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Abstract. Let N>1 and p>1. Let F be a compact set and Q be a bounded
open set of R" satisfying F = Q@ < RY. We define a generalized p-harmonic operator
L, which is elliptic in Q\F and degenerated on F. We shall study the genuinely
degenerate elliptic equations with absorption term. In connection with these equations
we shall treat two topics in the present paper. Namely, the one is concerned with
removable singularities of solutions and the other is the unique existence property of
bounded solutions for the Dirichlet boundary problem.

0. Introduction.

Let N>1and p>1. Let F be a compact set and 2 be a bounded open
set of RV satisfying F < Q c RY. We also set Q' = Q\0F, where 0F = F\Ig.
Here by F we denote the interior of F, which may be empty. We assume that
the measure of JF is zero.

By H''"7(Q) we denote the space of all functions on 2, whose generalized
derivatives 0’u of order <1 satisfy

1/p
(0-1) uuul,pzz(j |ayu<x>r"dx) < +oo,
pl<1 \8

and also, Hli)f (Q) is a local version of H'"”(Q). For the precise definition of
function spaces, see §2. For ue Hli)’cp(Q' ), we define a generalized p-harmonic
operator by

(0-2) Lyu = —div(A(x)|Vu|"*Vu),

where Vu = (0u/0xy,0u/0xs,...,0u/oxy), and A(x) e C'(Q') is positive in Q\F
and vanishes in F. Roughly speaking, the operators L, considered here are not
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only permitted to vanish identically on a compact set F < Q, but also may be
unbounded on dF. We shall consider the genuinely degenerate elliptic equations
with absorption term BQ(u), which are defined by

(0-3) Lyu+ B(x)Q(u) = f, in Q = Q\dF.

Here B(x) is a nonnegative function on 2, and Q(¢) is continuous and strictly
monotone increasing on R satisfying the growth condition (1-6). For instance
we can adopt 197" with ¢ > 1 and (el — 1) sgn(¢) for Q(¢). Since 4 =0 in
F, L (1) is defined on H. P(Q\F)NLZ(Q') in a_natural way by setting
Lyu = —div(A(x)|Vul’*Vu) in Q\F and L,u=0 in F.

In connection with these equations we shall treat two topics in the present
paper. Namely, the one is concerned with removable singularities of solutions
for (0-3) and the other is the unique existence property of bounded solutions for
the Dirichlet boundary problem below.

First we shall explain our results on removable singularities of solutions for
(0-3). We assume that u e H,”(Q\F) N L*(Q") satisfies (0-3) for f e L} (') in
the weak sense. More precisely, we assume that u satisfies

(0-4) J /(A|Vu|p72Vquo + BO(u)p) dx = J fodx, for all pe Cy(Q).

!

Then we shall show in under some additional conditions that

(0-5) lim sup |u(x)| < 400.
x—0F

From this result we see in that there is a bounded solution for (0-3)
in Q which coincides with u in Q' = Q\0F. Namely, we shall show that every
solution u € H P(Q\F)N L™ (Q') of (0-3) can possess only removable singularities
on 0F. Our main assumption [H-3] is concerned with a variant of the so-called
Minkowski content of tubular neighborhoods of JdF. In order to see the geo-
metrical meaning of this assumption we also introduce a relative capacity
Ck(F,Q) in §1 by the use of the conjugate function of the nonlinear term Q,
assuming that Q is strictly convex. Then we shall show that F has a vanishing
capacity if our conditions are satisfied. Roughly speaking, the boundary set 0F
1s so small under our assumptions that the support of the distrlbution L,u and the
set OF have no point in common. Here we remark that u = Q7 !( f /B) in F
provided that u satisfies (0-3). Moreover we shall also see the sharpncss of our
results in the special case that F is either a discrete set or an m-dimensional
compact smooth submanifolds (0 <m < N —1) of RY, and

(0-6) A(x) = d(x)[mv B(x) = d(x)pﬁ7 C(X) = d(x)pya

o) =971, d(x) = dist(x,dF),
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where ¢ > 1 and o, 8,y are real numbers. (For the role of C(x), see Mheorem 1
in §2.) For example, there exists a characteristic number p; defined by
such that if ¢ > p*, then every solution ue H,”(Q')NL*(Q") of (0-3) can
possess only removable singularities on 0F.

When F consists of finite points, p =2, Q(r) = |¢] 't and A(x), B(x), C(x)
are positive constants, H. Brezis and L. Veron initially studied in that
if u satisfies (0-3) with some additional assumptions on p, u can possess only
removable singularities on F. (See also [VV1], [VV2] and for the quasilinear
case.) In this paper we generalize their results for an arbitrary compact set F in
place of finite set and for a wider class of (degenerate) elliptic operators L,. We
note that if p = 2, then this topics was already treated in the author’s paper
under the similar framework. By virtue of Kato’s inequality and a maximum
principle, the unique existence of bounded solutions was established. Since
Kato’s inequality does not work effectively in the quasilinear case, we shall
employ a comparison principle, a priori estimates and a weak maximum principle
instead. Since the operators L, are quasilinear and rather general, we need to
modify them suitably so that they are applicable to our problems.

Secondly we explain the existence and uniqueness result which is a direct
application of the first part. We shall consider the Dirichlet boundary problem
for the operators L, with absorption term, that is

Lyu+ B(x)Q(u) = f(x), in,
07 { u=>0, on 09.

Then we shall establish the existence and uniqueness of bounded solutions u for
this problem with f/Be L*(£2). When the operator L, is uniformly elliptic on
Q, this problem has been treated by many authors. When p = 2, H. Brezis and
W. A. Strauss studied similar problems in for f e L'(2) with a monotone
increasing non-linear term in u (possibly multi-valued). As for the degenerate
case, the author proved in the existence and uniqueness of solutions of
for f/Be L*(Q).

This paper is organized in the following way. In §1 we shall describe our
precise framework and assumptions in this paper. We also introduce relative
capacities by virtue of the conjugate function of the nonlinear term, and we study
the meaning of our assumptions. In §2 and §3 we shall state our main results
which concerns removable of singularities and the unique existence of solutions
for Dirichlet boundary problem [0-7). In §4 we shall construct examples showing
that in certain respects gives best possible results. The §5 is devoted
to prepare auxiliary lemmas which are needed to establish our theorems. In §6
we shall prove [Theorem 1 by the use of a priori inequalities in §5 and the weak
maximum principle. will be finally established in §7 as an application
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of Theorem 1. In Appendix we shall prove [Lemma 1-2 in §1 concerned with
capacities.

1. Preliminaries.

In this section we prepare our basic framework and notations which are of
importance through the present paper.

Let N>1and p>1. Let F and Q be a compact set and bounded open
subset of RY respectively, satisfying F — Q, and set

(1-1) Q' = Q\oF.

Here OF is defined as 0F = F \1? . We assume that the measure of JF is zero.
We define a distance to JF.

DrerFINITION 1. By d(x) we denote a distance function d(x) = dist(x, 0F).

REMARK 1. A distance function d(x) is Lipschitz continuous and differ-
entiable almost everywhere. Moreover one can approximate it by a smooth
function. Namely there exists a nonnegative smooth function D(x) e C*(Q")

such that
D(x)

(1-2) c0)"' < i) = C(0),

07D(x)| < C(jy))d(x)' ", xe,

where y is an arbitrary multi-index and C(|y|) is a positive number depending on
|y|.  Therefore one can assume that d(x) is smooth as well without a loss of
generality. (For the construction of D(x), see for example.)

In this paper we treat the following degenerate nonlinear operator

(1-3) L,u+ B(x)Q(u)
= —div(A(x)|Vu"*Vu) + B(x)Q(u), in Q.

First we assume the following [H-1] on the nonnegative functions 4(x) and
B(x).

[H-1]
A(x) e CHQ)N L, (Q),
(1-4) A(x) =0 in F = F\dF,
A(x) > 0 in Q\F,
and
(1-5) {B(X) € L (Q)N L, (Q),
B(x) >0 in Q' = Q\0F.
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Secondly we assume the following [H-2] on the nonlinear term Q().
[H-2]

Q(t) is a strictly monotone increasing and continuous function such that
00)=0 and 7-Q(t) >0 on R\{0}. Moreover we assume that there is a
positive number dy such that

|t|p—l+50

1.6 i
(1.6) SR o)

We need more notations.

< 400

DEerINITION 2. Let dp be a positive number. Let us set for any 7 > 0 and
any x € Q' = Q\0F,

A(x) = A(x) +d(x)[VA(x)|,

A(y)
(1-7) M(x) = ess-SUP(, c 0.1 /4<d(y)/d(x)<3) 0)’

K(x,t) =2+ (M(x) - t2) P~/

In this definition of K(x,¢) the constant term 2 can be replaced by any
number strictly greater than 1. The following assumption is crucial in the
present work.

[H-3]

For the same positive number dy > 0 as in [H-2], it holds that

(1-8) lim inf L

1
PJ A(x)K(x,—) dx < +0.
el0 &7 Jencd(x)<e

d(x)
We also assume that:

[H-4]
Let B(x) and C(x) satisfy

(1-9) Cx)eLL(Q)NLL.(Q), C(x)=0 in Q,
and
(1-10) igg % < +00.

In order to make clear in advance the role of the condition [H-3] as well as
what it means, we shall trace the definition of the kernel K(x, ¢) to its origin, and
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then we shall reconstruct it by using the conjugate function of the nonlinear
term. After we have reconstructed the kernel K(x,), we shall interpret the
condition [H-3] using the notion of the vanishing relative p-capacities of JF.

Originally the definition of the kernel K(x,¢) comes from the pointwise
estimate of the supersolutions of the equation (0-3) under some additional
assumptions (see [Lemma 6-1). More precisely, we shall prove in §6 that every
solution u of (0-3) in H7(Q\F)NL7.(Q") is dominated by K(x,1/d)""~" up
to constant times. Roughly speaking, the condition [H-3| guarantees the inte-
grability of the term B-Q(u) near J0F with u being the solution of (0-3).
Then we can finally show the boundedness of the solution, which is one of the
main purpose in the present paper.

It is very interesting that we can reconstruct the kernel without making use
of the explicit supersolutions. To this end, we shall define the conjugate function
of the nonlinear term in place of supersolutions. In the rest of this subsection we
assume that Q is strictly convex. We need more notations.

DerFNITION 3. For x € Q\F and ¢ > 0, we set

(1) =503 - Q)
(1-11) Y B1(x. 1) = Exi 1+ (p=1)
[ Pj(x, 1) = supyolts — D;(x,s)], forj=0,1.

We also set

DEerINITION 4. For any >0 and xe Q\F

1
Gy(x.1) = c(p.00) (. 7) S +2. for j=0.1,

(5.5 5o ( p—1 >(p—1)/f5o
c(p,00) = :
PO = T o0 \p— 1+ 0,

(1-12)

Then by a direct calculation we have

( SN2/

Vi (x,t) = c(p,6o) (%) i+ p=1/o0
(1-13) A(X) (p=1)/do
Gi(x,t) =2+ <—B(x) : ﬂ’) :

From the definition it immediately follows that
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Lemma 1-1. (1) (Young’s inequality) For any positive numbers s,t and for
almost all x € Q\F, it holds that

(1-14) st < Dj(x,s) + Vi(x,t) for j=0,1.

(2) For any positive number C\, there is a positive number C, such that for
t>C
Dy (x,1) < Cy - Dy(x,1),
S”o(x, l) <G Y (x, l),
Go(x, Z) <G -Gy (x, t),
Vi(x, 1) < Gi(x,t) - 17 < K(x,1) - 1.

(3) For any x € Q\F, it holds that

(1-15)

(1-16) K(x,t) = sup Gi(y,1).
1/4<d(y)/d(x)<3

Now we define the relative capacities of compactum e = Q2 to 2, and we
shall explain [H-3] in terms of capacities.

DEerINITION 5. For an arbitrary compactum e < 2 we define the weighted
p-capacities relative to 2 by

(1-17)

(

C(e, Q) = inf U AlVy|? dx;n >1on ene CgO(Q)]
Q

1
< CK(e,Q):infU A- K(x,g) VP dx;n > 1on e;ne CSO(Q)]
Q

| 1N\’
C,lfg(e,.Q) = inf“ A -K(x,3> <logK<x,g)> \Vy|’ dx;n>1on e,ne CSO(Q)]
\ Q

Clearly it holds that C(e, Q) < Ck(e, Q) < C,l(og(e,Q). Moreover we show
in §8 (Appendix) the following.

LemMa 1-2.  Assume that [H-1]. Then [H-3] implies that Cg(0F,Q) =0,
namely, 0F has a vanishing capacity.

If OF is sufficiently smooth, say, C* compact submanifolds of R" without
boundary, then we can show that the opposite implication. Namely, the
condition Ck(0F, Q) =0 implies [H-3] under the assumption [H-1]. This lemma
is not essentially new, but we shall show it in Appendix for the sake of self-
containedness.

Lastly we define the following condition which is stronger than the condition
Ck(0F,Q) = 0.
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[H-5]
(1-17) CRE(0F, Q) = 0.

ReEMARK 2. We shall see that [H-3] can be replaced by the condition [H-5]
in many places. In Appendix we shall study more on capacities.

ReMARK 3. The condition in [H-3] means that B(x) does not vanish
much faster than 4(x). If | < N <2, then either 4(x) or M(x) must vanish on
OF in order to satisfy [H-3].

2. Removable singularities.

We use the following notations. Let D be an open subset of RY. Let
g >1 and let j be a positive integer. By H/9(D) we denote the spaces of all
functions on D, whose generalized derivatives d’u of order < j satisfy

1/q
) il = 32 ([ 100t ar) "< o,
pl<j NP
and also, Hl{;’cq(D) is a local version of H/4(D), and by |ju|, we denote the
essential supremum of u. By HO1 /(D) we denote the completion of Cj°(D) with
respect to the norm defined by [2-1]. By 2'(D) we denote the space of all
distributions on D.
Now we are able to state our main results for removable singularities.

THEOREM 1. Assume that [H-1], [H-2], [H-3] and [H-4]. Assume that u e
P(Q\F)NL.(Q") satisfies Lyue L) (Q') in the distribution sense. Moreover

loc loc loc
we assume that for almost all x € {x € Q";u(x) > 0},

(2-2) Lyu+ B(x)0(u) < C(x).

Then we have uy € L} .(2), where u, = max(u,0).
Moreover the condition [H-3] can be replaced by [H-5].

REMARK 4. From it follows that u, € L) (') can be extended
as a locally bounded function on a whole 2. Since the measure of 0F is zero,
this extension coincides with u, except on a set of measure zero. will
be established in §7.

Admitting this for the moment, we shall establish the result concerning
removable singularities. To this end we give definitions of a weak solution of the

equation

(2-3) Lyu+BQ(u)=f in D,

where D 1s an open subset of Q. We recall that L,u is defined on
P(Q\F)NLZ(Q') by setting L,u =0 in F.

loc
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DEFINITION 6 (A weak solution in Q'). For f e L] (Q') and ue H'"(Q\F)N

loc loc

LY (2"), u is said to be a weak solution of (2-3) in Q’, if it satisfies

loc
(2-4) J (AIVul”*VuVp + BO(u)p) dx = J fodx, for all pe CF(Q").
! Ql

Since the assumption on the coefficient 4 1s rather weak, we have to be
careful to consider a weak solution of (2-3) in a whole 2. Namely

DEFINITION 7 (A weak solution in Q). For feL] (Q)andue H lff (Q\F)N
L£.(2), u is said to be a weak solution of (2-3) in €, if it satisfies that A|Vu|’ €
L, (Q) and

(2-5) JQ(A]Vu]pZVuV(p + BO(u)p) dx = Jgf(p dx, for all pe Cy(Q).

Then it follows from that we have the following result:

THEOREM 2. Assume that [H-1|, [H-2] and either [H-3] or [H-5|. Instead of
[H-4] assume that f(x)e L? (Q")NL, (Q) satisfies for some positive number C

loc loc

(2-6) lf(x)] < C-B(x), for almost all x e Q.
Assume that ue H'"(Q\F)N L

loc ,OC(Q') satisfies in the weak sense

(2-7) Lo+ B(x)Qu)=f, in Q"
Then there exists a function v eH,lo’f (Q\F)N L7 () such that v satisfies in the
weak sense
(2:8) {va + B(x)Q(v) = f, in Q
Vg = u.

PrOOF OF THEOREM 2. This is a direct consequence of [Theorem 1. In fact
from [Theorem 1 we have u, € L.(2). The function —u satisfies (2-7) with
replacing f and Q(z) by —f and —Q(—1) respectively. Since —Q(—1) satisfies the
same assumption as the one for Q(¢), we see in a similar way u_ € L (£2), where
u_ = max(—u,0). According to Remark 4, u is extended as a locally bounded
function on Q2. By v we denote this extension of u to a whole Q2. Thus ve
L* (Q) and v|, =u. From [H-1] and [H-2] we also see that B- Q(v) € L, .(Q).
Here we note that since A(x) =0 on F\0F, u(x) = v(x) = Q7' (f(x)/B(x))) on
F\OF. Then it follows from [Lemma 5-3 in §5 that v is extended as a solution of
the same equation on a whole Q. Here we note that the uniqueness of solutions

in LY (Q) follows from the same argument in the proof of in§7. O

loc

REMARK 5. The monotonicity of the nonlinear term Q on R will be needed
to establish the uniqueness of solutions in [Theorem 2 and [Theorem 3. For the
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proof of the existence of solutions it suffices to assume that there is a positive
number C such that Q(#) is monotone increasing for t € R\[-C, C].

3. Existence and uniqueness of solutions for Dirichlet problem.

As an application we consider the Dirichlet boundary value problem for
degenerate quasi-linear elliptic equation:

(3-1) { Lyu+ B(x)Q(u) = f inQ
u=>0 on 0Q.

Then we have the following result which will be established in §7.

THEOREM 3. Assume that [H-1], [H-2] and [H-3]. Instead of [H-4] assume
that f(x) e L™ (Q) satisfies for some positive number C

(3-2) |f(x)| < C-B(x), for almost all x € Q.

Moreover we assume that A(x), B(x) € C°(Q). Then there exists a unique function

(3-3) ue L?(Q)NHP(Q\F)

loc

which satisfies (3-1) in the weak sense and satisfies
(3-4) JQ[A(X)IVW + B(x)Qu)u) dx < C[|If/BII% + 11 /1].0)-

Here L= (p+0d0)/(p—140y) and C is a positive number independent of each
function f.

REMARK 6. The condition [H-3] can be replace by [H-5] as before. For the
proof of this we shall regularize the problem. By virtue of Theorems
1 and 2, we shall prove that the unique solutions of this approximating nonlinear
elliptic equations converge to the unique bounded solution of the original
equation. Here we note that the operator L, itself is not e-regularizable, because
it may be degenerate infinitely on JF.

REMARK 7. If we assume that J0F i1s smooth, then we can also establish the
Holder continuity of the gradient |Vu| of the solution u# under some additional
conditions. More precisely, in the coming paper we shall show |Vu| belongs to
the weighted Schauder space if 4(x) belongs to Muckenhoupt’s 4, class and A(x)
is a power of the distance to OF.

4. Examples.

In this subsection we shall construct examples showing that in certain
respects Theorem 1 gives best possible results. Let F be either the origin 0 or an
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m-dimensional C* compact submanifolds in R" without boundary for 0 < m <
N —1, and let d(x) be a distance function. For example, if F consists of the
origin 0, then we put d(x) = |x| and m=0. For p>1 and ¢ >0, we set

(4-1) Pu = —div(d(x)”|Vu|"2Vu) + b(x) - d(x)7F - |u| " u,

where b(x) is a positive continuous function.
Assume that real numbers o, f and y satisfy the following conditions. First
we assume (h-1) and (h-2) which are equivalent to [H-1] and [H-2] respectively.

(h-1) min(z, 8,7) > —N,%’”.
(h-2) qg>p-—1.

From (h-2) we see that the condition [H-2] is satisfied for dp=¢—p+1
> (0. We need more notations. Let us set for 0<m<N -1 and o>

—(N—m—p)/p

l—a+p
N+po—p—m

(p—1)~<1—|—p ), ifoa<f+1,
p_17 lfOCZﬂ"‘l

Then we assume (h-3) which is equivalent to in [H-3]. (See the proof
of [Theorem 4.)

(4-2) Pm =

qd = Py if o <f+1,
(h-3) q>p,=p—1, fax=f+1,
N —m—
> mTp
P
Lastly we assume (h-4) which is equivalent to [H-4|.
(h-4) F<y.

Let us set . = max[0,u| and u_ = max[0, —u]. Then it follows from
that we have [Theorem 4.

THEOREM 4. Let F be either the origin or an m-dimensional C* compact
submanifolds in R" without boundary for 0 <m < N — 1. Assume that (h-1),
(h-2), (h-3) and (h-4). Assume that ue H llo’cp (Q"YNLE(Q') satisfies Pue L} (Q")
in the distribution sense. Moreover we assume that for almost all x € {x € Q;
u(x) > 0}

(4-3) Pu < ¢(x)d(x)",

for some positive continuous function c(x). Then we have u; € L (Q).
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PrOOF OF THEOREM 4. Since Q(u) = |u]q_1u, we can put dp=¢q—p+1
to obtain (1-6) in [H-2]. Putting A(x) = d(x)"*, B(x) = b(x)d(x)"" and C(x) =
¢(x)d(x)?”, we shall apply [Theorem 1. Since the conditions [H-1], [H-2] and
[H-4] are clearly satisfied, it suffices to examine the condition [H-3]. Note
that M(x) is equivalent to d(x)’* ™ and so K(x,1/d(x)) is equivalent to 1+
d(x) PP~ DU=t0)/%0) — Therefore we see

1

4-4 —J
( ) el g/2<d(x)<e

1 (® “
= —J dpJ (1+ d(x)_l’(l’—l)((l—a-i—ﬁ)/oo))d(x)poc dH V! (%)
2 {d(x)=p}

&b ¢/

A(x)K(x,ﬁ) dx

1 &
< Cdiam(F)mg—pJ /2(1 + p*l’(l’*l)((lfwﬁ)/éo))ppa+N—mf1 dp
&

< C'diam(F)"™ - (¢ (Pr=p+N=m)/la=p+D)a=pn) 4 gr(a((N=m=p)/p))y
=0(1). (h-1) and (h-3)

This proves the assertion. Here H"~!(.) is the (N — 1)-dimensional Hausdorff
measure, and we used the fact:

Since F is compact and smooth, there is a positive number C such that we
have

(4-5) {0 < d(x) < e}| < CeN " diam(F)", 0<e< 1.
Here by |S| we denote the Lebesgue measure of the set S = RY. (]

COUNTER-EXAMPLES TO THEOREM 4. We shall see that is best
possible in certain respects. We note that F = 0F holds. Since it suffices to
construct counter-examples in a sufficiently small neighborhood W of F, we may
assume d(x) = dist(x, F) is smooth so that we have |Vd(x)| =1 in W\F. Now
we construct a null solution U for (4-7) in W\F of the form

(4-6) Ux) =d(x)™, for M >0,

Namely we want U to solve the following equation for some M >0 and a
suitable positive continuous function b(x).

(4-7) PU(x)=0, in W\F.

To do so, it suffices to put

(4-8) { b(x) = MP*IE(X) -d(x)M(p_l_q>—P(1—oc+ﬁ)

Ex)=M(p—1)—pa+p—1—d(x)4d(x)
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Since 0F and d(x) = dist(x,F) are smooth, we see that

(49) lim d(x) - 4d(x) =N —m 1,

x—F

where m =dim(F). In fact, if F is flat, then d(x)4d(x)=N—-m—1.
Therefore, if the following conditions (4-10) are satisfied, we see that M > 0 and
b(x) is a positive continuous function, so that U(x) becomes an unbounded null
solution of (4.7).

p(1—oa+f)
M

N—-—m+pou—p
p—1

(4-10) g<p-1+ , M > max ,0].

After all we get

PrOPOSITION 4-1.  Assume that (h-1) and o > —(N —m — p)/p. Then there
exist unbounded null solutions for (4-7), if (p,q,a,f) satisfies one of the conditions
listed below:

(1) qg<p; and o < f+1,
(4-11) 2) g<p-1 and a=p+1,
3) g<p—1 and o>p+1.

ReEMARK 8. If p=2 and ¢ =1, then the operator P is linear. Hence we
can construct a local fundamental solution E(x, y) of P in many cases. (If o =
0, it is clear because P is elliptic.) Then E(x,y) for y e F also becomes an
unbounded solution of (4-7).

RemMARK 9. If g=p—1 and f+p(a—f —1) >0, then we can also con-

d(x)™

struct a null solution of the form e near F. In fact, if we put U(x) =

-M . . .
e?™) " then we have in a similar way

(4-12) { b(x) = MP'E(x) - d(x)” il

E(x)=M(p—1)+[(M+1)(p—1) = ap — d(x)4d(x)]d(x)".
Therefore if f+ p(a —f — 1) > 0 we see b(x) is bounded and positive in a small
neighborhood of F for sufficiently small M > 0.

REMARK 10. Now we assume that « < —(N —m — p)/p holds. Then we
immediately see that there exist unbounded null solutions of (4-7) for an arbitrary
q (respectively ¢ < p — 1) provided o < 1 + f (respectively o > f+ 1). In fact we
can choose any positive number for M in [4-10).

Lastly we consider (h-4). We can show the following:

PropoSITION 4-2.  Assume that (h-1) and dim(F)=m for 0 <m < N — 1.
Then for the validity of Theorem 4, the assumption ff <y ((h-4)) is necessary if
a>y+1.
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PrROOF OF PrOPOSITION 4-2. Assume that f>7y. Let us set U(x)=
—logd(x) e L} (2). Then it is easy to see that U(x) becomes a counter-
example, provided that « > y+ 1. In fact we see that

(4-13) —div(d™|VUP*VU) = 0(d(x)”") in Q\F.

Since U is unbounded, (h-4) is necessary to avoid this candidate. ]

5. Auxiliary lemmas.

In this section we shall establish a chain of auxiliary lemmas concerning
basic estimates for weak solutions of the equation, which will be needed to
establish Theorems stated in §2. Without loss of generality we assume that a
fixed tubular neighborhood of F, say, {x:d(x) < 3} is contained in Q.

LeMMA 5-1 (A priori inequality 1). Assume that {x:d(x) <3} < Q.
Assume that [H-1], [H-2] and [H-4], and assume that ueH,la’cp (Q\F)NL*(Q")
satisfies Lyue L} (Q') in the distribution sense. Moreover we assume that for
almost all x € {x e Q';u(x) >0},

(5-1) Lyu+ B(x) - O(u) < C(x).

Then we have, for any number q >0 and any nonnegative function ne
Cyr{xeQ:0<d(x) <3},

(52 [, ACOW =, 70t
P\’ p ptq-1
< (2) ], ottt ax,
53| AW, P+ 0. d
<7 | GO+ g0 )7 foglt + (= ). .

Here p is an arbitrary positive number satisfying

(5-4) Q(u) > max |sup sup

C(x
B Y |u| *
xeQ (x) 2<d(x)<3

ProoF OF LEMMA 5-1. We use the following test functions in this section:
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(5-5) ¢;(x) = n(x)"p;((u(x) —p),), (j=12),
where we set for positive number n
11, if g >0
p() =1 L
log(1+1,), if ¢g=0.
1, t>1/n,
pr(t)=¢ nt, 0<t<1/n,
0, ¢<0.

Since (5-3) can be treated in a similar way, we only prove for ¢ > 0.

ProOOF OF 5-2). Using ¢; as a test function, we have
(56) 4| AW =), 0= 0 v+ | (B Q) = Loy (x) d

e | AUV (0= dr <0

Since the second term is nonnegative from the definition of u, we have
(57) ], A==t

< pJQA<x>rVuV’” Vol oy (4 — 1), ) dx
(p-1)/p
< ([ AWt ax)
Q

| (JQ AX)Vl? (u— )t dx>l/p.

Here we used the equality ¢=(¢—1)(1-1/p)+(¢—1+ p)/p. Hence the
desired estimate holds. O

Using this we can show the following lemma which is of importance in the
proof of [Theorem 1.

LEMMA 5-2 (A priori inequality 2). Assume the same assumptions as in
Lemma 5-1.

Then we have, for any number q >0 and any nonnegative function n e
Cr{xeQ:0<d(x) <3},
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(5:8) j [B(x)Q(u) — C(x)](u — ) n” dx

P’ _
< FJgA(xnvm"(u—u)i*q !y,

(59) j [B(x)Q(u) — C(x)]logll + (u — ). Jn” dx
<p’ JQ/ A VP[4 (u— ), )" log[1 + (u — p),])7 dx,

S0 | [B@0w — e ax

< (], AWl dx>(p_l)/p~ (], Ao dx)l/p.

Here p is an arbitrary positive number satisfying (5-4).

PrOOF OF LEMMA 5-2. Since the arguments are quite similar, we concentrate
on proving and (5-10). Using ¢, as the same test function as before, we
have

(5-11) JQ[B(X)Q(M) () (x) dx

IA

ijA<x>|Vu|P—vanP1p1<<u—ﬂ>+>dx
(p=1)/p
< ([ Awware- 0t ax)
Q

| (JQ AX) |Vl (u - ﬂ)ﬁﬂz_l dx)l/p

r’ _
< FJQA()C)WMP(L{ — )’ dx.  (Cemma 3-1)
This proves [5-8). In order to prove (5-10) we use ¢, defined by as a test

function and the inequality with ¢ =1. Then by letting n — 400 the
desired inequality follows in a similar way. ]

Lemma 5-3 (Extension). Assume that [H-1], [H-2] and [H-3]. Moreover we
assume that for feL. (Q), ue H LP(Q\F) NL; . (Q) satisfies in the weak sense

loc
(5-12) Lyu+ B(x)-Q(u) = f, in Q'

Then u can be extended as a weak solution of the same equation in whole €.
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ReEMARK 11. In this lemma, we may relpace the condition [H-3] by a
weaker condition C(e,Q) =0. (See [(1-17), Lemma 1-2 and A-1.)

PROOF. Since u is bounded, we see that B- Q(u) e L] (2). Let us set

0, if dist(x,0F) <¢/2
2

(5-13) Y, = p; dist(x,0F,), if ¢/2 <dist(x,0F) <e
1, if dist(x,0F) > ¢

Here F, = {x € Q;dist(x, F) < ¢} and ¢ is sufficiently small. For any nonnegative
e Cyr(RQ) we put n=u-(4y,)” for a test function. Then we see

(514) - JQ(BQ(M) ~ (bt dx
- J AV ul’ | |” dx +pj AVl ()" V- V() d.
Q Q

(5-15) UAWqu‘zVu V(g ulg) dx

1-(1/p) 1/p
< (JA|Vu|P|¢wg|de) -(jA|v<¢¢g>|”|u|”dx) .

Therefore we have for a fixed ¢

(5-16) [ igur ax < ¢ ¢ [awr W) ax
From [H-3] we see that the right-hand side is bounded as ¢ — 0. Since ¥, — 1

on supp¢ as ¢ — 0, it follows from Fatou’s lemma that A|Vu|” € L] (Q). Let
peCy(2). Now we put n = ¢y, for a test function to obtain

(5-17) j AVl 2VuV () dx = — JQ(BQ(M) ), dx.

Note that

(5-18) U AVulP 2V - Vi, dx
Q

1—(1/p)
< (j A|Vu”¢|dx) - (J Avws%dx)
supp|Vy, | supp|Vy, |

Then from [H-3] and the local integrability of A|Vu|’, we can show by letting

1/p
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¢ — 0 (Y, — 1) that the right-hand side tends to zero, hence the desired equality

follows. [
We recall the definition of M(x).

A
(5-19) M(x) = ess-sup ﬂ, for x e Q\F.
{ye@:1/4<d(y)/d(x)<3} (»)

We also define
A(y)
(5-20) m(x) = sup —=.
ly—x|<d(x)/2 B(y)

Lastly we prepare the following.

LemmA 5-4 (The relation between m & M). Assume that for some ¢ > 0,
{x:d(x) <e} is contained in Q. Then it holds that

(a) sup m(y) < M(x),
d(x)/2<d(y)<d(x)

(b) sup  m(y) < inf  M(y), for any ¢€(0,¢).
e/2<d(y)<e e/2<d(y)<e

PrOOF. Since {y:ly—x|<dx)/2} = {y:1/2<d(y)/d(x) <3/2} <
{y:1/4 <d(y)/d(x) <3}, the inequality (a) is clear. We proceed to the proof
of (b). From the definition of m(x) we see that

)
(»)

Since it holds that {(1/4)e <d(y) < (3/2)e} < {(1/4)t <d(y) <3t} for any
tele/2,¢], we get

Pany
<

(5-21) sup  m(y) < sup
e/2<d(y)<e (1/4)e<d(y)<(3/2)¢

for any ¢e€ (0,¢).

=

R

(5-22) sup A(y) < inf sup y = inf M(y).

(1/4)e<d(r)<(3/2e BY) — (2e<i<e (1jay<a(yy <3 B(Y)  (1/2e<d(y)<e

Hence the desired estimate follows. ]

6. Proof of Theorem 1.

In this section we shall establish using the lemmas in the previous
section. First we show an a priori bound for weak solutions of (0-3).

LeEmMA 6-1 (Supersolution). Assume that ueHIIO’f (Q\F)NL?.(Q') satisfies
LyueLl (Q) in the distribution sense. Assume that [H-1), [H-2] and [H-4].

Moreover we assume that for almost all x € {x e Q;u(x) >0}
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(6-1) Lyu+ B(x)Q(u) < C(x).

Then we have, for some positive numbers Cy, Cy and ¢&,
s 5 1 \/(-D
(6-2) u(x) < Cym(x)d(x)7* +1] < G -K(x,m> :

for any x with 0 < d(x) <¢&. Here m(x) is defined by (5-20).

Proor. First we note that the last inequality in follows from the
definition of the kernel K(x,7) (See [1-7)). Let o satisfy

(6-3) 550 =p.
Let xo € Q\F, with 0 < d(x9) < 1/2. For R=d(x0)/2 and r = |x — xp|, we set

(6-4) X = {xeR";|x - x| < R},
u -1 C(x)
© -0 ()

and for p'=p/(p—1),

(6-6) v(x)=iw?l +u, w=R'—¢", xeX.
Now we determine constants 4 so that v satisfies

(6-7) L,v+ B(x)Q(v) > C(x), in X.

From a direct calculation, the monotonicity of Q(-) and the definition of u it
follows that

(6-8)

00) 2 C(x) +5 (Q(/2) + Qi)

where Cj is a positive number independent of x;, x, and R. Then we have

{LpU > —Co,lf’*l,zf(x)Rl"w—é(P‘l)‘p,

(6-9)  Pv+ B(x)Q(v)

> C(x) — G AR w0 B(QU ) + Q(u/2)

{(x) (Jw=0)%0tP~1 )
am+?ﬁwumuwﬁoﬁm%ﬁgugﬁw).m>

+%me@p)inx.
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Now we put

(6-10) 2% = 3Cy - m(xo)R” max |sup ldw_l, L\
1 190 " O(u/2)

If Aw™ > 1, we immediately get the desired inequality (6-7) by the use of (1-6) in
[H-2]. On the other hand, if Aw™ < 1, we make use of the inequalities

, 1 X
- 9 . P p—1_ —5(p—1)—p ~5
(6-11) 2% >3Cy-m(xo)R 0012) and A"w <A
Then we see
(6-12) LB)0(2) = Coit ™ AR w07,

After all we get the desired conclusion. By the use of ¢ = (u—v), as a test

function we get

.
(6-13) JQA(x)(|Vu|p_2Vu — |Vol|P2Vv) - Vi dx

+me@@—gwww£o

Since (u —v), = 0 near 0X and Q is monotone, it follows from a weak maximum
principle that

(6-14) u(xo) < v(xo) = AR 4

< Cy(m(x0) " d(x0) 7™ + 1),

and this proves the assertion. Here we used [H-2], d(xp) = R/2 and R < d(x) <
3R in X, and () is a positive number independent of R. As for the weak
maximum principle, see [To; Lemma 3.1] for example. ]

In this stage, the solution u of the inequality in the distribution sense
may still have singularities on dF. Combining this weak result with Lemma 3-2
we are able to show that u is bounded in Q. First we assume [H-1|, [H-2], [H-3]
and [H4]. Moreover we assume that {x:d(x) <3} c Q as before. Now we
see from (5-10) in [Lemma 3-2

615 | 1B0w ~ o ax

s;wQLAomvm%u—M£¢Q@4m7(L;mwwmﬂhf”,

Here suppn < {x:0 < d(x) < 3} and u is an arbitrary positive number satisfying
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(6-16) O(u/2) = max |3 sup € sup |ul|.

ve@ B(X) 2o in)<3

For 7, we choose a Lipschitz continuous function #, for a sufficiently small ¢ > 0
such that

0, if dist(x,0F) <¢/2, or d(x) >3,
(6-17) n.(x) = % dist(x,0F,;), if ¢/2 < dist(x,0F) <,

1, if & < dist(x,0F) and d(x) < 2.
Here F, is a tubular neighborhood of F defined by
(6-18) F,={xe€Q:dist(x,F) < ¢&}.

By virtue of [Lemma 6-1 we have, for some positive number C; independent of
each x and u > 0,

(6-19) (u(x) =), < Cp - (L+m(x)"™ - d(x)"'™).

From [Lemma 34 we have

(6-20) sup (u —,u)+ <(C- sup (1 +m(x)1/5o _d(x)—l)/éo)
g/2<d(x)<e g/2<d(x)<e

ro 1/do —p/do
<Cl it (M) d) )

By the definition of K, we have for some positive number C

(6-21) (1+ M) - d(x) Py < C K(’C’ﬁ)'

Then, it follows from (6-15) that for some positive number C’,

62) | [B@0wW ~ o dx

- | (p=1)/p
<[ Avownp- i)

) 1/p
x| | A@Wn)" sup (u(y) - @l dx)
JQ e/2<d(y)<e

Sppj AW sup  (u(y) — w0 d
Q e/2<d(y)<e
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Since 5, — 1 as ¢ — 0, it follows from [H-3] that BQ(u) € L}

we(2).  Again from
(6-15) and [H-3] we have

| (p=1)/
[B(x) Q) — C(x)ln! dx < c(j ANV (e~ ) dx) -

Q

(6-23) J

{xu=u}
From [Cemma 1-1 (Young’s inequality ), [I-11), and we see that
(6-24) Ay, !
< A-®o(x, L) + 4 Po(x, |V, [P /LP
<B-Q(Lt)+ C- A L~p=N0+r=D/0)) g (x |V |7)
<B-QL)+C-A4- L_(1’_1)(1+((1’_1)/5°))K(x, Vi)V,
where L and ¢ are arbitrary positive numbers. We used the following:
(6-25) Vi(x, ") < Gi(x,1) -t <K(x,0)-7, (xeQ' t>0).

We note that d(x) is equivalent to ¢ on the support of #, and |Vz,| = 2/¢ holds
there. Hence for any positive number x, there is a large positive number L
independent of each ¢ such that we have

(6-26) j AP — ) dx < j B Q(L(u— ), )dx
supp#,

C.eP I
T LoD D) Lupp”A'K ("’W) dx
< | Bou- v
supp,
As ¢ — 0, we easily see that
(6-27) | iBeew) - coar=o
{xu>p}

Therefore we have showed that the positive part of u is bounded in Q.

Lastly we assume [H-5] in stead of [H-3]. In this case the boundedness of u
follows from (5-9) in [Lemma 3-2, [Lemma 61 and Al in Appendix. Let
¢ and k be arbitrary small positive numbers. By virtue of [H-5] and [Lemmal Al,
we choose ¢ e Ci°(F;) such that £>1 on F and

(6-28) LA-K( ;) <logK< 1)) VEX)| dx < .
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Here F, denotes a tubular neighborhood of F. We choose ¢ € Ci°(£2) such that
¢=1 for {x:d(x)<2}; 0 for {x:d(x)>3}. Finally we set n=(1—-2¢)-¢.
Since # is an admissible test function we have

(6-29) L [B(x)O(u) — C(x)]log[l + (u — ) Jn” dx
P’ L A(
(

P, GO + =0 ol + (0= )

e atowerk(s gl ) ok gl )| < c

IA

Wl [1+ (u— ), )" flog[l + (u— ), ]V dx
)

IA

IA

Therefore we see

(6-30) [B(x)Q(u) — C(x)]log[1 + (u — ), ]dx = 0.

JQﬂ{x:d(x)<3}

This proves the assertion. [

7. Dirichlet boundary problem.

UNIQUENESS.  First we prove the uniqueness of solutions in

(7-1) T(Q) = {ue L*(Q)NH.(Q\F);u=0 on Q}.

Assume that « and v are solutions to in the space 7(22). Note that u = v in
F\0F (Monotonicity of Q). From |5-16) in Lemma 3-3 we immediately see that
A(|Vul? 4+ |Vv|?) e L'(Q). By subtraction we get in the sense of the distribution

(7-2) L,(u—v)+ B(x)(Q(u) —Q(v)) =0, in Q.

By the use of ¢ = (u—v)n?, where n e C*(2) will be specified later, we get
(7-3) j A(VulP 2 Vu— |VolP Vo) - V(u — v)yP dx
Q
+ pJ A(Vul?2Vu — \VolP Vo) - VP~ (u — v) dx
Q

" j BO() — O(v)|(u — v)n? dx = 0.
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Now we take a sequence of smooth functions #; such that 7, =0 near JF,
lim; N = 1 in Q and

(7-4) lim supJ A(x)|ViylP dx < 0.
Q

J—®

This is possible from [H-3]. Then replacing 7 for #; and letting j — oo, we get

(7-5) j A(Vul? 2V — |VolP Vo) - V(u — v) dx
Q

" J BO(w) — O(v)|(u — v) dx = 0.
Q

Since Q is monotone and u=v in F\0F, we see u=v in Q. Thus the
uniqueness holds.

ExisTeNce. We assume that N > 1. If N =1, the proof below still works
with obvious modifications. First we shall regularize the problem by approxi-
mating the operator L, by uniformly elliptic operators {L,(f) }eo 1n the following
way. If L, is uniformly elliptic, the existence of solutions to in Hol P(Q) is
well-known. Let us set for ¢ > 0

(7-6) Lu = —div[(e + A(x))|Vul’ Vi), for ue Hy"(Q),

and consider the Dirichlet problem:
(77) Liu+ B(x)Qu) = f, in @,
u=20, on 09.

Then we prepare a lemma which concerns the existence and regularity of
solutions of (7-7). We shall sketch the proof for convenience.

LemMmA 7-1. Let N > 1. Assume that the same assumptions as those in
Theorem 2. Then there is a unique u, € Hy(Q) which satisfies (7-7) in the weak
sense. Moreover u, satisfies

(7-8) BO(u,), BO(u,)u, € L'(Q).

SKETCH OF PROOF. This lemma can be shown in the following way. We
replace Q for Q,(u) = min(|Q(u)|,n) sgn(#) and consider the truncated equation
below;

(7-9) LYu, + B(x)Qn(un) = f, in Q.

u=20, on 0Q.
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Since A, B and f e L*(Q), we are able to prove the existence of bounded
solutions in HO1 P(Q) by the use of Schauder’s fixed point theorem and the
standard argument. It is easy to see that {u,}.", is bounded in H,”(2). As
we make n tend to infinity, we show the weak convergence of solutions in
Hol"!7 (Q) using a priori estimates for a fixed ¢ > 0. Then by the compactness

argument we see the limit u, satisfies and (7-8). O

REMARK 12. (1) For each compact set K = Q\F, it holds that u, € H'?(K)
and BQ(u.)u, € L'(Q). Since the operator L, is uniformly elliptic on K and
A e C°(Q), there is a positive number C(K) independent of each ¢ > 0 such that
we have

(7-10) §2E|”€(x)’ < C(K).

Moreover if Q is uniformly Lipschitz continuous, then we see u, € H lif (Q\F) as
well.

(2) Under a weaker assumption that f e L'(2), a similar existence result
holds for the approximating problem (7-9). For the detailed, see [BS, Theorem
12 and its corollary].

END OF THE PROOF OF THEOREM 3. By u, we denote the solutions to (7-9) as
before. From [Lemma 7-1 and its remarks we see u, € HOL” (Q) and BQ(u;)u, €
HO1 P(Q). First we prove that u, satisfies [3-4) uniformly in & > 0. We set
(7-11) , and b =p+d.

From (1-6) in [H-2], we see |u;| < C[(|u| 10(u,)) /P 4 1] for some positive
number C. By young’s inequality we have for any positive number /

) [ s cf il 0+ s

< Calh”J (m) Bdx
o\ B

+Cb‘1hbJ |u,|| O(u,)| B dx + CJ |f] dx.
Q Q
Multilpying u, to the both side of (7-9) and integrating over Q, we get

(7-13) Jg(e + A)|Vu,|” dx + (1 — Ch~'h?) L Blug||0(u,)| dx

MY
<§> Bdx + CJQ f| .

Now we put h’ = b(2C)*1, then we have the desired inequality.

< Ca‘lh‘“J
Q
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Secondly, by the method of a priori estimate and compactness, we derive
a subsequence {u;}.”, from {u}, which converges weakly to some element
e H, (Q\F) and u, converges i a.c. in Q\F. Then by virtue of Fatou’s
lemma and a weakly lower semicontinuity of L”-norm, we get

(7-14) J A|va|de+J BO(@adx < Cl|f /B + /1)
O\F O\F

Now we show that BQ(u,,) — BQ(i) in the sense of distribution on Q\F. From
the definition of weak convergence of {u,};, and the estimates [[7-13] and [7-14),
we see that f — L ) u, — f— Lyt in the sense of distribution on Q\F.
Therefore the limit of BQ(u;) in D’ (Q\F) as j — oo exists. Hence it suffices
to show that

(7-15) L B(Q(uy) — Q(@)pdx — 0, for all pe C (2\F).

From Remark 12 just after the proof of [Lemma 7-1, sup, gpp,|t;| is uniformly
bounded on the support of ¢, so that BQ(u;) is uniformly bounded with respect
to ¢. Since u; — i a.e. in Q\F, (7-15) follows from the dominated convergence
theorem. After all we see that # satisfies in Q\F in the weak sense. Now
we define

(7-16) u(x) = {a(x), if xe Q\F,

O '(f(x)/B(x)), if xe F\0F.

Then u clearly satisfies in Q\OF in the sense of distribution. In Q\F the
operator L, is elliptic and the right-hand side of belongs to L*(2). Hence
we see that u e L (Q'). Then it follows from that u is bounded in
Q'. From we see that there exists a unique function ve L% (Q)
which satisfies (2-8). Since v =u in Q\0F, we see that ve T(Q) is a unique
weak solution to in 2 and v satisfies for some positive number C.

8. Appendix.

In this section we first study the relative capacity, and we shall prove
1-2.  We assume that Q is strictly convex as before. Then we have

LemMa 1-2.  Assume that [H-1]. Then [H-3] implies Cx(0F,Q) =0, that is,
OF has a vanishing capacity.

Proor. Without loss of generality we assume that {x: d(x) < 3} = Q. Let
us set 17;(x) =n,(x) for =27, j=1,2,..., where 5, is defined by [6-17).
Putting {;=1—17;, j=1,2,... we set



(8-1)
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() = DG,
=1

Clearly ¢V e Cg’l(Q) satisfies (¥ > 1 on dF. Then it follows from [H-3] that

(8-2)

JQA(X) -K(x,%) VNP dx

1 1
<C— —J A(x)-K(x,—)dx
P ]z_;gjp g1 <d(x)<g d

]

Here C 1s a positive number independent of each j. Since p > 1 we see the
capacity of 0F must be zero. This proves the assertion. Lastly we state the
following lemma without the proof.

Lemma A-1. The followings are equivalent to each other.

Cx(0F,Q) =0,
Cx(0F,F,) =0, for some &> 0,
Ck(0F,F,) =0, for any &> 0.

Here F, = {x e Q;dist(x,F) < &}.

From this we see that the removability of singularities does not depend on

the shape of the boundary 022. For the proof of this lemma it suffices to note
that 4(x) =0 in the interior of F (c.f. [H4]).
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