebra A is said to be a Nakayama algebra,

if for every primitive idempotent e € A, the left ideal Ae has a unique composition series
and the right ideal eA has a unique composition series.

Now we describe the minor degenerations of M, (K) that are Nakayama algebras.

THEOREM 3.3.  Assume that n > 2 and q¢ = [¢(V]---|¢"™)] is a basic structure

matriz (2.2) of sizenxn?. Let g = [qV)]---|q™)] be the (0, 1)-limit of q, let A, = M4(K)
and A, = MI(K). The following four conditions are equivalent.

()
(b)
(c)

Aq 1s a self-injective Nakayama K-algebra.
Aq is a Nakayama K -algebra.

There exist a K-algebra isomorphism A, = /Tq and a permutation o

1
{1,...,n} — {1,...,n} such that the matriz c xq = [q 7 )| |q ] has the form
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(111 --- 111 000 ---00 1]
100 ---000 100 ---001
110 ---000 110 001
oxg=|i it % o
111 000 111 001
111 100 111 101
111 110 111 11 1]
~(r) . .
and, for each r € {1,...,n}, ¢ ~ is the matriz
r
!

[0 0 0011 11 1]

10 0011 111

11 0011 - 111

~(r) 11 -+ 1011 - 111

7 =[11- 1111+ 111|cp

10 - 000

O 11 000

11 1 0

I 11 110

IR

(d) There exist K-algebra isomorphisms A, = A,
K-algebra of the quiver

KQ/I, where KQ is the path

Br—
1 B1 9 B2 o 4 n—3
Q ﬁn T lﬁni“)
n anl 7 — 1 anz 7 — 2
and I = (w1,...,wy) is the two-sided ideal of KQ generated by n zero relations

Wi,...,wWn, where w; = BiBj41...0u01...05-1, for j = 1,...,n (see [1], [26,
Chapter 14]).

If any of the conditions (a)—(d) holds then soc(Ay) = J(A,)" ' and A, = M2(K)
is of finite representation type.

PROOF. The implication (a)=-(b) is obvious.
(b)=-(c) Assume that A, = M?(K) is a Nakayama algebra. Since A, is connected,
then the Gabriel quiver Q(A,) of A, is either an oriented cycle or Q(A,) is of the form

J1—J2 — " — Jn,

and has no oriented cycle, see [2] and [1, Chapter 5]. Since, according to Theorem 2.9(b),
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there is a non-zero A;-module homomorphism e; A, — e;4,, for all 7,5 € {1,...,n},
then the second form (*) of Q(A,) is excluded. Consequently, there is a permutation o
of the set {1,...,n} such that the Gabriel quiver of the algebra M7*?(K) is the cycle
Q presented in (d). By Corollary 2.20, this implies that (o * q(‘fl(r)))jjﬂ = 0, for all
r=1,...,nand j #r.

It follows from [1, Proposition IV.3.8] that A, = MJ*(K) = KQ/R},, for some
s > 2, where Rg = (f1,...,0n) is the two-sided ideal of the path K-algebra K@ of @
generated by the arrows 01, ..., 3,. Since dimg A, = n?, it follows that s = n. Similarly,
there is a K-algebra isomorphism A, = MJ*(K) = KQ/ Rp. Hence we easily conclude
that the matrix o * g has the form required in (c).

(c)=>(d) Assume that A, = A, and o is a permutation of the set {1,...,n} such
~(1)

that the matrix cxg=1[q |--- |/1j\(n)] has the form shown in (c).

By Lemma 2.16, there is a K-algebra isomorphism MJ(K) = MZ*I(K). On the
other hand, by Corollary 2.20, the Gabriel quiver of the algebra M2*%(K) is the quiver
Q shown in (c¢). Now we define a K-linear map

p: M7I(K) — KQ/I

as follows. First we note that, by the form of o * g, each matrix units e;; of MZ*7(K)
is the composition of some of the matrix units ejo,...,€,_1n,€n1. Consider the corre-
spondences e; — 7, en1 — Bn and €41 — F;, for j = 1,...,n — 1, where 7); is the
stationary path at j. It is easy to see that the correspondences extend to the K-algebra
homomorphism ¢ : MZ*4(K) — KQ/I. Since I = (wy,...,w,), then ¢ is surjective
and dimyx KQ/I = dimgx MZ*9(K) = n?. It then follows that ¢ is bijective.

The implication (d)=-(a) and the final statement of the corollary are well-known
facts and can be found in [1, Chapter 5]. This finishes the proof. 0

4. Basic minor degenerations of small dimensions.

In this section we study in details basic minor degenerations A, = MZ(K) of M,,(K)
for n = 3, and some examples of such algebras for n = 4, and n = 6, by means of their
bound quiver presentations of the form A, = KQ/?, where ) is the Gabriel quiver of
A,y and Q is an admissible ideal of the path K-algebra K@ of ). We recall that, up to
Ss-action, the constant structure matrices ¢ = [¢™"]|¢|¢(®] in ST3(K) are described in
Example 2.14.

THEOREM 4.1.  Assume that n = 3 and let Ay = MJ(K) be a basic minor degen-
eration of M3(K).

(a) The K-algebra A, = MI(K) is isomorphic to its (0,1)-limit A, = MI(K).
(b) Any basic minor degeneration A, = M3(K) of M3(K) is isomorphic to one of
the five basic minor degeneration K -algebras
Aq = M:;h(K)v Ag, = Mgz(K), Ags = M:;IS(K)v
Ag, = M (K), Ag = M5°(K)
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defined by the following structure (0,1)-matrices in ST3(K)

[111 010 001] [111 010 001] 111 011 001
g1 = |100 111 001|, g¢o = |101 111 001|, g3= [100 111 001],
100 010 111 100 010 111 110 010 111
[111 010 001] [111 010 011]
gs= 101 111 001|, g¢5= |101 111 001/ .
110 010 111 100 110 111

(c) The algebras Ag,, Aq,, Aqy, Aq, and Ay, are pairwise non-isomorphic, self-dual,
and special biserial. The algebra Ag, is self-injective, but the algebras Aq,, Aqg,,
Agy, Aq, are not. The algebra Ag, is tame of infinite representation type, and the
algebras Ag,, Aq,, Aq,, Ags are of finite representation type, see [32], compare
with [27]. There exist K -algebra isomorphisms

ﬂlB
B I&;
(c1) Ay, = KQW /QW  where Q' : 1 = 2 = 3
B21 Ba2
Ba1

and the ideal Q) of the path algebra KQW is generated by all zero relations 3y,
: (1)
with 8,7 € Q;".

Bs2

B B
(c2) Ay = KQ@ /Q®) | where Q : 3 = 1 = 2
B3 Ba1

and the ideal Q2 is generated by the zero relations Pa1 12, Br2321, Bi3fs1, 31013,
B31512, B32021, Pi3Ps2.

(c3) Ay, = KQ® /QB) | where Q) : 3

B31 12

and the ideal Q) is generated by the zero relations a1 12, Br2321, B23f31, P31012-

B B
(c4) Ag, 2 KQW/QW, where QW : 3 ;1 1 512 9 and the
13 21

ideal

QW s generated by the zero relations Ba1 512, fr2021, B13Bs1, Bs1513.

632

(c5) Ay, = KQO /QO) | where Q)+ 3 Pis 1 el 2

and the ideal Q®) is generated by the zero relations [a1013332, Bi3032021,
B32821513-

PROOF.
(a) Let A, be the (0,1)-limit of A,. We define a K-linear map ¢ : A, — A, by
setting
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qi(j’?)eij, 1fq #£0, for k #£1,7,
pleij) =

€ij, otherwise,

for distinct i, € {1,2,3}, and we set ¢(e;;) = e, for i = 1,2, 3. Denote by - and
/" the multiplication in A, and in A,, respectively.

To show that ¢ : A, — Aq is a K-algebra isomorphism, it is sufficient to
prove that ¢(e; " e,5) = ¢(eir) ' @(erj), for all ¢,7,j € {1,2,3}.

First, we consider the case when i,7,j € {1,2 3} are pairwise different and
qz(;) # 0. It follows from Lemma 2.4(c) that qfﬁ) = qm =0, so that p(e;r) = €
and ¢(er;) = e,;. Hence

/

<P(€ir 7 erj) = p(ey) = qg)ezj =eir - erj = pleir) -

plerj),
and we are done. The proof in remaining cases is analogous and it is left to the
reader.

(b) In view of (a), Theorem 2.18 and Corollary 2.19, it is sufficient to classify the Ss-
orbits of all basic structure (0, 1)-matrices in ST3(K) with respect to the action
of the symmetric group S3 defined in Definition 2.12.

Note that, by Lemma 2.4(c), the product of any successive pair of q% , qg),

qgl), q:(é), q{z), qgg), qég) is zero. Hence we conclude that there are precisely five
Ss-orbits of basic (0, 1)-matrices in ST5(K) and they are represented by the five
structure matrices q1, g2, g3, g4, g5 listed in (b). The remaining statement in (b)
easily follows from the quiver description of the algebras A, Aq,, Agy, Aq, and
Ay, given in (c). On the other hand, this also follows from Theorem 5.5 proved in
the next section.

(c) Since the constant matrices ¢1,q2,qs,q4,q5 belongs to different Ss-orbits then,
according to Corollary 2.19, the algebras Ay, , Ay,, Aqy, Ag, and A, are pairwise
non-isomorphic.

Note also that, in the notation of Definition 2.12, we have ¢i" = ¢, (2,3)*¢5" =
g2, (1,3) % ¢5 = g3, ¢ = q4 and (1,3)x¢}" = ¢5. It follows from Lemma 2.16(a) that
AP = A, for s = 1,...,5, that is, the algebras Ag,, Aq,, Agy, Aq, and A,y are
self-dual.

By Corollary 2.20, the Gabriel quivers of the algebras Ay, ..., A5 are just the quivers
listed in (c1)—(cb). It is easy to check that, for each s € {1,2,3,4,5}, the correspondences
g; + ej and B;; + e;; define a K-algebra surjection KQ®)/Q(*) A,., where ¢;
is the primitive idempotent of the path algebra KQ®) defined by the stationary path at
the vertex j, for every j € Q((]s). Since dimg KQ®) /Q() = dimy Aq, =9, the surjection
is an isomorphism of K-algebras.

It follows from the shape of Q) and Q(*) that KQ(*) /Q(*) = A, is a special biserial
algebra, that is,

(a) any vertex of Q(*) is a starting point of at most two arrows and is an end point of
at most two arrows.
(b) given an arrow (:i — j in Q) there is at most one arrow « : s — i and at most
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one arrow 7 : j — 7 in Q) such that a8 ¢ Q) and By ¢ Q) see [32].

We recall that any special biserial algebra is representation-tame, see [3, 5.2]. Note

thatforSZ1,thereisacyclicwalk1ﬁi>3&2&1&3&2&10fthe

quiver QM) and according to the finite representation type criterion in [32], the algebra
Ag, is of infinite representation type. Similarly, by looking at the walks of each of the
quivers Q®, Q®), Q®W, Q®): and by applying the finite representation type criterion
in [32], we conclude that the algebra A,, is representation-finite, for s = 2,3,4,5. This
finishes the proof. O

It follows from Theorem 4.1, that for n = 3, each basic minor degeneration A4, =
M (K) of M3(K) is special biserial and A, is isomorphic to its (0, 1)-limit algebra A.
We show below and in Section 5 that this facts do not hold, for each n > 4.

EXAMPLE 4.2.  Assume that n = 4 and A, = M} (K) is a basic minor degeneration
of M, (K) given by the following structure matrix

1111 0110 0010 0011
_ 11001 1111 0011 0001
9= 1000 1100 1111 1001
1100 0100 0110 1111

S ST4(K)

One can show that A, is isomorphic to the bound quiver K-algebra KQ/Q (see [1]),
where @ is the quiver

_— >
S

B1
1 2

g!

Q: B i’m 'yz”ﬁz
7

4 <—;> 3

Bs
and €2 is the two-sided ideal of the path K-algebra K@ of @ generated by the following
relations:

e (3;v; and v;3;, for j =1,2,3,4,

® (10203, if the arrows 1, d2, §3 form a path of length 3,
o (182 — a3, P23 — 1174,

® Y2y1 — B34, v37v2 — B

It follows that A, = KQ/Q is a special biserial algebra and hence it is representation-

tame, see [3, 5.2]. Note that there is a cyclic walk 1 G,y B3 29 P of the
quiver @ and, according to the finite representation type criterion in [32], the algebra
A, is of infinite representation type, see also [27, Proposition 3.7]. Since (2,3) * ¢ = ¢
then, by Lemma 2.16, A% = A,. Note also that J(A4)* = 0 and soc A, = J(A4,)* =
Kejs+ Kesg; + Keoy + Keyo.

EXAMPLE 4.3.  Assume that n = 4 and B, = M (K) is a basic minor degeneration
of My (K) given by the following structure matrix
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1111 0110 0010 0011
~ 1001 1111 1011 0001
9= 11101 0100 1111 0001

1100 0100 1110 1111

S ST4(K),

see [7, (2.4)]. One can show that By is isomorphic to the bound quiver K-algebra KQ/Q
[

(see [1]), where @ is the quiver
1 512 2
Q ﬂ14l an \Lﬁzs
4 543 3

and € is the two-sided ideal of the path K-algebra K(Q of Q generated by the following
relations:

o 312023 = B14fa3,
o 3120823031, B23B31012, B31P12023, Pasfs1P14, [14Pa3Ps1-

It follows that J(B,)* = 0 and J(B,)3 = Keay ® Keso = KB3051814 ® K B43051512-
Since 33,815 # 0 and (4,314 # 0, then the algebra B, is not special biserial. Note also
that (1,3) * ¢"" = ¢ and Lemma 2.15 yields BJP = B,.

The algebra B, is not self-injective and the injective dimension inj.dim B, of B,
equals one. Indeed, there are isomorphisms ey By & D(Byes), e2By = D(Byes), eaBy =
D(Byez) and that there is a non-split exact sequence 0 — e3B; — eaB,; ® 4By —
D(Bye1) — 0, where D(—) = Homg (—, K). Hence we get inj.dim B, = 1. Note also
that the algebra B, is isomorphic to the quotient algebra A/mA of the tiled R-order

RRRR
TRR®
Tm Rm

7T RR

where R = K][t]] is the power series K-algebra and m = ¢ - K[[t]]. We can easily compute
that gl.dim. A = 2. Hence we get inj.dim By = inj.dim A —1 = gl.dimA — 1 = 1, see [24,
Theorem 2.10]. Finally, we show that B, is representation-finite.

To prove it, we denote by R = KA the path algebra of the Dynkin subquiver

4

\ /
’b‘)
@
@
w
pat

of type D4 of Q. Denote by 0 : R — R the K-algebra automorphism of R given by
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the permutation o = (1%34) of the vertices of A. Let ,D(R)g be the vector space
D(R) = Homg (R, K) viewed as an R-R-bimodule, with the left R-module structure
induced by the automorphism o : R — R. It follows from [29, Corollary 4 and Remark
2] that the trivial extension C'= R X ,D(R) is a non-symmetric selfinjective K-algebra
of finite representation type. One can show that dimg C = 18 and, by applying [29,
Theorem 2 and Proposition 1], the number of pairwise non-isomorphic indecomposable
C-modules equals 24. The Gabriel quiver of C' coincides with the quiver @ of the algebra
B, of dimension 16 and there is a K-algebra sujection € : C' — By, with Kere = soc I(1)®
socI(3), where I(1) = D(Byeq) and I(3) = D(Byes) are the indecomposable injective
C-modules at the vertices 1 and 3 of Q. It follows that the algebra B, is representation-
finite. One can show, as in [29, Examples 2 and 3], that the Auslander-Reiten quiver
I'(mod By) of By has a shape of a Mobius band consisting of 22 indecomposable modules,
see also [29, Remark 2].

EXAMPLE 4.4. Assume that n = 6 and consider the one-parameter family of basic
minor degeneration K-algebras Ay, = M¢"(K), where y € K and

(111111 010000 011000 010100 011110 011101]
100000 111111 001000 000100 001110 001101
100111 010111 111111 000100 000110 000101
101011 011011 001000 111111 001010 001001
100000 010000 11000 110100 111111 000001
100010 010010 111010 110110 000010 111111]

du

Note that, if K is infinite, the family {A,},cx\{0,1} is infinite, because A, = A, if and
only u =, for p,v € K \ {0,1} (apply Theorem 2.18). One can show that each of the
algebras A,, is representation-wild and not self-injective (the right ideals ep A, and e5A,,
are not injective, by [7, Proposition 2.3] and [9, Lemma 2.3]).

We show in Section 5 that the set of the isomorphism classes of basic self-injective
algebras A, = MJ(K) is infinite, for each n > 4.

OPEN PROBLEM 4.5. Describe all the matrices ¢ € ST,,(K) such that the algebra
Ay = M{(K) has soc A, = J(A,)" 2 and J(4,)" "' =0.

5. Frobenius basic minor degenerations of M, (K).

In this section we study basic minor g-degenerations of M, (K) that are Frobenius
K-algebras, where K is a field. We start by a description of the socle soc A4 of such an
algebra A = M2(K). In particular we show that A = MZ(K) is a Frobenius K-algebra
if and only if its (0, 1)-limit algebra A = MJ(K) is a Frobenius K-algebra.

PROPOSITION 5.1.  Assume that n > 2, q is a basic structure matriz (2.2) in
ST, (K) and 7 is the (0,1)-limit of q. Let A = MJ(K) and A = MI(K) be the corre-
sponding basic minor degenerations of M, (K), and let e1,. .., e, be the standard primi-
tive matriz idempotents of A and A.
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Given j € {1,...,n}, a right ideal S C e;A of A is simple if and only if S has
the form S = e K = esAjesJ(A), where ejs is a matriz unit such that s # j and
q](»fn) =0, for all r # s.

Given j € {1,...,n}, soc(e;A) = Zser ejs I, where

Uj:{s; q§i) =0, for allr;«és}:{s; s#j and e;s - J(A)zO} c{1,...,n}.

If S and S’ are two different simple submodules of ejA, then S 2 5.
The socle soc(Aa) of the right A-module A is a two-sided ideal of A of the form

soc(Aa) ={z € J(A); z-q J(A) =0} = Z Z ejs K,

j=1s€U;

that is, the sum runs through all pairs (j,s) € {1,...,n} x U; such that j # s.

soc(A4) = soc(Ay)

and soc(e; A) = soc(e;A), for all j € {1,...,n}.

PROOF. Since ¢ is a basic matrix then, according to Theorem 2.9(d), the algebra
MJ(K) is basic and the projective right ideals e;4,...,e, A of A are pairwise

non-isomorphic.

(a)

(e)

Assume that S C e;A is a simple right ideal of A. Then S # 0 and S contains a
non-zero elelment a = e; 'qzz‘,r eirXir = > 1_1 €jrAjr, where \j,. € K and some A
is non-zero. It follows that a -4 e; = €5 belongs to S, and therefore S = e;,A.
The module S is simple if and only if S -4 J(A) = 0, or equivalently, if and only if
€jsqCsr = qﬁ)ejr =0, for all 7 # s, because J(A) =3, es K, by Theorem 2.9.
Hence, S = e, K = e;A/esJ(A) and (a) follows.

The statement (b) is a consequence of (a).

Assume that S = e, K and S’ = e,y K are two different simple submodules of e; A
and assume, to the contrary, that there is an R-module isomorphism ¢ : § — S’.
It follows that 0 # @(ejs) = @(ejs g €s) = @(ejs) ¢ €s = Aejs -q €5, for some
A € K\ {0}. Hence, in view of (2.10), we get s = s’ and S = §’, a contradiction.

Since soc(A4) = soc(e1 A) B - - -@soc(e, A) then (b) yields soc(A4) = Zser ejs K,
that is, soc(A4) is spanned by all matrix units e;s € J(A) such that j # s and
€js -q J(A) = 0. Hence (d) follows.

By Theorem 2.9, J(A) = J(A). Then (e) immediately follows from (b) and (d);
and the proof is complete. O

REMARK 5.2.  Assume that A = MJ(K) is basic. Let m > 1 be such that J(A)™ =

0 and J(A)™~1 #£ 0. It is clear that J(A)™ ! C soc(A,4), however the equality does not

hold

in general. For this consider the algebra A = A;, = MJ*(K) of Theorem 4.1(c4).

In this case m = 3, J(A)? = ez K + ea3 K, soc(Aa) = J(A)? + e13K + e1nK # J(A)2.
Note also that soc(4A) = J(A)? +e31K +e21 K # J(A)? and hence soc(4A) # soc(A,).

itive

We recall that a basic finite dimensional K-algebra A, with a complete set of prim-
orthogonal idempotents {e1, ez, ...,e,}, is a Frobenius algebra if and only if each
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projective module e;A has a simple socle and soc(e;A) % soc(ejA), for all ¢ # j. In
this case, there is a permutation o of the set {1,...,n}, called the Nakayama permu-
tation, such that soc(e;A) = top(eq(;)A), see [5]. If A is a Frobenius algebra then (see
[35, Theorem 2.4.3] and [33])

soc(aA) = soc(Ay) :=soc(A4).

Now, following Fujita [7, Lemma 4.2], we give neccessary and sufficient conditions
for a basic structure matrix ¢ in ST, (K) to be the K-algebra M2(K) Frobenius. In
particular, we remove the assumption on (0, 1)-matrices made in [7, Lemma 4.2].

THEOREM 5.3.  Assume that n > 2, q is a basic structure matriz (2.2) in ST, (K)
and @ is the (0,1)-limit of q. Let A = MJ(K) and A = MI(K) be the corresponding
basic minor degenerations of M, (K), and let ey, ..., e, be the standard primitive matriz
idempotents of A and A. The following seven conditions are equivalent.

(a) A is a Frobenius K-algebra.
(a’) A is a Frobenius K-algebra.
(b) For each j € {1,...,n}, dimgsoc(ejA) = 1, and the right simple ideals
soc(e1A),...,soc(e,A) of A are pairwise non-isomorphic.
(¢) dimg soc(Aa) = n, and the right ideals e1(soc Aa),...,en(soc Aa) of A are pair-
wise non-isomorphic.
(d) The block matriz g € ST, (K) satisfies the following two conditions:
(d1) For every j € {1,...,n} there exists a unique s # j such that q§i) =0, for all
r#s.
(d2) Given i,j,s € {1,...,n} such that i # j and s & {i,j}, there exists an r €
{1,...,n} such that r # s and qgf) #0 or qj(i) #0.
(e) There exists a permutation o of the set {1,...,n} such that o(j) # j, for all
j=1,...,n, and the block matriz ¢ € ST, (K) satisfies the following condition:

(el) Given s,j € {1,...,n}, the equality q](-f,) = 0 holds for all r # s if and only if
s = o(j).
(f) There exists a permutation o of the set {1,...,n} such that o(j) # j, for all
ji=1,...,n, and the matriz q satisfies the following condition:

(f1) q](‘:;)(j) #0, for any j,r € {1,...,n}.

In this case o is the Nakayama permutation of A and soc(ejA) = Kejq(jy.
If A is a Frobenius algebra and o : {1,...,n} — {1,...,n} is as in (f) then:

(i) the Frobenius structure of A = MJ(K) is given by the K-linear map ¢ : Ay — K
defined by the formula

L if s=0(j)
¥(ejs) = .
0; otherwise;

(if) any indecomposable module M in mod A is projective, or M -4soc(A) = 0, that is,
M is a module over the quotient algebra A/ soc(A).
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PROOF. Since ¢ is a basic matrix then the algebra A = MJ(K) is basic, by
Theorem 2.9(c). Hence, the projective right ideals e1 A, ..., e, A of A are pairwise non-
isomorphic.

It follows from [5] that A = MI(K) is a Frobenius algebra if and only if each
projective module e;A has a simple socle and soc(e;A) 2 soc(e;A), for ¢ # j. Since
simple A-modules are one-dimensional and e;(soc A) = soc(e;A), then the conditions
(a), (b) and (c) are equivalent.

Now we prove that the conditions (b) and (d) are equivalent. We recall from Proposi-
tion 5.1, that the module S; = soc(e;A) is simple if and only if there exists a unique s such
that s # j, S; = €K, €js-qJ(A) =0, and S; = e;A/esJ(A). Since J(A) = ZS# e K,
then the equality ejs -4 J(A) = 0 holds if and only if ¢'?) = 0, for all  # s, that is, if
(d1) holds.

Assume that (d1) holds and S; = e, K = e;A/esJ(A), S = e K = ey Afe,JJ(A)
are two simple right submodules of A, where s # j and u # 4. Then ej, -g € = 0 and
Ciu " qem/ =0, for all r # s and r’ # u, or equivalently, q]r =0and qj(;f,) =0, forallr #s
and 1’ # u. Hence, we easily conclude that the right simple ideals soc(e; A), . . ., soc(e,A)
of A are pairwise non-isomorphic if and only if the condition (d2) holds.

Since, obviously, the conditions (d) and (e) are equivalent then the conditions (a),
(b), (¢), (d), and (e) are equivalent. Note that o is the Nakayama permutation of A.

The conditions (a) and (a’) are equivalent, because (d) holds for ¢ if and only if (d)
holds for g.

Now we prove the implication (f)=-(e) by showing that the condition (f1) implies
(el). To see it, we note that, if the condition (f1) holds and s,5 € {1,...,n} are such
that the equality q( *) — 0 holds for all = # s then s = o(j). Conversely, if s = o(j)

then Lemma 2.4(c) yields qj(g)(J)qJ(T(J)) =0, for all » # s = o(j). Hence by (fl), we have

qj(-i(j)) =0, for all r # s and and j € {1,...,n}.

It remains to prove that the implication (e)=-(f) holds. Assume that A = MJ(K)isa
Frobenius algebra with Nakayama permutation o. It follows that, for each j € {1,...,n},
there is an isomorphism e;A = D(Ae,(;)). Since the representation matrix (see [7]) of

the right ideal e; A with respect to the K-basis {6]17 ..., ejn} of ;A is the matrix (g; (r ))

then, according to [9, Lemma 2.3 (ii)], we have q ) #0, for all r € {1,...,n}, and ()
follows.

To finish the proof, assume that A = MJ(K) is a Frobenius algebra and let o :
{1,...,n} — {1,...,n} be as in (f). For the proof of the statement (i), it is enough to
show that Ker does not contain a non-zero right ideal of A. Assume, to the contrary,
that Ker ¢ contains a non-zero right ideal aA, where a = szzl ajje;; and a;; € K.
Since a is non-zero then a,s # 0, for some r,s € {1,...,n}. It follows that

7,8

1/1(0 ‘q so’(r) <Za19619 q €so(r) > = zaisql‘(j)(r)’lp(eia(r)) = arsqfai)(r) 7é Ov
1=1

and we get a contradiction a ¢ €5,(,) € aA C Ker.
Now we prove (ii) by applying the arguments given in [15]. Assume that M is
an indecomposable module in mod A such that M -, soc(A) # 0. Let S be a simple
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submodule of M -, soc(A) and let P = E(S) be the injective envelope of S. Since
A is Frobenius then P is indecomposable projective. By the injectivity of P, there is
f € Homu (M, P) such that the restriction of f to S is the embedding S — P. We
recall that P has a unique maximal submodule rad P = P -, J(A). Note that Im f is not
contained in rad P, because the inclusions S C P, S € M -, soc(A) and Im f C rad P
imply 0 # f(S) C f(M -4 soc(A)) = f(M) -gs0c(A) C P-4 J(A) -qs0c(A) = 0; and we
get a contradiction. It follows that Im f + rad P = P, and the Nakayama lemma yields
Im f = P. By the projectivity of P, the homomorphism f is bijective, because M is
indecomposable. Consequently, the module M is projective. This finishes the proof. [

Now we give a simple description of all basic structure matrices ¢ in ST, (K) such
that the K-algebra A, = MJ(K) is Frobenius and J(4,)® = 0. To present it, we

n
associate to a given n > 3 and a permutation o : {1,...,n} — {1,...,n} such that

o(i) # 14, for all ¢ € {1,...,n}, the block matrix

a(o) = [a(0) V] Ja(0)™] (5-4)

defined in [7, Lemma 4.4] by the formulae

, 1, ifre{i,j}, orj=o(i),
Q(J)z('j) :{

0, otherwise,

foralli,j,r € {1,...,n}. It is easy to check that the block matrix ¢(o) is a basic structure
(0, 1)-matrix in ST, (K), see [7, Theorem 4.4] and [8, Corollary 1.8].

THEOREM 5.5.  Assume that n > 2, q is a basic structure matriz (2.2) in ST, (K)
and q is the (0,1)-limit of q. Let A = MJ(K) and A = MJ(K) be the corresponding
basic minor degenerations of M,,(K), and let e1,. .., e, be the standard primitive matriz
idempotents of A and of A. The following conditions are equivalent.

(a) A is a Frobenius K -algebra and J(A)3 = 0.

(a') A is a Frobenius K-algebra and J(A)? = 0.

(b) PEither n =2 and A = MJ(K) is the Nakayama algebra A(0) of Example 2.8, or
n >3 and A is a Frobenius K -algebra such that J(A)? = soc(A).

(c) Either n=2 and q=q(0) = [1§|91], orn >3 and there exists a permutation o
of the set {1,...,n} such that o(j) # j, for all j = 1,...,n, and the block matriz
q € ST, (K) satisfies the following condition:

qi(;.") #0 if and only if r € {i,j} orj=o(%).

(d) EBither n =2 and q¢ = q(0) = [1§|91], or n > 3 and there exzists a permutation
o of the set {1,...,n} such that o(j) # j, for all j = 1,...,n and the (0,1)-limit
q € ST, (K) of the block matriz g has the form g = q(o) (5.4).

In this case o is the Nakayama permutation of A and of A. Moreover, A/.J(A)? =
A/ J(A)2.
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PROOF. Since ¢ is a basic matrix and n > 2 then the algebra A = MI(K) is
basic, non-semisimple, and the projective right ideals e; A, ..., e, A of A are pairwise
non-isomorphic, by Theorem 2.9(d).

(a)=(b) Assume that J(A)® = 0 and that the algebra A = MJ(K) is Frobenius.
It follows from Proposition 5.1 that, for each j € {1,...,n}, the simple module S; =
soc(ejA) has the form S; = e;,(;)K, where o € S, is the Nakayama permutation of A.
Note that if e;,(;) € J(A) \ J(A)? then, by the description of the simple ideals given in
Theorem 5.3, e; A = e; K +ej,(;) K is of dimension two. It follows that n = dimy e; A = 2.
Consequently, if J(A)? = 0 then n = 2 and A = A(0) is the Nakayama algebra of Example
2.8. Moreover, if n > 3 then J(A)? # 0 and e;,(j) € J(A)?, for every j. It follows that
soc(A) = soc(e1A) @ -+ - @ soc(e, A) C J(A)2. Since J(A)? = 0, then soc(A) D J(A)?
and we get the equality soc(A) = J(A)%.

(b)=(a) If n =2 and A = A(0) is the Nakayama algebra of Example 2.8, then A is
a non-semisimple Frobenius algebra such that J(A)%2 = 0. If n > 3 and J(A)? = soc(A)
then J(A)3 = J(A)soc(A) =0, and (a) follows.

(b)=>(c) In case n = 2, the matrix ¢ has the form ¢(0) = [1§]91], see Example 2.8.

Assume that n > 3, J(A)? = soc(A) and that the algebra A = MJ(K) is Frobenius.
Take for o € S,, the Nakayama permutation of A. It follows from Theorem 5.3 that,
for each j € {1,...,n}, the simple submodule S; = soc(e;A) of e;A has the form S; =
ejo(j) K, where ej,(;) € €;J(A)%. Since J(A)? = 0 then the condition (d1) of Proposition
5.1 (with s = o(j)), together with the condition (d2), implies the condition required in
(c) for n > 3.

The implication (c)=-(d) easily follows from the definition of the (0, 1)-limit g of ¢
and of the block matrix ¢(o) associated to o.

(d)=(a) Ifn=2and g=q[1§|91], then A = MJ(K) is the Nakayama algebra of
Example 2.8. Hence A is a Frobenius algebra such that J(A4)? = 0.

Assume that n > 3 and there exists a permutation o € S, such that g = ¢(o) and
o(j) #j, forall j =1,...,n. Let A= MI(K) be the (0,1)-limit of A.

It is clear that, for each j € {1,...,n}, the module S; = soc(e;A) = ejo(j) K is
simple and S; = S; if and only if j = 4. It follows that A is a Frobenius algebra and,
according to Theorem 5.3, the algebra A is Frobenius. Since n > 3 and qj(-z) =0 if and
only if r ¢ {s,j} and s # o(j), then J(A)? = Y7, e;5(;) K and J(A)* = J(A)* =0, see
Proposition 3.2. Hence (a) follows.

Since the conditions (a) and (a’) are equivalent, by Theorem 5.3 and Proposition
3.2, then the proof is complete. O

Following Gabriel [10] we associate to a basic algebra A = e1A @ --- @ e, A the
separated quiver 2°(A) = (2°(A)o, 2°(A)1) of A with the set of points 2%(A)y =
{1,...,n,1',...,n'}. There is an arrow B;] 11— j' in 2%(A); if and only if there is an
arrow [3;; : i — j in the quiver 2(A) of A, see 2.20.

COROLLARY 5.6.  Assume that n > 3, q is a basic structure matriz (2.2) in ST, (K)
such that A, = MJ(K) is a Frobenius algebra and J(A,)* = 0.

(a) The algebra A is of finite representation type if and only if n = 3.
(b) Assume that the field K is algebraically closed. Then A, is tame of infinite repre-
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sentation type if and only if n = 4.
(c) If the field K is algebraically closed then the algebra A is of wild representation
type if and only if n > 5.

PROOF.  Since 4, is a Frobenius algebra and J(A,)® = 0 then, according to The-
orem 5.5, either n = 2 and A, is the Nakayama algebra of Example 2.8, or n > 3 and
soc(A,) = J(A,)?. Assume that n > 3. By Theorem 5.3, any indecomposable non-
projective A,-module is a module over the quotient algebra B, = A,/J(A4,)?. It follows
that A, is representation-finite (resp. representation-tame) if and only if so is B,.

Since J(B,)? = 0, then by Gabriel [10], B, is representation-finite if and only if the
separated quiver 2°(B,) is a disjoint union of Dynkin quivers, and B, is representation-
tame if and only if the separated quiver 2°(B,) is a disjoint union of Dynkin quivers and
Euclidean quivers. Moreover, By is representation-infinite if and only if 2°(A4,) contains
a subquiver isomorphic to an Euclidean quiver.

It follows from Theorem 4.1 that in case n = 3, up to isomorphism, the only Frobe-
nius algebra A, is the Nakayama algebra A, of 4.1. Obviously, A, is of finite represen-
tation type.

Assume that n > 4. Since A, is a Frobenius algebra then 4, = MJ(K) is also a
Frobenius algebra and, according to Theorem 5.5, the (0,1)-limit g of ¢ has the form
g = q(0), where 0 € S,, is the Nakayama permutation of A,. It follows from Corollary
2.20 and Theorem 5.5(c) that there is an arrow ¢ — j in 2(A,) if and only if ¢ # j and
Jj# o(i).

Now assume that n = 4. By the observation made above and the definition of the
separated quiver 2%(A,) = 2°(4,), we conclude that 2°(A,) is the Euclidean quiver

of type 27. It follows that the algebra A, is of infinite representation type, and A, is
tame if K is algebraically closed.
Finally assume that n > 5. It is easy to see that 2°(4,) contains the wild quiver

It follows that A, is representation-wild, and the proof is complete. O

THEOREM 5.7.  Assume that K is a field and n > 4. Given p € K* = K \ {0}, we
define the matriz q, = [q£1)| e |q;(Ln)] € ST, (K) of the form (2.2) by the formulae
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ne dfr=1,i=2j=3,
() =1, if (i,r.g) # (2,1,3) and r e {i.j}, orj=i+1 (modulon),

0, otherwise,

foralli,j,r € {1,...,n}.

(a)

(a)

(b)

For each p € K*, q, is a basic matriz in ST, (K) such that Cq, = My"(K) is a
basic Frobenius K -algebra with J(C,)* = 0 and with the Nakayama permutation
o=(1,2,...,n).

If u,v € K* are such that p # v and p # v=", then C,, % C,.

If the field K is algebraically closed and n = 4, each of the algebras C,, is tame of
infinite representation type.

If the field K is algebraically closed and n > 5, each of the algebras C,, is of wild
representation type.

PRrROOF.

Fix n > 4 and set qi(;) = (q#)z(-;), for simplicity of the notation. It is clear that
the matrix ¢, = [q£1)| - |q£n)] satisfies the conditions (C1) and (C3) of Definition
2.1. To prove that g, satisfies the condition (C2), we denote by .# the set of all
triples (¢,7,7) such that 1 < i,7,j < n, and r € {i,5} or j = i+ 1 modulo n.
First we recall from [8, Proposition 1.7 (1)] that (i,r,5),(i,7,s) € & if and only

if (i,r,s),(r,j,s) € &. It follows that qg)qg) £ 0 if and only if qz(sr)q%) £ 0,

whenever 1 <4, j,r, s <n. The verification of (C2) splits into several cases.

1° Assume that (,7,7,s) = (2,1,3,s) and qg)qg) # 0. Then (2,3,s) € 7. It

follows that s = 3 and we get q%)qég) =pu= q%)qg).

2° Assume that (i,7,j,5) = (2,7,1,3) and q(r)qg) # 0. Then (2,7,1) € &

ij
and therefore r = 1 or r = 2. In either case we have qg)qéfl&) =pu= qég)q%).

3° Assume that (i,7,7,5) = (2,1,74,3) and qg)qg) # 0. Then (1,4,3) € ¥

and therefore j =1 or j = 2. In either case we have qé;)qg? =p= qé? q%).

4° Assume that (i,7,7,s) = (¢,2,1,3) and q(r) (@) # 0. Then (¢,2,3) € . and

ij Qs

therefore ¢ = 2. Then we get qg)q%) =pu= qé? qé?.

5° Assume that (2,1,3) & {(i,7,5), (i, 4.5), (i,7,5), (r, j,5)} and ¢\ 'q) # 0.
Then ¢}'qi7 =1 = q[q%.

This shows that the matrix ¢, = [q,(})| e |q£n)] satisfies the conditions (C2)
and, consequently, ¢, is a basic matrix in ST, (K). By Theorem 5.3, the minor
qu-deformation Cy, = M*(K) is a basic Frobenius K-algebra with Nakayama
permutation o = (1,2,...,n).

Assume that pu,v € K* are such that 4 # v and p # v~!. Without loss of
generality, we may suppose that v # 1. For simplicity of the notation, we set

0 = (q,)57 and p}) = (a);5.

Suppose, to the contrary, that there is a K-algebra isomorphism C, = C,. By

Theorem 2.18, the matrices g, and ¢, belong to the same G, (K)-orbit, that is, there

exist

a permutation 7 : {1,...,n} — {1,...,n} and a square matrix T' = [t;;] € M,,(K)
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such that

o 111 ::tnn:]-a

o t;; #0,foralli,je{l,...,n}, and

. twpfj)tm = qiT((;)T)(j)tij, for all 4,7, 5 € {1,...,n}.
We set dl(;) = qiT(X)T)(j), for short, and let o = (1,2,...,n) be the cyclic permutation of
{1,2,...,n}. Then

(R (0=1(0))
11 (dw@ wu)) (Pw@)z tz‘rl(z‘ﬁrl(z‘)o(i))

1=1
- (2) o i
=11 ( Pio(i) w?(i)tom)a(i)) (dga@)( ))twu))
i=1

and hence we get

n n
o1 o2 (i o~ (3))
Hdza(z) Hp'fa(i)( V= sz(‘a(g))) : Hdz(a(z) :

=1

Since n >4 and o = (1,2,...,n), then pﬁﬂ(g)) =1foralli=1,...,n. Hence, in view of

the equality v =[], pgz(:)( )) we get

o - o~ 1@
”'Udgcw V=115

i=1

Since tirpl(, )( ro(i) 7 0 then dEU(l) (T(Z()T))(U(i)) € {1, u}, for 1 <r <n. Note that p #

1, because the equality p = 1 yields v = 1, contrary to our assumptlon v # 1. Further,
note that there is at most one i € {1,...,n} such that yp = dEU(E))) or = e @,
On the other hand, since n > 4 and o = (1,2,...,n), there is no such an i such that

dgo_((;)) = dEU(Z)( ) Then v #1 and the equahty yield uv =1 or u = v, contrary to

the assumption that p # v and p # v~
Since the statements (c¢) and (d) follow from Corollary 5.6, the proof is complete. O

COROLLARY 5.8.  Assume that K is an infinite field. Then for each n > 4 there
exists a one-parameter K-algebraic family {Cy}ucx~ of basic Frobenius K-algebras of
the form C, = Myp*(K) such that o = (1,2,...,n) is the Nakayama permutation of C,,
and C,, 2 C,y, if u# v and p#v='.

Proor. Apply Theorem 5.7. (]
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