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1. Introduction.

Let X be a Noetherian scheme. A birational proper morphism Y — X of schemes
is said to be a Macaulayfication of X if Y is a Cohen-Macaulay scheme. This notion
was introduced by Faltings [8] and he established that there exists a Macaulayfication of
a quasi-projective scheme over a Noetherian ring possessing a dualizing complex if its
non-Cohen-Macaulay locus is of dimension 0 or 1. Of course, a desingularization is a
Macaulayfication and Hironaka gave a desingularization of arbitrary algebraic variety
over a field of characteristic 0. But Faltings’ method to construct a Macaulayfication
is independent of the characteristic of a scheme. Furthermore, several authors are
interested in a Macaulayfication.

For example, Goto and Schenzel independently showed the converse of Faltings’
result in a sense. Let A4 be a Noetherian local ring possessing a dualizing complex,
hence its non-Cohen-Macaulay locus is closed, and assume that dimA4/p = dim A4 for
any associated prime ideal p of 4. Then the non-Cohen-Macaulay locus of 4 consists
of only the maximal ideal if and only if 4 is a generalized Cohen-Macaulay ring but not
a Cohen-Macaulay ring [16]. When this is the case, Faltings [8, Satz 2] showed that
there exists a parameter ideal q of 4 such that the blowing-up Proj A[q#] of Spec 4 with
center q is Cohen-Macaulay, where ¢ denotes an indeterminate. Conversely, Goto [9]
proved that if there is a parameter ideal q of A4 such that Proj 4[q?] is Cohen-Macaulay,
then A is a generalized Cohen-Macaulay ring. Moreover, he showed that 4 is Buchsbaum
if and only if ProjA[qf] is Cohen-Macaulay for every parameter ideal q of A: see also
[20].

Brodmann [3] also studied the blowing-up of a generalized Cohen-Macaulay ring with
center a parameter ideal. Furthermore, he constructed Macaulayfications in a quite
different way from Faltings. Let A be a Noetherian local ring possessing a dualizing
complex. We let d =dimA4 and s be the dimension of its non-Cohen-Macaulay
locus. If s =0, then Brodmann [4, Proposition 2.13] gave an ideal b of height d — 1
such that Proj A[bf] is Cohen-Macaulay. If s =1, then Faltings’ Macaulayfication [8,
Satz 3] of Spec A consists of two consecutive blowing-ups ¥ — X — Spec 4 where the
center of the first blowing-up is an ideal of height 4 — 1. In this case, Brodmann gave
two other Macaulayfications of Spec 4: the first one [1] is the composite of a blowing-up
X — Spec A with center an ideal of height d — 1 and a finite morphism Y — X; the
second one [4, Corollary 3.11] consists of two consecutive blowing-ups ¥ — X — Spec 4
where the center of the first blowing-up is an ideal of height d — 2.
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In this article, we are interested in a Macaulayfication of the Noetherian scheme
whose non-Cohen-Macaulay locus is of dimension 2. Let A be a Noetherian ring
possessing a dualizing complex and X a quasi-projective scheme over 4. Then X has a
dualizing complex with codimension function v. Furthermore the non-Cohen-Macaulay
locus V of X is closed. We define a function u: X — Z to be u(p) = v(p) + dim {p}.
We will establish the following theorem:

THEOREM 1.1. If dmV <2 and u is locally constant on V, then X has a
Macaulayfication.

If dim V' <1, then u is always locally constant on V. Therefore, this theorem
contains Faltings’ result. Furthermore, we note if X is a projective scheme over a
Gorenstein local ring, then u is constant on X.

We agree that 4 denotes a Noetherian local ring with maximal ideal m except for
Section 6. Assume that d = dim A4 > 0. We refer the reader to [11], [12], [15], and [21]
for unexplained terminology.

2. Preliminaries.

In this section, we state some definitions and properties of a local cohomology and
an ideal transform. Let b be an ideal of A.

DerINITION 2.1, The local cohomology functor Hf(—) and the ideal transform
functor Df(—) with respect to b are defined to be

H?(-) = inj imExtf(4/6™,—) and DJ(-) = inj lim Ext/ (b™, —),
respectively.
For an A-module M, there exist an exact sequence
(2.1.1) 0 — HY(M) — M 5 DY(M) — HY (M) — 0
and isomorphisms

D!(M) = HI*'(M) for all p > 0.
They induce that

P o N Iy )
(2.1.2) Hy Dy(M) = {Hf(M), otherwise.

If b contains an M-regular element a, then we can regard DJ(M) as a submodule of the
localization M, with respect to a and i is the inclusion.

It is well-known that HP(—) is naturally isomorphic to the direct limit of Koszul
cohomology. In particular, let b= (f1,...,f;) and M be an A-module. Then

h
H{ (M) = inj im M/(f",..., i )M and HQ(M):QOA:JQ»,
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where 0 : {f;> denotes | J®°_, 0: f/*. Furthermore, let A — B be a ring homomorphism.
Then there exists a natural isomorphism Hy (M) =~ H[,(M) for a B-module M.
The following lemma is frequently used in this article.

LEMMA 2.2 (Brodmann [2]). Let b= (fi,...,fn) and c¢=(fi,...,fn—1) be two
ideals. Then there exists a natural long exact sequence

o [HI Ol — HE (=) = HE(=) = [HI(=)] = -
Next we state on the annihilator of local cohomology modules.

DEerFINITION 2.3.  For any finitely generated 4-module M, we define an ideal a4 (M)

to be
dim M—1
as(M) = H ann H? (M).
p=0

We note that a finitely generated 4-module M is Cohen-Macaulay if and only if
a4(M) = A, and that M is generalized Cohen-Macaulay if and only if a,(M) is an m-
primary ideal. The notion of a4(—) plays a key role in this article. In fact, Schenzel
[17] showed that V(a4(A4)) coincides with the non-Cohen-Macaulay locus of A4 if it
possesses a dualizing complex and is equidimensional. He also gave the following
lemma [17, 18]:

LEMMA 2.4. Let M be a finitely generated A-module and x,...,x, a system of
parameters for M. Then (x1,...,xi-1)M :x; S (x1,...,%Xi-1)M : aq(M) for any 1<
i <n In particular, if x; € aq4(M), then the equality holds.

Let R = @n>0Rn be a Noetherian graded ring where Ry = 4. A graded module
M =@. M, is said to be finitely graded if M, =0 for all but finitely many n. The
following lemma is an easy consequence of [7].

LEMMA 2.5. Let b be a homogeneous ideal of R containing Ry = @u>o Ry and M a
finitely generated graded R-module. We assume that A possesses a dualizing complex.
Let p be the largest integer such that, for all ¢ <p, H{(M) is finitely graded. Then
depth M,y > p for any closed point p of Proj R, that is, p is a homogeneous prime ideal
such that dimR/p =1 and R, & p.

3. A Rees algebra obtained by an ideal transform.

DEerFINITION 3.1. A sequence fi,..., fi of elements of A4 is said to be a d-sequence
on an A-module M if (fi,...,fi-t)M : fifi=(f1,....fis1)M : f; for any 1 <i<j<h.

We shall say that fi,..., f; is an unconditioned strong d-sequence (for short, u.s.d-
sequence) on M if f",..., f;" is a d-sequence on M in any order and for arbitrary
positive integers ny, ..., ny.

The notion of u.s.d-sequences was introduced by Goto and Yamagishi [10] to refine
arguments on Buchsbaum rings and generalized Cohen-Macaulay rings. Their theory
contains Brodmann’s study on the Rees algebra with respect to an ideal generated by a
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pS-sequences [3]. But Brodmann [5] also studied the ideal transform of such a Rees
algebra. The purpose of this section is to study an ideal transform of the Rees algebra
with respect to an ideal generated by a u.s.d-sequence.

Let fo,...,fn be a sequence of elements of 4 where # > 1 and q = (f1,...,/3)-

LemMma 3.2. If fi,...,/n be a d-sequence on A/fyA, then
(S, fi)a"] s fo= (i, Sl - o] +0: fo

for any 1 <k <h and n> 0.

Proor. It is obvious that the left hand side contains the right one. We shall prove
the inverse inclusion by induction on k. Let a be an element of the left hand side.
When k = 1, we put fya = fib where b € q". By using [10, Theorem 1.3], we obtain
be(f): iNg" < (fh). If we put b =foa', then a’ € ¢" : fy and fy(a — fia’) =0. Thus

we get a€fi[q": fo] +0: fo.
When k > 1, we put foa = b+ fyc where be (f1,...,fr-1)9" and ce ¢”. Then we

obtain
ce€(fo,-- s Jk=1): feNa"
S (fb) + (.fla o >ﬁ€—1)qn_]
by using [10, Theorem 1.3] again. If we put ¢ = foa' + b’ where

be (flv v 7f}€—l)qn_1’
then @’ e q": fy. Thus we get

a—fid €[(fi, -, e-1)d"] : fo

= (f‘lv-'-)fic—l)[qn ﬁ)] +0 :fb
by induction hypothesis. The proof is completed. O

Let §=q:<{fo). If fo is A-regular and fi,..., f; is a d-sequence on A/f]A for all
[ >0, then Lemma 3.2 assures us that

(3.2.1) " la=8"=q":{fp) foralln>0.

Therefore the Rees algebra R = A[qz] is finitely generated over R = A[qs]. The fol-
lowing is an analogue of [9, Lemma 3.4].

TueoreM 3.3. Let B= A[G/ful = Ry If fo is A-regular and fi,....f, is a
d-sequence on A[fjA for all 1 >0, then fu, fi/fn,---,Ju-1/fns fo is a regular sequence
on B.

Proor. First we note that fi,...,f, is a d-sequence on 4. In fact, by using
Krull’s intersection theorem, we obtain

Fioevorfot) : fify = ﬁ(fo’,ﬁ,---,ﬁ-l) 1

- Ia(ﬁ,’,ﬁ,---,ﬁ—o Hj
= (fiy-- o fi) 1
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for any 1 <i<j<h Next we show that

(331) (flv"w,ﬁC—l):.ﬁcnanz(ﬁv"'»ﬁ\f-l)anhla

forany 1 <k<h+1 and n> 1, where f,,; =1. If ais an element of the left hand
side, then fOIa € q" for a sufficiently large /. By [10, Theorem 1.3], we have

foae(fiy.- o, fim1)  fiNQ"
= (fi,-- fe-1)a" ™.
Lemma 3.2 says

ae[(fi, -, fim)d" N 0> = (fise - fie))TTL

The inverse inclusion is clear. By (3.3.1) and [10, Theorem 1.7], we obtain that

S St
ﬁl’_—f;,'”,—_ﬁt_

is a regular sequence on B.
Finally we shall show that f; is regular on B/(fh, fi/fn,--,fu-1/fa)B. Let
ae (fo, i/fus--,Jo-1/fn)B: fo. For a sufficiently large n > 1, we may assume o =

ao/fy and

fia Jh-1an-1

ap ap
0—n =Jh—7m + R
fo g =1 o Y

N Y
where ay,...,a, € G". Therefore
[ foao = £ (fRan + fiar + -+ + fomrah-1)
in A for some m >0. Take an integer / such that fla, € q". Then
fhm+2f01ah € (fbl-!—l,fl, o ,ﬁr—l) N qn+m+2
— (f01+1) N c'n+m+2 + (fl, o ,fh—l)qn+m+l
c f61+lan+m+2 + (fl, . ,fh—l)qn+m+l-
If we put
S fdan = f5+ b + fiby + -+ + fao1bay
where by € §*t™*2 and by,...,by_1 € "] then
S an — fobo € [(fis -5 fi-1)a™ ] oD

= (fl) R 7ﬁ!——l)an+m+1'
Let

£ 2an — fobo = fic1 + -+ + fu—1Ch-1

where c1,...,ch—1 € "1, Then

S ao = bo) € (fis- - fuD)a™ ™.
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Therefore
ﬁ,m+la0 - bO € (ﬁ’ oo ;fh-l)Ele,
that is,
b -
(X'—ﬁ,——_l:g-_ri € (—'fl,,[}i—l)B
ﬁzn m ﬁ: fh
The proof is completed. ad
In the rest of this section, we assume that f; is A-regular and that f;,...,f; is a

u.s.d-sequence on A/ffA for all I >0. Let G=Pn>09"/9""! and G = Pn>07"/5"*!
be associated graded rings with respect to q and g, respectively. We shall compute local
cohomology modules of G and R with respect to % = (fo,...,fs)R+ R,.

THEOREM 3.4. If p<h+ 1, then
[H;(G)]n =0 forn#1-p.
Furthermore
[HEYG)n =0 forn> —h.

Proor. We shall prove that

(3.4.1) [H&),ﬁz,...,ﬁz)(é)]n =0 forn#1—-p

if p<k+1 by induction on k. It is obvious that f; is G-regular. Therefore

H?fo )(G) =0. _ _ _ -
Suppose k£ > 0. Then H("fo St S t)(G)ﬁ([ =0 for p < k by induction hypothesis.

By Lemma 2.2, we obtain isomorphisms
I 7\ ~ HP e
H ft (@) = Hg g (G) for p<k.
Therefore (3.4.1) is proved if p < k. We also obtain an exact sequence

k -~ k ~ k —~
0= H g si(G) = Hi ro g 0(G) = H oy v (G

.....

that

_ U7 )G iy
g o Ggme k1) form >0

and the homomorphism K,, — K, is induced from the multiplication of
(fo-fit-- fie1t)™ ™ for any m’ > m. We shall show that it is the zero map except
for degree 1 — k if m’ is sufficiently larger than m.

Let « be a homogeneous element of K, of degree n and « its representative. That
is, aeg*t™* =1 and

f;cla efoman+m(k—l)+l + (flm’ . ’fzril)an+m(k—2)+l + an+m(k—1)+1+1
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for some / > 0. Take an integer m’ > m such that fo’""’”a cq. Then f({”'"’"ﬁ" cq”
for any n >0 by (3.2.1). By replacing a by its image in K,,, we may assume that
ae qn+m(k—l) and

flae frmagnrmbe=D+t o (pm  gm Yqrimk-2+l . grbm(k=D+1+

We put fla=b+c where befragmtmk-D 4 (fm . fr)e kD4 and ce
qtmk=1+H+1 Then, by using [10, Theorem 2.6], we obtain

ce (f(-)m, o ?fk"—'l?f}cl) N qn~+—m(k—-1)+1+1
- fm n+m(k—1 +l+1 (fl . ,fk”_l1)qn+m(k_2)+1+l +f}clqn+m(k—l)+1.

If we put ¢ = b’ + fa’ where b’ e frgrmk=D++l o (fm L fm VqrtmEDHHL and o' €
q"tmk=D+1" then a —a’ is also a representative of . Therefore we may assume that
c=0.

By using [10, Theorem 2.8], we obtain

ae(f,....fr"): fingtmk-D
— (ﬁ)m) N qn—+—m(k—-1) + (flm> o ,fk’i1)qn+m(k—2)
+ > {Hf,-”’“}{[(ﬁ{")Jr(ﬁlieI)] : fi}
1<{l, k-1} iel
§I-(m—1) = n+m(k—1)
Cf"‘ =n+m(k—1) (fl ) ’fk )n+mk 2)+qn+m(k 1+
+ > {Hﬁ’”“}{[(ﬁ)’")+(ﬁli61)] : fi}-
I1s{l,...k—1} iel
f1-(m—1)=n+m(k—1)

Here #§I denotes the number of elements in . If n > 1 — k, then there is no subset I of
{1,...,k—1} such that - (m—1)=n+m(k—1). If n<1—k, then such I is a
proper subset. Let je {l,...,k—1}\I and

del[(fi)+(filieD): fi=[fg")+(filieD]: f.
Then

iel

(fO .. 'fk-l){Hf;-m_l }d Eﬁ)m+1(_]”+(m+l)(k_l) + (flm+1, o ,f}cnril-l)qn+(m+l)(k-2)_

In fact, if we put fjd = fj"e + g where g€ (f; | i € I), then e € q. Thus the image of a in
K, is zero if n# 1 —k.
Put Kk =h. Then

[m(G)]n—[ (fo, fit,- f,,,)(é)]nzo forn#1-p

if p<h+1. The first assertion is proved.
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Next we compute H("f‘(: lflt 4 t)(G). It is the limit of the direct system {K} },.o
such that

K, = G/(f", (AD™, .., (fit)")C(mh) form >0

and the homomorphism K/, — K, is induced from the multiplication of
(fo- fit--- fu)™ ™™ for any m’ >m. We shall show that it is the zero map for
degree n > —h if m’ is sufficiently larger than m.

Let « be a homogeneous element of K, of degree n and a its representative. That
is, aeq". If n> —h, then

(f() . 'f}l)m’——ma n+m'h __ (fl .. ,ﬁlm’)qn+m’(h—l)

for a sufficiently larger m’ than m. Thus the image of o in K, is zero if n > —h.
Therefore [Hit'(G)], =0 for n> —h. |

By this theorem, we can compute local cohomology of R.
COROLLARY 3.5. If h=1,2, then
HA(R)=0 forp#1,h+2

and Hl( ) = [H, m(R)]O—H(Iﬁ,,...,ﬁ,)(A)-
If h >3, then

HP(R) =0 forp=0,2,3
and HL(R) = [HL(R)]o = (). Furthermore, if 4 < p <h+1, then

(A), for -1 >n>3—p;

otherwise.

(AR = {g’w

’

Proor. Passing through the completion, we may assume that 4 possesses a dualiz-
ing complex. Since H%(G) is finitely graded for p < h+ 1, H5(R) is finitely graded for
p < h+1 [14, Proposition 3]. Considering the following two exact sequences

0—-R, - R—-4—-0 and 0— R, (1)>R— G—0,
we obtain the assertion: see the proof of [S, Theorem 4.1]. O

Let S = R/R, that is, S = @,>09"/q". The following proposition shall play an
important role in the next section.

ProPOSITION 3.6. If p < h, then

[HE(S)n=0 forn#1—p.
Moreover,
[HE(S), =0 forn>1—h.

Proor. In the same way as the proof of Theorem 3.3, we find that f;,...,f, is a
u.s.d-sequence on A. Hence, by using [10, Theorem 4.2],

(Y (@)l =0 forns—p
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if p < h. Furthermore,
[H("ﬁ,’.__,ﬁl,)(G)],, =0 forn> —h.
By using Lemma 2.2, we obtain
[H3(G)n =0 forn#1—p,—p
if p<h and
[HH(G)n=0 forn>1-p
if p=h, h+1.
Since §% = q§, there exists an exact sequence
0-S1)=G6LG-5-0.
Let T be the image of ¢. We shall show
[HE(S)]n = [HE(T)]» =0 forn>1-p

by induction on h—p. If p>h+ 1, then the assertion is obvious. Let p <h+ 1.
Then following two exact sequences

HE(G) — H(S) — HE™(T) — HE™(G),
H(G) — Hy(T) — HG™(8)(1) — ™ (G)
and the induction hypothesis imply
[H§(S)]n = [H(T)]n =0 forn>1-p.
In the same way, we can prove that
[H3(S)ln = [Hy(T)]ln =0 forn<1-p
if p < h by induction on p. O
Finally we show that R is an ideal transform of R in a sense.

.....

ProoF. We first show that fp, f7 is a regular sequence on R,. Let n > 0. Since
fo is A-regular, it is also §"-regular. Let a€ [fo§"]: fiN§". Then ﬁ)’aeq” for a
sufficiently large /. Since fia e (fy), we have flae (f{™):fiNg" = f*1g", that is,
ac foq". Thus we have shown that f; is R,/foR,-regular.

By this and (2.1.1), we obtain

0 0 57
(37.1) Diy,...5n(Re) € Digy 7y (Ry) = Ry

Since §" = q" ' for n>2, (f}, fi,.-.,/s)Rs S R, for a sufficiently large /. Hence, we
obtain the inverse inclusion of (3.7.1). The proof is completed. O
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4. A blowing-up with respect to a certain subsystem of parameters.

In this section, we assume that A4 possesses a dualizing complex. We fix an integer
s>dimA/ay(A4). Since dimA/ay(M) < dim M for any finitely generated A-module M

[19, Korollar 2.2.4], there exists a system of parameters x,...,x; for A such that
40.1) Xst1, > X € aq(A);
e xi € aq(A/(Xit1,-.-,%4)), fori<s.

This notion is a slight improvement of a p-standard system of parameters, which was
introduced by Cuong [6]. He also gave the statement (1) of Theorem 4.2.

LemMMmA 4.1. Let ny,...,n; be arbitrary positive integers. Then
n n; T n ni_
(e X Xty -y Xa) s X (O X Xk -, Xa)
n ni_
= (xllv' "7xi.‘_117xk+17"'7xd)

for any 1 <i<k<d.

Proor. It is obvious that the left hand side contains the right one. Let a be an

element of the left hand side and a =b+ xxc where be (x]',..., X", Xkq1, .- ., Xa)-
Then
n ni_ n;
ce (X1 o X Xkqty o0, Xa) T XXk
n n;_
= (xll,...,xiil’,xkﬂ,...,xd) L Xk
by Lemma 2.4. Therefore xic, a € (x7',..., X", Xk+1,...,%a). The proof is completed.
O
Let q = (X441,...,X%4). Lemma 2.2 assures us that x..1,...,x; is a u.s.d-sequence

on A. Furthermore, we have the following theorem:

THeoREM 4.2. (1) The sequences x{',...,x}, ngjrl), ... ,x;”z g isa d-sequence on A
for any positive integers ny,...,ng and for any permutation o on s+ 1,...,d.

(2) If s>0, then x',...,x" is a d-sequence on A/q" for any positive integers
ni,...,ns and n.

Proor. (1): Let 1 <i<j<d. We have only to prove that

n i1\ . BT -1y . Y
Oy x) cxixy” = (xS x) txg

for any positive integers ny,...,ny. If j>s, then the both sides are equal to
(W 20) : aa(A).

Assume that j < s and take an element a of the left hand side. By using Lemma
2.4, we get

ny ni_1 LML
ae(xl ""axi.l.laxj+17"'axd) 'xi,xj

n ni_ ]
= (%], X X1y - - Xd) X
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Hence we have

n; n nl n, ni_y
x’ae(xy',...,xq): XXX Xt - Xd)

= (x{',...,x}
by repeating to use Lemma 4.1.
(2): If n=1, then the assertion is proved in the same way as above. Let
l<i<j<sand n>1. Then x.,...,x; is a d-sequence on A/(x;",...,x;'j‘l‘,x;"x;").
By using Lemma 3.2, we obtain

[ x5) 4+ a7 2 X
= (x]', ..., x1 ) xf"'xf'f + a7 O, X Xty - - Xa) L XX
= (x", ..., X)) x"’ +q" l[(x ey X Xy ey Xa) :x}'f]
S (" xi) +49" x
Here the second equality follows from the case of » =1. Thus the proof is completed.
p p
U
In the same way as the proof of Theorem 3.3, we find that any subsequence of
y p y q
x{',...,x;" is a d-sequence on 4 and any subsequence of x{',...,x} is a d-sequence on
A/q" for arbitrary positive integers ny,...,nz and n.

COROLLARY 4.3. Fix an integer k such that 1 <k <d. Then

xPooooxr )X
(4) = inj lim. rp=1) Xz

HP
m (x,’c",...,x,’c"ﬂ_])

(xlﬁ vxd)

for p<d—k+1.

ProOOF. We shall prove that

(oo X 1)t Xk
P IPIET +p—1 4
Hioog () = 00 fim ==y forp <=kl
by induction on /> k. If I =k, then H(x)( ) =0:4 x¢.
Suppose / > k. Then xg,...,x;—; is a regular sequence on A,, because xi,...,x; is

a d-sequence on 4. Hence we obtain isomorphisms

Hf (4=

(Xk, ,.X[)

(xk' 0 (A) forallp <l -k
and an exact sequence
0 - Hl—— (A) - (Xk, X1 1 (A) - Hl o x1_1)(A)X1

by Lemma 2.2. This exact sequence is the direct limit of the exact sequence

(X2, xt) i x
0— Ecx;fn,...,lx;”il) _’A/(x;‘n""’xlnil)—_)[A/(kaa'-wx]"i])]xl-

Thus the proof is completed. O
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If s = 0, then Proj A[q?] — Spec 4 is a Macaulayfication of Spec 4: see Theorem 5.1
for details. In the rest of this section, we shall observe Proj 4[q#] when s > 0. Assume
that s >0 and fix an integer k such that 1 <k <s. We shall compute local co-
homology modules of R = A[q#] with respect to (xk,...,Xs+1). Let MM =mR+ R,.

THEOREM 4.4. H}, (R)=0:4 X

Proor. Since xg, xy11,...,Xs7 1S a d-sequence on A4, 0:4 xxNg" =0 for n >0 by
[10, Theorem 1.3]. That is,

0:4 xx, ifn=0;
H® " = ’ ’
(xk,...,xs+1)(q ) {0, otherwise.

Therefore, H{, . (R)=@n=0H}, . 1(a") =0:4x. O
Let C = A[f]/R, that is, C = @,>04/q".
LemMma 4.5. For k<! <s+1 and p <1 —k, the natural homomorphism
of : H(I;k,...,x,)(A[t]) — H” .,x,)(C)

is a monomorphism except for degree 0.

Proor. We shall work by inductionon /. If/=k, then 0:4 xxNg" =0 for n > 0.
Therefore

al:0 : Xk — Paq":xi/q"
Al n>0
is a monomorphism except for degree 0. Let k </ <s. Then xg,...,x;_; is a regular

sequence on A, and on C,, by Theorem 4.2. By using Lemma 2.2, we obtain
commutative diagrams

H(I;Ck ,,,,, x1) (4[1)) — H(I;ck,...,x,_l)(A[t])
“fl “f_ll forp<l-—k
p ~ p
H(xkr":xl)(c) H(Xk,...,xl_l)(c)

and

0 — HEk l) — HEF , Al) — HEE Ay

(%, (%y--)X1-1)

“| J |

0 — H(lxkk ,x:)(C) - H(kalf-n,xz 1) € — H(IJ;;, o Xie 1)(C)x’

whose rows are exact. Therefore the assertion is true for p < /—k and we find that

/7% is the direct limit of

! . (xlrcn, . xl I)A t] X1 @[(ka"’xlnil)_'_qn] - Xl
m :
(xka-- xl l)A[t] n>0 (xlrcnv""x;’il)"'qn
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Since x;,Xs41,...,%4 is a d-sequence on A/(x,...,x",),
(g X)) s N (g, xt )+ 9" = (g, ..., xt,) forn>0.

Therefore a;,, is a monomorphism except for degree 0 and oc}‘k is also.
If I=s5s+1, then x;,...,x, is a regular sequence on A,  and C,, =0. The
assertion is proved in the same way as above. O

Of course, «?, , is the zero map in degree 0. Therefore there exists an exact

sequence

(4.5.1) 0 — Cokera?;| — H?

(xky ~-yxs+l

(R) — H (4)—0

(xk o Xs+1)
for O<p<s—k+1.
THEOREM 4.6. Let 0 <g<s—k. Then
(Xk+gs - - -+ Xa) Cokeral | =0
and Hf(Cokero! ) is finitely graded for p < d —s.
Proor. We know that Cokera? ; = Coker af +q = inj lim,, Coker o414, and

X2 xp . 1)+ a%] s xx
Coker “k+q’m — @ [( ]’cn’ ’ ]’cn+q 1) ] ';q
>0 (X0 - ’xk+q—1) P Xk+qg T4

By using Theorem 4.2 and Lemma 3.2, we obtain

(4.6.1) [(xKs -+ s Xhige1) +0"] & Xictg
= (Xg, ooy Xpyg1) xk+q-+-q"_1[(x,'c",...,x,’c’ﬂr 1y Xst1y -+ s Xd) © Xictq|-
q q

Therefore Coker az14,» is annihilated by (Xgi4,...,xs) and Coker och is also.

Next we compute local cohomology modules of Coker of +1- We note that xz., is a
regular element on 4/(x,...,x} g 1) : Xk+q and that x,1,..., x4 is a u.s.d-sequence on
AJ(xs - XKy go1) | Xktg t+ (xk +) for any /> 0: see [13, Proposmon 2.2]. Therefore,
by Proposition 3.6,

(4.6.2) H(’;Hq’ Soetronxa)RER, (Coker ag14m) is concentrated in degree 1 — p

if p<d—s. Hence H’

rq __ p (xk+q7xs+lv ’xd)
E2 =H H(xk+qax:+l; ,xd)R+R+( )=>

rer, (Cokeraf, ) is also. By the spectral sequence
HL(-), we obtain the second assertion. O

—k+2
Next we compute H(sxk xm)( ).

THEOREM 4.7. Let Ay = A/(X7,...,x)") and q,, = qA,, for any positive integer m.
Then

HF2 (R = ln_] hmA [qmt]/xs+1Am[qm’]

Xk, )x.H-l

In particular, HY, H7++2 (R) is finitely graded for p < d —s.

(xk o Xs+ 1
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Proor. We consider the exact sequence

.r—k
HF (Al 2o HEE (C)— HEF (R)— HEF, (4]d) £ HE (O,
Since f# is the direct limit of

A[t]/(xlrcn" -y Xg )A[t] - C/(xkv" m)C,

we have Ker § = inj lim,, A,[q,,7]. Taking local cohomology modules of a short exact
sequence

.....

with respect to (x;.1), we obtain

(4.7.1) Hi, (H(R) = H,, ) (Ker ),

(xkv xs x 1)

because Coker a~* = Coker oS ¥ is annihilated by x;41. The left hand side of (4.7.1)
coincides with H{ **2 (R) by Lemma 2.2. Thus the first assertion is proved.

(xk X, s+1)
Since x41,...,X4 is a u.s.d-sequence on A4,,, H(xm, )R+ r, (Am[am 7]) is concentrated

indegree0 >n>s—d+2if p<d—s: see[10, Theorem 4.1]. From the exact sequence

0— O xs+1 — Am[qmt] = Am[Qm ] - Am[Qm ]/ +1Am[qm ] -0

and the spectral sequence E}? = HEL,H/ (=) = H§™(-), we find that

(Xgt1yr-, %) R+Ry.
(4.7.2) HE (Am[0,]/x., 1 Am[a,nt]) is concentrated in degree 0 > n > s —d +2
if p<d-—s. Taking the direct limit of it, we obtain the second assertion. O
Finally we compute local cohomology modules of B = A[q/xs+1] = Rx,, 1)
THEOREM 4.8. Let n be a maximal ideal of B. Then
H"H&k, ) B) =0 ifg=00rp<d-s—1.
Furthermore (Xgiq—1,.--, le)H(x,,,..,,xH,)(B) =0 forg<s—k+2

Proor. Since the blowing-up ProjR — Spec4 is a closed map, there exists a
homogeneous prime ideal p of R such that x;.17¢ p, dimR/p =1 and n = [pR,, .

Since x;,; is B-regular, H&k,n_’xm)(B) =0

Let 1 <g<s—k+1. By applying Lemma 2.5 to (4.6.2), we obtain

H?((Coker ox1g—1,m)(x,1)) =0 forp<d—s—1.
By taking the direct limit of it and using (4.5.1), we have
HPH(‘;k _____ x,+1)(B) =0 forp<d-s—1.
(B) =0.

q
Moreover Theorem 4.6 also assures us (xk+‘1~1’°"’xSH)H(xk,...,xm)
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Next we consider H(‘;Ck‘fzxm)(B). By applying Lemma 2.5 to (4.7.2) and by taking
direct limit, we have

H,{’st“kk+2 (B)=0 forp<d—s—1.

( 7"'1x-\‘+1)

Thus the proof is completed. O

5. Macaulayfications of local rings.

In this section, we shall construct a Macaulayfication of the affine scheme Spec 4 if
its non-Cohen-Macaulay locus is of dimension 2. Assume that 4 possesses a dualizing
complex and dimA4/p =d for any associated prime ideal p of 4. Then V(a4(A4))
coincides with the non-Cohen-Macaulay locus of 4. We fix an integer s > dim A/a4(A4)
and let xi,...,x; be a system of parameters for 4 satisfying (4.0.1).

First we review Faltings’ results [8, Sitze 2 and 3]. Let q= (Xst1,---,Xq),
R = A[qt] and X = ProjR.

THEOREM 5.1. With notation as above,
depthOx, >d —s for any closed point p of X.
If s=0 or A/q is Cohen-Macaulay, then X is Cohen-Macaulay.

ProOF. Since Xx;.1,...,X7 18 a u.s.d-sequence on A4, H’;Cs+1»~~-,xd)R R, (R) is finitely
graded for p < d — s: see [10, Theorem 4.1]. By using Lemma 2.5, we obtain the first
assertion.

Furthermore since dim Oy, = d for any closed point p of X, X is Cohen-Macaulay
if s=0.

Assume that s >0 and A/q is Cohen-Macaulay. Then Xx,...,x; is a regular
sequence on 4/q. We use theorems in Section 4 as k =1. From (4.6.1), we find that
Cokeral,; =0 for all ¢g<s—1. That is, H&H&lmxm)(R) is finitely graded if p <
d—sor g<s+1. By the spectral sequence E;* = HpH/ . (-)= HEM(-), we

find that H(R) is finitely graded for p <d +1. Lemma 2.5 assures us
depth Oy, > d for any closed point p of X.

The proof is completed. O

From now on, we assume that s > 0.
Since x, is A-regular, q is a reduction of §=q: x; by (3.2.1). We put R = A4[g{|
and X =ProjR. Then X — X is a finite morphism.

THEOREM 5.2. With notation as above,
depth Oz ; >d —s+1 for any closed point p of X.
In particular, if s=1, then X is Cohen-Macaulay.

Proor. By Corollary 3.5, H(’;w,xd) RER, (R) is finitely graded for p <d — s+ 1. By
using Lemma 2.5, we obtain the assertion. O
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Next we consider an ideal b= g% + x;q = (xs,...,%s)q. We put S = A[btf] and
Y =ProjS. Then Y is the blowing-up of X with center (x;,...,xs)0x.

THEOREM 5.3. With notation as above,
depthOyq = d — s+ 1 for any closed point q of Y.

Furthermore, if s=1 or A is Cohen-Macaulay, then Y is Cohen-Macaulay.

PROOF.  Since (XsXst1,- - - »XsXd, X241+ - -, X3)b 71 = b?~*, we have only to compute
the depth of Cp = A[b/x,xs11] and C; = A[b/x2,,]. If we put B = A[q/Xs.1], then

Co = Blxsi1/x5] = B[T]/(%:T — x541) : {Xs),
C = B[xs/xs+l] = B[T]/(xs+l T - xs) : X1,

where T denotes an indeterminate. We note that B, Cp, C; are subrings of the total
quotient ring of A because xi,...,xq are A-regular elements.

First we consider Cp. We regard it as a homomorphic image of B[T]. Let [y be
a maximal ideal of Cy and n=[;NB. Then n is a maximal ideal of B because
Spec Cyp U Spec C; — Spec B is a blowing-up with center (x;, x;4+1)B, hence a closed map.
There exists a polynomial f over B such that Iy = nCy + fC and the leading coefficient
of f is not contained in n.

By Lemma 2.2 and Theorem 4.8, we have, for any 1 <k <3,

(5.3.1) Higyrmm . ) BIT) =0 if p<d-sorg=0.

In fact, the leading coefficient of f is a regular element on H%~ SH(‘; orxer) (BIT]) because
it acts on the injective envelope of B/n as isomorphism. Taking the local cohomology

of a short exact sequence

Xs T—Xg41

0 — B[T] 21254 BIT] — B[T]/(x,T — x541) — 0

with respect to (xg,...,Xsr1) = (Xk,..., %5, X1 — Xs41), We obtain an exact sequence

0 — Hi kL (BIT]) — HZ*L (BIT)/(x:T = xo11))

(X yee1Xs41)

— H{* (BIT) — HF (BIT]) -0,

(xk 5K +l (xk) yx.H-]

because (xs,st)Hs k+;ﬂl (B) =0 by Theorem 4.8. This and (5.3.1) show that

HnB[T}+fB[T]H(SJ;I,C+;S+,)(B[T]/(xST —Xx541)) =0 forp<d—s.

Taking the local cohomology of an exact sequence

(xsT — Xsq1) : {Xs)

0—
(xsT - xs+1)

- B[T]/(XST — xs+1) — C() —0
with respect to (xx,...,Xs+1), we obtain

HEH (Co) = HEZ¥  (BIT)/ (6T — xe41)),

Xy X)) NV T T (e Xs+1)
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that is,
(5.3.2) HPHS A (Co) =0 forp<d-—s.

(xky“'vxﬂ»l

We note that x; is Cp-regular. Put £k =s. Then we have
HIISng,,xM)(CO) =0 ifp<d-sorg<]l.

By the spectral sequence E;? = Hf H{ (=)= H *4(-), we obtain

(xhxs-f-l)

(5.3.3) Hl(Co) =0 forp<d-s+]1,

that is, depth (Cop);, >d — s+ 1.
In the same way, we can show that depth (C;);, > d — s+ 1 for any maximal ideal [;
of C,. Thus the first assertion is proved. In particular, Y is Cohen-Macaulay if s = 1.
Assume that 4 is Cohen-Macaulay. Using [8, Lemma 1] twice, we find that

Xs+1 Ts+2 = Xs+2y - -0y X5l T, - Xd, xsTs+l — Xs+1
is a regular sequence on A[T,...,T4]. Therefore
Co = A[Ts+17 sy Td]/(xs+lTs+2 — X542y s Xsp1 Ta — X, X Tsy1 — xs+1)

is Cohen-Macaulay. In the same way, we can show that C; is Cohen-Macaulay. The
proof is completed. (]

In the rest of this section, we assume that s >2 and let b=Db: (x,_).
LeMMA 5.4. For any positive integer n,
" =b": (x,_1> = qb”‘l[(xs, ceey Xd)  Xg—1] +x;'q""[q D X1
In particular, b* = bb.
Proor. It is sufficient to prove
" {x1) = qb"_l[(xs, ceey Xd) b Xs—1] +x§’q""l[q : Xs—1]-
Take aeb” : {x;_1>. Then, by Lemma 2.4, Lemma 3.2 and Theorem 4.2, we have

ae (Xg, ..., x3)": {xs_1D>
= (Xgy ooy X2) Y (g, ., Xa) t X_1]
= [ 4+ 2,0 24 D[y -5 Xa) £ Xs1]
< qb" (X, ..o, Xa) 1 Xe] + (XT).

If we put a =b + x}a’ where b € qb"‘l[(xs, ...y Xd) : Xs—1), then x"a’ e " : {x,_1). Since
i

x!_x"a' eb" for a sufficiently large I, we can put x!_x"a’=c+x"d where

ceq”+---+x"1q"! and deq”. Then x'_ja' —deq"™!:{(x)=q"[q:x]. Hence,

x!_a'eq" and a’' € q" : {x,1)> = q" " ![q: x;-1]. The proof is completed. O

Therefore the Rees algebra S = A[bf] is finitely generated over S. Let ¥ = ProjS.

PropPosITION 5.5. D, . . (S:) =S
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PrOOF. First show that x,_;, x, is an S, -regular sequence. Let n > 0. It is clear
that x,_; is b"-regular because it is A-regular. Leta € (x;_1b" : x;) Nb". Then xﬁ_la eb”

for a sufficiently large /. Since x,a € (x,_1) and x,,...,x; is a d-sequence on A/x'*]4,
! I+1y . n
x,_ja€(x;):xNb
141y | I+1
< (x 1)) xs N (X1, X, .00, Xa)
(]
- (xs—l :

Hence a€ (x5-1). If we put a=x;1a, then o’ eb”: x/T] cb", that is, ae x.1b".
Thus we have proved that x; is S /x, 1S -regular.
By (2.1.1), we have

(551) D?xs—hxsyxs-i—l)(S"-) S D?x:—l,xsvx.r+l)(s’-+) = §+.

Since q : x;_1 S q: x; by Theorem 4.2, (x;_1,...,x4)b" = b" for all n > 0 by Lemma 5.4,
that is, (Xs_1,...,%4)S+ S S,. We have shown the inverse inclusion of (5.5.1). [0

The following theorem is one of main aims of this section.
THEOREM 5.6. With notation as above,
depth 0y, > d —s+2 for any closed point § of Y.
In particular, if s =2, then Y is Cohen-Macaulay.
PrROOF. We have only to compute the depth of
Co = A[b/xsx;11] and Cp = A[b/x2,)].

Proposition 5.5 says that C; =D . (C;) and it is a finitely generated C;-module
for i =0,1.

Let I; be a maximal ideal of C; and ; = ;N C;. Then I; is a maximal ideal of C;
because C; is integral over C;. We use (5.3.2) as k = s — 1, that is,
(5.6.1) HPH, (C)=0 forp<d-—s.

(xs—l 3 X5 Xs+1 )
By using (2.1.2), we obtain
Hlf’H&s_hxth)(C_'i) =0 ifp<d-sorg<2.
By the spectral sequence Ej* = H/H! (=)= HF™ (=), we find
(5.6.2) H(C;)=0 forp<d-s+2,
that is, depth(C_',-)ii >d — s+ 2. Thus the proof is completed. O
The following corollary shall be used in the next section.

COROLLARY 5.7. If A/(xs,...,xq) is Cohen-Macaulay, then

depthOy, >d — s+ 2 for any closed point q of Y.
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Proor. It is sufficient to prove b=b. Let aeb and / be an integer such that

x!_jaeb. Then we have

ae(xs,...,xs):x_,
= (X5, .., Xa)[(Xs5y- -+, Xa) : xsl_l]
= (X5, Xa)> = b+ (x?)
by Lemma 3.2. Hence, we may assume that ae (x2). Let a=x2a’. Since x!_jae

bcg, aeq:x_x2=q:x, by Theorem 4.2. Hence a = x2a’ € x;q < b. O

We shall give another Macaulayfication of Spec 4 by considering an ideal ¢ =
(Xs-1,...,%4)b. Let Z =ProjA[cf], which is the blowing-up of Y with respect to

(xs_l, ey xd)(Oy.
THEOREM 5.8. With notation as above,
depth0Oz, >d — s+ 2 for any closed point r of Z.

Furthermore, if s =2 or A is Cohen-Macaulay, then Z is Cohen-Macaulay.

PROOF.  Since (xg—1xs, X2)q + Xs—1(x2 1, ..., x3) + (x21,...,x}) is a reduction of «,
we have only to compute the depth of

Dy = Alc/x5-1%5x541] = Colxs/Xs-1],
D, = A[c/xszxs-{—l] = CO[xs~1/xs]»
Dy = Al¢/x;-1x2%,] = Ci[Xs41/%s5-1],

and
Dy = Al¢/x},1] = C1[Xs-1/Xs41)-

For i=0 or 1, let [; be a maximal ideal of C;. By (2.1.1), there exists an exact
sequence

0-C—Ci—>H,_ .. (C)—0.
By using (5.3.3) and (5.6.2), we obtain
HIfH(lxs_hxbe)(C,-) =0 forallp<d-s.

Furthermore, (x;_1,...,x4)C; < C;: see the proof of Proposition 5.5. Therefore, by
(5.6.1), we have

(5.8.1) H{H] . (C)=0 ifp<d-sorg=0
and
(5.8.2) (%515 -+ Xa)Hy ey (Ci) = 0.

Therefore we can prove
depth(D;), > d —s+2

for any maximal ideal r; of D; and i=0,...,3 in the same way as Theorem 5.3.
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To make sure, we compute the depth of Dy =~ Co[T]/(xs—1T — X;) : {xs5-1). First
we note that x,.; € x;Cp and x,y; € x;Dy. Let rp be a maximal ideal of Dy and [y =
0N Cy. Then [y is a maximal ideal of Cy and there exists a polynomial f over Cj such
that vy = [pDy + fDy and the leading coefficient of f is not contained in [j. We obtain

P
Hi cyimy+pcolm

(x,._l xs)(CO[T]) fp<d-s+1lorg=0
from (5.8.1). Taking the local cohomology of an exact sequence

Xs_1T—xs

0— Co[T] C()[T] — C()[T]/(xs_lT - xs) - 0,

we have an exact sequence
0= H},, ) (GO[T)) = HLs oy (GO[T)/ (51T = x,))

— H} | (Go[T)) = Hf,, | ) (Co[T]) — 0

x_‘._l x

(%5—1,%s5)

because of (5.8.2). This says that

HloCo[T]+fCo[T] (s (CoT]/ (X1 T — x5)) =0 forp<d—s+1

Taking the local cohomology of an exact sequence

(xs—l T - xs) : <xs-—1>
(xs—l T - xs)

0— — C()[T]/(xs_lT—xs)HDo—*O

with respect to (x;_1,x;), we obtain
HPH, (Do) =0 forp<d—s+1.
Of course, H x )(DO) 0. By the spectral sequence

E}* = HRHE (=)= H[M(-),

(Xs5=1,%s)

we get HL(Dg) =0 for any p <d —s+2. That is, depth(Dg),, > d — 5+ 2.
The last assertion is also proved in the same way as Theorem 5.3. O

6. The proof of Theorem 1.1.

This section is devoted to the proof of Theorem 1.1. Let 4 be a Noetherian ring
possessing a dualizing complex and X a quasi-projective scheme over 4. Thatis, X is a
dense open subscheme of X* = Proj R where R = @)»0 R» is a Noetherian graded ring
such that Ry is a homomorphic image of 4 and R is generated by R; as an Ry-algebra.
Let V* be the non-Cohen-Macaulay locus of X* and U* = X*\V*. Of course V =
V*N X is the non-Cohen-Macaulay locus of X. Let D* be a dualizing complex of R
with codimension function v. Assume that X satisfies the assumption of Theorem 1.1.

Without loss of generality, we may assume that

(6.0.1) v(p) = O for all associated prime ideal p of R :

see [8, p. 191]. Then the local ring Oy, of p € X satisfies the assumption of Section 5,
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that is, dim 0y ,/p = dim Oy, for any associated prime ideal p of Ox,,. For the sake of
completeness, we sketch out the proof. Let a be a homogeneous ideal of R such that
V* = V(a). Then the closed immersion Proj R/H?(R) — X* is birational as follows.
For any minimal prime ideal p of R, a¢ p and HJ(R) < p because R, is Cohen-
Macaulay. Hence the underlying set of Proj R/H?(R) coincides with the one of X*.
Furthermore, f~!(U*) — U* is an isomorphism and U* is dense in X*. By replacing
R by R/H’(R), we may assume that

(6.0.2) every associated prime ideal of R is minimal.

Next we fix a primary decomposition of (0) in R. For all integer i, let g; be the
intersection of all primary component q of (0) such that v(,/q) =i. Then g:
[1,ProjR/q; — X* is a finite morphism and g~!(U*) - U* is an isomorphism as
follows. Note that g; = R for all but finitely many i. Furthermore, for any p e U*,
p=2q; if and only if v(p) —dim R, =i because R, is Cohen-Macaulay, hence equi-
dimensional. Therefore U* is the disjoint union of U*NV¥(q;). Moreover R, =
[R/q)] if pe U*NV(q;). Because of (6.0.2), g~'(U*) and U* are dense in ProjR/q;
and X*, respectively. Thus g~!(X) — X is birational proper and the connected com-
ponents of g~!(X) satisfy the assumption of Theorem 1.1.

Since u is locally constant, ¥; = u~!({)N V is closed for any positive integer i. We
put s; =dim ¥;. By (6.0.1), we find that V; =0, 5, <0 and s3 <1. Let d be the
largest integer such that V; # @ and s = s;. We shall give a closed subscheme W of X
such that ¥; = VN W and Oy, is Cohen-Macaulay for all ge n~! (W) where : ¥ — X
is the blowing-up of X with center W. Let a=[].,annH'(D®), which is finite
product. Then it is obvious that V* = V(a). Fix a primary decomposition of a and
let a; be the intersection of all primary component q of a such that \/q e V;. Then we

can take homogeneous elements zy,...,z; € R such that

(6.0.3) VinV((za-s,---,2a)) =0 fori<d;

(6.0.4) d(p) =d for all minimal prime ideal p of R/(zi,...,z4) : {(R}+);
Zsily---, 24 € Qg

(6.0.5) {z,. € [Tsq_;ann B/ (Hom(R/(zi41, -, 24), D*)), for i <s

in the same way as Section 4. We put

(z1y---,24), if s=0;
b={(21,...,zd)(22,...,zd), if s=1;
(z1y-.-,2a)(22,...,24) (23, ..., 24), f s5=2

and prove that W = V(b) N X satisfies the required properties.

Because of (6.0.3), V;NW =@ for i<d. Let n:Y — X be the blowing-up of X
with center W, q a closed point of 7~!() and p < R the image of g. Take an element
y e Ri\p and put x; = z;/y%8% for all i. Since (D*)(p) is a dualizing complex of R,
we obtain

{ Xs4+1y---,Xd € aR(p) (R(p));
xi € ag, (Rep)/(Xit1,- .-, %)), fori<s.
from (6.0.5).
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When s =2, there exist three cases: If z;,z, € p, then xp,...,x; is a system of
parameters for R, satisfying (4.0.1) or a regular sequence on the Cohen-Macaulay
ring Rgy. Since by = (x1,...,xq)(x2,...,%4)(x3,...,%4), Oy, is Cohen-Macaulay by
Theorem 5.8.

If zep but z; ¢ p, then x;,...,xs is a subsystem of parameters for R, satis-
fying (4.0.1) or a regular sequence on the Cohen-Macaulay ring R(,. Furthermore
bp) = (x2,...,%4)(x3,...,%4) and Ryy/(x2,...,x%4) is Cohen-Macaulay because x; e
R, (Rpy/(x2,...,%q4)) is a unit. Hence Oy, is Cohen-Macaulay by Corollary 5.7.

If z1, z ¢ p, then x3,...,x4 € ar, (Ry)) is a subsystem of parameters for R(; and
Rp)/(x3,...,xq) is Cohen-Macaulay. Since by = (x3,...,x4), Oy, is Cohen-Macaulay
by Theorem 5.1.

When s =0 or 1, we can prove the assertion in the same way as above.

By repeating this procedure, we obtain a Macaulayfication of X. We complete the
proof of Theorem 1.1.
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