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Totally geodesic boundaries are dense
in the moduli space
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Let $F$ be a closed, oriented surface such that the genus of each component
of $F$ is greater than 1. In this paper, we will study the subset $R(F)$ of the
moduli space $\mathscr{M}(F)$ such that a hyperbolic structure $s\in \mathscr{M}(F)$ is an element of
$R(F)$ if there exists a compact, connected, oriented hyperbolic 3-manifold $M$

with totally geodesic boundary and admitting an orientation-preserving isometry
$\varphi:\partial Marrow F(s)$ , where $\partial M$ is assumed to have the orientation induced naturally
from that on $M$. Note that $R(F)$ is a countable subset of $\mathscr{M}(F)$ .

First, consider the special case where $F$ consists of two components each
of which is homeomorphic to a given closed surface $\Sigma$ of genus $>1$ . In Fujii
[3], it is implicitly seen that, for any $s\in \mathscr{M}(\Sigma)$ , one can construct a compact,
connected, oriented, hyperbolic 3-manifold $M$ with totally geodesic, two-compo-
nent boundary such that one component is arbitrarily close to $\Sigma(s)$ in $\mathscr{M}(\Sigma)$

and the other is to $\Sigma(\overline{s})$ (see Lemma 1 in \S 2 for the explicit proof based on
the circle-packing argument in Brooks [2] $)$ . Here, $\overline{s}\in \mathscr{M}(\Sigma)$ denotes the hyper-
bolic structure on $\Sigma$ admitting an orientation-reversing isometry $\varphi:\Sigma(s)arrow\Sigma(\overline{s})$ .
This implies that the closure of $R(F)$ in $\mathscr{M}(F)$ contains the skew diagonal
$\Delta_{skew}(\Sigma)=\{(s,\overline{s});s\in \mathscr{M}(\Sigma)\}$ of $\mathscr{M}(F)=\mathscr{M}(\Sigma)\cross \mathscr{M}(\Sigma)$ .

In this paper, we will consider a more general case and prove the following
theorem.

THEOREM. SuPPose that $F=\Sigma_{1}u\cdots U\Sigma_{t}$ is any closed, oriented surface such
that the genus of each component $\Sigma_{i}$ is greater than 1. Then, $R(F)$ is dense in
$\mathscr{M}(F)=\mathscr{M}(\Sigma_{1})\cross\cdots X\mathscr{M}(\Sigma_{t})$ .

McMullen’s results in [9], [10] play important roles in our proof of Theo-
rem. Especially, the argument in [10] for skinning maps is well applicable to
construct a compact, connected, hyperbolic 3-manifold $M$ by joining ” long”
hyperbolic 3-manifolds associated to any $s_{i}\in \mathscr{M}(\Sigma_{i})(i=1, \cdots t)$ so that $\partial M$ is
totally geodesic and arbitrarily close to $\Sigma_{1}(s_{1})u\ldots u\Sigma_{t}(s_{t})$ in $\mathscr{M}(F)$ .

We would like to thank W. Thurston for his suggestion which directs our
attention to McMullen’s works.
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\S 1. Preliminaries.

In this section, we will review the fundamental notation and definitions
needed in later sections, and refer to Hempel [5], Jaco [7] for more details on
3-manifold topology and to Gardiner [4], Imayoshi-Taniguchi [6] on Teichm\"uller

spaces.
A Haken manifold is a compact, connected, irreducible, oriented 3-manifold

containing an incompressible surface. A Haken manifold $M$ with incompressible
boundary $\partial M$ is called boundary-irreducible. A Haken manifold $M$ is atoroidal
(resp. acylindncal) if any $\pi_{1}$-injective map $\varphi:T^{2}arrow M$ is homotopic (resp. any
$\pi_{1}$-injective, proper map $\varphi:(A, \partial A)arrow(M, \partial M)$ is homotopic rel. $\partial A$ ) into $\partial M$,

where $T^{2}$ is a torus and $A$ is an annulus.
Orientation-preserving (resp. orientation-reversing) homeomorphisms are, for

short, called o.p.-(resp. $0.r.-$)$homeomorphisms$ . For any oriented surface or
3-manifold $N$, an orientation-reversed copy of $N$ is denoted by $\overline{N}$. Let $M$ be an
oriented 3-manifold whose boundary consists of two components which are
$0.p$.-homeomorphic to each other. If $\Sigma$ is one component of $\partial M$, then the other
is denoted by $\Sigma_{-}$ . We always assume that $\Sigma_{-}$ has a marking induced from
that on $\Sigma$ by an o.p.-homeomorphism $\varphi:\Sigmaarrow\Sigma_{-}$ (do not confuse $\Sigma_{-}$ with S).

Let $F=\Sigma_{1}u\cdots u\Sigma_{t}$ be a closed, oriented surface such that the genus of each
component $\Sigma_{i}$ is greater than 1. The Teichmuller space $\xi\Gamma(F)$ of $F$ is the set of
equivalence classes of hyperbolic structures on $F$, where two hyperbolic structures
$s_{1},$ $s_{2}$ on $F$ are equivalent to each other if there exists an $0.p$.-isometry $\varphi:F(s_{1})$

$\frac{>}{}F(s_{2})$ homotopic to the identity $id_{F}$ : $Farrow F$. We denote by $[F(s)]$ (or simply
by $s$ ) the element of $g(F)$ represented by $F(s)$ . The Teichmuller distance
$d_{F}(s_{1}, s_{2})$ between two elements $s_{1},$ $s_{2}$ of $\sigma\tau(F)$ is given by

$d_{F}(s_{1}, s_{2})= \frac{1}{2}\inf_{f}\{\log K_{f}(s_{1}, s_{2})\}$ ,

where $f$ ranges over all quasiconformal homeomorphisms from $F(s_{1})$ to $F(s_{2})$

homotopic to the identity $id_{F}$ , and $K_{f}(s_{1}, s_{2})$ is the maximal dilatation of $f$ . It
is well known that the i-th factor $\sigma\tau(\Sigma_{i})$ of the metric space $f(F)$ is homeo-
morphic to $R^{\epsilon s_{i^{-6}}}$ , where $g_{i}=genus(\Sigma_{i})$ . So, $\sigma\tau(F)$ is homeomorphic to the
$6(g_{1}+\cdots+g_{t}-t)$-dimensional Euclidean space. For an $s\in S(F)$ and $r>0$, we
denote by $B_{F}(s, r)$ the closed $r$-neighborhood of $s$ in $\xi\Gamma(F)$ , that is,

$B_{F}(s, r)=$ { $s’\in f(F);d_{F}(s$ , s’);$r}.

The moduli space $\mathscr{M}(F)$ of $F$ is the quotient space of $g(F)$ such that two
elements $s_{1},$ $s_{2}$ of ET(F) represent the same element of $\mathscr{M}(F)$ if there exists an
$0.p$.-isometry $\varphi:F(s_{1})arrow F(s_{2})$ with $\varphi(\Sigma_{t})=\Sigma_{i}$ for $i=1,$ $\cdots,$

$t$ . Roughly, an element
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of $q(F)$ is a hyperbolic structure on $F$ respecting markings and an element of
$\mathscr{M}(F)$ is one neglecting markings.

A Kleinian group $\Gamma$ is a discrete subgroup of $PSL_{2}(C)$ , the group of all
$0.p$.-isometries on the hyperbolic 3-space $H^{3}$ . This group $\Gamma$ acts conformally
on the sphere $S_{\infty}^{2}=C\cup t\infty$ } at infinity. We denote the region of discontinuity
and the limit set of $\Gamma$ respectively by $\Omega(\Gamma)$ and $\Lambda(\Gamma)$ . A Kleinian group $\Gamma$ is
elementary if $\Gamma$ contains an abelian group of finite index. In tbis paper, we
only consider the case where $\Gamma$ is finitely generated, torsion free, and non-
elementary. We fix an orientation on $H^{3}$ . Then, $N=H^{3}/\Gamma$ is an oriented
hyperbolic 3-manifold and the quotient map $p:H^{3}arrow N$ is the universal covering.
Furthermore, the convex hull $H(\Gamma)$ of $\Lambda(\Gamma)$ in $H^{3}$ is non-empty, and the image
$C(\Gamma)=p(H(\Gamma))$ is the smallest closed, convex core of $N$. The Kleinian manifold
for $\Gamma$ is $O(\Gamma)=(H^{3}\cup\Omega(\Gamma))/\Gamma$, see [14, DEFINITION 8.3.5]. We have obviously
$\partial O(\Gamma)=\Omega(\Gamma)/\Gamma$ and int $O(\Gamma)=N$. A Kleinian group $\Gamma$ is called geometrically
finite if the volume of the $\epsilon$-neighborhood $C_{\epsilon}(\Gamma)$ of $C(\Gamma)$ in $N$ is finite for
some $\epsilon>0$ . According to Thurston’s Uniformization Theorem [15] (a special
case), for any boundary-irreducible, atoroidal Haken manifold $M$ containing a
closed, incompressible surface of genus $>1$ , there exists a geometrically finite
Kleinian group $\Gamma$ such that $C_{\epsilon}(\Gamma)$ is homeomorphic to $M-\partial_{T}M$, where $\partial_{T}M$ is
the union of torus components of $\partial M$.

Let $M$ be a boundary-irreducible, atoroidal, Haken manifold with nonempty
boundary and such that the genus of each component of $\partial M$ is greater than 1.
Let $QH_{0}(M)$ be the set of equivalence classes of pairs $(N, \varphi)$ such that $N=H^{3}/\Gamma$

is an oriented hyperbolic 3-manifold and $\varphi:Marrow O(\Gamma)$ is an $0$.P.-homeomorphism.
Here, two elements $(N_{1}, \varphi_{1}),$ $(N_{2}, \varphi_{2})$ with $N_{1}=H^{s}/\Gamma_{1},$ $N_{2}=H^{s}/\Gamma_{2}$ are equivalent
to each other if there exists an o.p.-homeomorphism $\psi:O(\Gamma_{1})arrow O(\Gamma_{2})$ isotopic
to $\varphi_{2^{\circ}}\varphi_{1}^{-1}$ such that the restriction $\psi|_{N_{1}}$ : $N_{1}arrow N_{2}$ is isometric. Since $M$ is com-
pact, $\Gamma$ is geometrically finite. We endow $QH_{0}(M)$ with the quasi-isometric
toPology so that $(N_{1}, \varphi_{1})$ and $(N_{2}, \varphi_{2})$ are close to each other if there exists an
$0.p$.-homeomorphism $\psi’$ : $O(\Gamma_{1})arrow O(\Gamma_{2})$ isotopic to $\varphi_{2^{\circ}}\varphi_{1}^{-1}$ such that the deriva-
tive of $\psi’|_{N_{1}}$ : $N_{1}arrow N_{2}$ is uniformly close to being an o.p.-isometry. Consider
the correspondence

(1.1) conf: $QH_{0}(M)arrow X(\partial M)$

such that conf$(H^{3}/\Gamma, \varphi)$ is the element of $q(\partial M)$ conformally equivalent to
$\varphi^{*}([\partial O(\Gamma)])$ . By works of several people including Ahlfors, Bers, Kra and
Marden, it is shown that this correspondence is a well-defined homeomorPhism.

We suppose further that $M$ is not a deformation retract of a closed surface,
and $\Sigma_{i}$

$(i=1, \cdots t)$ are the $co\underline{mpo}nents$ of $\partial M$. For any $(H^{3}/\Gamma, \varphi)=$

$conf^{-1}(s_{1}, \cdots, s_{t})\in QH_{0}(M)$ , let $p_{i}$ : $O(\Gamma)_{i}arrow O(\Gamma)$ be the covering associated to
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$\Gamma_{i}=\varphi*(\pi_{1}(\Sigma_{i}))\subset\pi_{1}(O(\Gamma))=\Gamma$. Since the Kleinian manifold $O(\Gamma_{i})$ is homeo-
morphic to $\Sigma_{i}\cross[0,1],$ $\partial O(\Gamma_{i})$ consists of two components each of which is
homeomorphic to $\Sigma_{i}$ . One of them coincides with the compact component of
$\partial o(r)_{i}$ . We can regard the conformal structure on the other component as
representing the element on $g(\overline{\Sigma}_{i})$ , denoted by $\sigma_{i}(s_{1}, \cdots s_{t})$ . Then, the skin-
ning map $\sigma_{M}$ : $\xi\Gamma(\partial M)arrow\sigma(\overline{\partial M})$ is defined by

$\sigma_{M}(s_{1}, \cdots s_{t})=(\sigma_{1}(s_{1}, \cdots s_{t}),$ $\cdots$ $\sigma_{t}(s_{1}, \cdots s_{t}))$ .
Let $W=M_{1}u$ ... $UM_{n}$ be the disjoint union of the $M_{j}’ s$ each of which satisfies
the same conditions as the above $M$ does. Then, the skinning map

$\sigma_{W}$ : $g(\partial W)=q(\partial M_{1})\cross\cdots\cross f(\partial M_{n})arrow q(\overline{\partial W})=x(\overline{\partial M_{1}})\cross\cdots\cross\sigma\tau(\overline{\partial M_{n}})$

is given by $\sigma_{W}=(\sigma_{M_{1}}, \cdots , \sigma_{M_{n}})$ . Consider the case where $W$ is divided into two
families $W_{1},$ $W_{2}$ admitting an $0.r$.-homeomorphism $\gamma:\partial W_{2}arrow\partial W_{1}$ . Then, $\gamma$ and
its inverse $\gamma^{-1}$ : $\partial W_{1}arrow\partial W_{2}$ determine the $0.r$.-involution $\tau:\partial Warrow\partial W$ . The map
$\tau_{*}:$

$\pi(\overline{\partial W})arrow\xi\Gamma(\partial W)$ induced by $\tau$ is an isometry. By Maskit’s Combination Theo-
rem [8], a fixed point $(s_{1}, s_{2})Eg(aW)=ff(\partial W_{1})Xg(\partial W_{2})$ of the composition

$\tau_{*}\circ\sigma_{W}$ : $g\cdot(\partial W)arrow q(\partial W)$ ,

called a solution to the gluing Problem for $(W_{1}, W_{2})$ , determines a hyperbolic
structure on $W_{1} \bigcup_{\gamma}W_{2}$ . This is just Thurston’s formulation for the proof of
his Uniformization Theorem, see [11] for more details.

\S 2. Construction of manifolds with totally geodesic boundary.

Let $\Sigma$ be a closed, connected, oriented surface with genus $>1$ , and let $s$ be
a hyperbolic structure on $\Sigma$ . A circle on $\Sigma(s)$ is a simple, closed curve which
bounds a metric disk in $\Sigma(s)$ . A configuration of circles on $\Sigma(s)$ is a collection
$C$ of a finite number of circles on $\Sigma(s)$ , such that the interiors of all disks
bounded by them are mutually disjoint. A configuration of circles on $\Sigma(s)$ is
said to be a circle packing, if the complement of the interiors of the disks
consists only of curvilinear triangles. Such a curvilinear triangle is bounded by
three mutually tangent circles. Then, there exists a unique circle on $\Sigma(s)$ ,
called the perpendicular circle for the curvilinear triangle, which meets each of
the three circles perpendicularly, see Figure 1. A point $s$ in the Teichm\"uller

space $\Psi(\Sigma)$ is said to be a circle packing point, if there exists a circle packing
on the hyperbolic surface $\Sigma(s)$ .

First of all, we will prove the following lemma.

LEMMA 1. For any $s\in f(\Sigma)$ and $\epsilon>0$ , there exists an $s’\in\xi\Gamma(\Sigma)$ with $d_{\Sigma}(s, s’)$

$<\epsilon$ and a compact, connected, onmted, hyperbolic3-manifold $M$ with totally
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The shaded area is a curvilinear tnangle.

Fig. 1.

geodesic, two-component boundary $0.p$ .-isometnc to $\sum(s’)u\sum(\overline{s}’)$ . Moreover, $M$

admits an isometric $0.r$.-involution exchanging the components of $\partial M$.

TO prove Lemma 1, we need the following result due to Brooks [2] (see

also Bowers-Stephenson [1] $)$ .
THEOREM [(Brooks)]. The set of circle packing points forms a dense subset

of $\sigma\tau(\Sigma)$ .

PROOF OF LEMMA 1. By Brooks’ theorem, there exists a circle packing
point $s_{0}\in f(\Sigma)$ with $d_{\Sigma}(s, s_{0})<\epsilon/2$ . First, we will construct a cusped hyperbolic
3-manifold $N$ with totally geodesic boundary $\partial No.p$.-isometric to $\Sigma(s_{0})u\Sigma(S_{0})$ .
In order to explain this construction, we will use the Poincar\’e model of the
hyperbolic 3-space $H^{3}$ . Namely, let $H^{3}$ be the space $\{x=(x_{1}, x_{2}, x_{3})\in R^{3} ; |x|<1\}$

endowed with the Riemannian metric $ds$ given by $ds=2|dx|/(1-|x|^{2})$ , and let
$H^{2}$ be the totally geodesic plane $\{x=(x_{1}, x_{2}, x_{3})\in H^{3} ; x_{3}=0\}$ in $H^{3}$ . We set
$H_{+}^{3}=\{x=(x_{1}, x_{2}, x_{8})\in H^{3} ; x_{3}\geqq 0\}$ and $U_{\infty}=\{x=(x_{1}, x_{2}, x_{3})\in S_{\infty}^{2} ; x_{3}>0\}$ . Consider
the orthogonal projection proj: $H^{2}arrow U_{\infty}$ along geodesics in $H_{+}^{3}$ each of which
starts from $H^{2}$ in the orthogonal direction, see Figure 2. Let $\Gamma_{0}$ be a Fuchsian
group corresponding to $\Sigma(s_{0}),$ $i.e.,$ $H^{2}/\Gamma_{0}=\Sigma(s_{0})$ , and let $p:H^{2}arrow\Sigma(s_{0})$ be the
universal covering. Since $s_{0}$ is a circle packing point, we have a circle packing
$C$ on $\Sigma(s_{0})$ . Let $f$ be the set of perpendicular circles for all curvilinear triangles
which are complementary to $C$ . The hyperbolic 2-space $H^{2}$ is packed by the
set $\tilde{C}$ of circles $C$ in $H^{2}$ witb $p(C)\in C$ . The set di of circles $C’$ in $H^{2}$ with
$p(C’)\in g)$ consists of circles perpendicular to curvilinear triangles complementary
to 3. The projection proj: $H^{2}arrow U_{\infty}$ maps $\tilde{C}$ , di to sets of circles in $U_{\infty}$ , denoted
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Fig. 2.

respectively by $\hat{C},$ $\Phi$ . Let $\tilde{L}$ be the subspace of $H_{+}^{3}$ obtained as follows: con-
sider the regions interior to the hemispheres in $H_{+}^{3}$ lying on circles in $\hat{c}u\Phi$ ,

and then, obtain $\tilde{L}$ by removing these regions from $H_{+}^{3}$ . The space $\tilde{L}$ is a
geodesic polyhedron with ideal vertices and has two boundary components $\partial_{1}\tilde{L}$ ,
$\partial_{2}\tilde{L}$ , where $\partial_{1}\tilde{L}=H^{2}$ and $\partial_{2}\tilde{L}$ is the face obtained by carving $H_{+}^{3}$ along these
hemispheres. Thus, $\partial_{2}\tilde{L}$ consists of infinitely many ideal, totally geodesic
polygons which meet each other at the right-angle. Note that, for any hemis-
phere $H$ lying on a circle in $\Phi$ , $H\cap L=H\cap\partial_{2}\tilde{L}\sim$ is an ideal triangle in $\partial_{2}\tilde{L}$ .
We denote the union of such triangular faces of $\partial_{2}\tilde{L}$ by $\hat{T}$ , see Figure 3.
The Fuchsian group $\Gamma_{0}$ acts on $U_{\infty}$ conformally, and both $\hat{C}$ , te are invariant
under the $\Gamma_{0}$-action. The quotient map $q:\tilde{L}arrow L=\tilde{L}/\Gamma_{0}$ is the universal covering
which is an extension of $P$ : $H^{2}arrow\Sigma(s_{0})$ with $\Sigma(s_{0})=q(\partial_{1}\tilde{L})$ . Set $\partial_{2}L=q(\partial_{2}\tilde{L})$

and $T=q(\hat{T})$ .
NOW, take the double $d(L)$ of $L$ along $T$ . Then, $\partial d(L)$ contains a closed,

two-component surface $A$ o.p.-isometric to $\Sigma(s_{0})U\Sigma(S_{0})$ . Since every component
$\Delta$ of $B=\partial_{2}L$ –int $T$ intersects $T$ along the edges of $\Delta$ at the right-angle in $L$

and since $\Delta\cap(B-\Delta)=\emptyset$ , each component of $\partial d(L)-A$ is a totally geodesic,
punctured surface which is the double of some component $\Delta$ of $B$ . Again, take
the double $dd(L)$ of $d(L)$ along $\partial d(L)-A$ . Then, the boundary $\partial dd(L)$ of
$dd(L)$ consists of four components. Denote by $\partial_{1}dd(L)$ and $\partial_{3}dd(L)$ the com-
ponents each of which is o.p.-isometric to $\Sigma(s_{0})$ , and by $\partial_{2}dd(L)$ and $\partial_{4}dd(L)$ the
components each of which is $0.p$.-isometric to $\Sigma(\overline{s}_{0})$ . It is easily seen that each
end of $dd(L)$ is a torus cusp. Let $N$ be tbe byperbolic 3-manifold obtained from
$dd(L)$ by identifying $\partial_{s}dd(L)$ with $\partial_{4}dd(L)$ via an $0.r$.-isometry. In this way, we
have obtained a connected, oriented, cusped hyperbolic 3-manifold $N$ with totally
geodesic boundary $\partial_{1}dd(L)u\partial_{2}dd(L)0.p$.-isometric $\Sigma(s_{0})u\Sigma(\overline{s}_{0})$ .
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$o\cdots$ ideal vertices

The union of shaded areas is $\hat{T}$ .
Fig. 3.

TO construct a manifold $M$ satisfying the conditions of Lemma 1, we will
double $N$ two more times. The first doubling is done so that there is an isometric
o.r.-involution of $M$. The second is a temporary doubling to show that the
compactified manifold $M$ by Dehn surgery still has a totally geodesic boundary.
Let $d(N)$ be the double of $N$ along $\partial_{2}dd(L)$ , and let $dd(N)$ be the double of
$d(N)$ along $\partial d(N)$ . The resulting manifold $dd(N)$ is a complete, connected,
byperbolic 3-manifold without boundary such that each end of $dd(N)$ is a torus
cusp, and $dd(N)$ admits the isometric o.r.-involutions $\Phi_{1},$ $\Phi_{2}$ with Fix $(\Phi_{1})=$

$\partial d(N),$ $Fix(\Phi_{2}|_{d(N)})=\partial_{2}dd(L)$ . These involutions generate the isometric $Z_{2}XZ_{2^{-}}$

action on $dd(N)$ . By Hyperbolic-Dehn-Surgery Theorem [14, THEOREM 5.9],

there exists a compact hyperbolic 3-manifold $M’$ obtained by a $Z_{2}\cross Z_{2}$-equivariant
Dehn surgery along the torus cusps of $dd(N)$ . Then, $\Phi_{1},$ $\Phi_{2}$ are naturally
extended to involutions of $M’$ , still denoted by $\Phi_{1},$ $\Phi_{2}$ . By Mostow’s Rigidity
Theorem [12], $\Phi_{1},$ $\Phi_{2}$ can be assumed to be isometric also in the new hyperbolic
3-manifold $M’$ . This shows that Fix $(\Phi_{1})=\partial d(N)$ is totally geodesic in $M’$ . Let
$M$ be the half of $M’$ with $\partial M=Fix(\Phi_{1})$ and containing $d(N)$ . The restriction
$\Phi=\Phi_{2}|_{M}$ is an isometric $0.r$.-involution of $M$ exchanging the components of
$\partial M$. Let $\varphi:\partial M=\partial d(N)arrow\Sigma\lfloor\rfloor\Sigma_{-}$ be an $0.p$.-diffeomorphism with $\varphi*([\partial d(N)])$

$=(s_{0f}\overline{s}_{0})\in\sigma r(\Sigma U\Sigma_{-})$ , where $\Sigma_{-}$ is a copy of $\Sigma$ . Set $\varphi*([\partial M])=(s’,\overline{s}’)$ . Accord-
ing to the proof of [14, THEOREM 5.9], we can choose our Dehn surgery so
that the inclusion $d(N)\subset M$ is nearly isometric except in small nelghborhoods
of cusps. So, we may assume that $d_{\Sigma}(s’, s_{0})<\epsilon/2$ , and so that
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$d_{\Sigma}(s, s’)\leqq d_{\Sigma}(s, s_{0})+d_{\Sigma}(s_{0}, s’)<\epsilon$ .

Thus, $M$ is our des\’ired manifold. $\square$

LEMMA 2. Suppose that $F$ is a closed, onented surface such that the genus
of each component of $F$ is greater than 1. Then, there exists a compact, connected,
onmted, hyperbolic3-manifold $M_{0}$ with totally geodesic boundary $0.r$.-homeomorphic
to $F$.

PROOF. Let $M$ be any compact, connected, oriented 3-manifold such that
$\partial M$ is $0.r$.-homeomorphic to $F$. We set $\partial M=\overline{F}$. By Myers [13, THEOREM 6.1],
$M$ contains a knot $K$ such that $R=M$–int $\Re(K)$ is a boundary-irreducible,
atoroidal and acylindrical, Haken manifold, where $\mathfrak{R}(K)$ is a tubular neighbor-
hood of $K$ in $M$. Consider the double $d(R)$ of $R$ along $\overline{F}$. The manifold $d(R)$

is an atoroidal, Haken manifold admitting an $0.r$.-involution $\Phi$ : $d(R)arrow d(R)$

with Fix(di) $=\overline{F}$. Note that $\partial(d(R))$ consists of two tori. By Thurston’s Uni-
formization Theorem, int $d(R)$ has a complete hyperbolic structure of finite
volume. Again, by Hyperbolic-Dehn-Surgery Theorem and Mostow’s Rigidity
Theorem, tbere exists a compact, hyperbolic 3-manifold $M_{0}’$ obtained from $d(R)$

by a $\Phi$ -equivariant Dehn surgery along $\partial(d(R))$ so that $\overline{F}$ is totally geodesic in
$M_{0}’$ . Cut $M_{0}’$ along $\overline{F}$ into two parts, and let $M_{0}$ be one of the parts which
includes R. $M_{0}$ is our desired manifold. $\square$

\S 3. Proof of Theorem.

For any $s\in\xi\Gamma(F)$ , let $Q(F(s))$ be the Banach space of integrable, holomorphic,
quadratic differentials $\varphi=\varphi(z)dz^{2}$ on $F(s)$ with the norm

$|| \varphi||=\int_{F}|\varphi(z)|dxdy$ ,

where we regard $F(s)$ as a Riemann surface conformally equivalent to the
hyperbolic surface $F(s)$ . Note that $Q(F(s))$ is naturally identified with Lhe
cotangent space $T_{s}(g(F))^{*}$ of $q(F)$ at $s$ , see [4], [10]. For a covering $p:Yarrow X$

over a closed, connected, oriented surface $X$ of genus $>1$ , let $P^{*}:$ $\pi(X)arrow g(Y)$

be the induced map so that, for any $s\in g(X),$ $S=p^{*}(s)$ is the pull-backed metric
on $Y$ . As was pointed out in [10], the dual of the derivative $dp*$ of $P^{*}$ at
$s\in\xi\Gamma(X)$ ;

$(dp^{*}|_{s})^{*}:$ $T_{8}(\sigma(Y))^{*}arrow T_{s}(f(X))^{*}$ ,

coincides with the Poincare series (or the push-forward operation)

$\Theta_{Y/X}$ : $Q(Y(_{S}^{\sim}))arrow Q(X(s))$
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under the identifications of $T_{s}\sim(q(Y))^{*}=Q(Y(s\sim)),$ $T_{s}(\mathscr{F}(X))^{*}=Q(X(s))$ .
PROOF OF THEOREM. Let $F=\Sigma_{1}U\cdots u\Sigma_{t}$ be a closed, oriented surface

with genus$(\Sigma_{i})>1(i=1, \cdots , t)$ . Take an arbitrary element $s_{F}=(s_{1}, \cdots , s_{t})$ of
$\mathscr{M}(F)=\mathscr{M}(\Sigma_{1})\cross\cdots\cross \mathscr{M}(\Sigma_{t})$ . For convenience, fix markings on $\Sigma_{1},$ $\cdots$ $\Sigma_{t}$ and
regard $s_{F}$ as an element of the Teichm\"uller space $\mathscr{F}(F)=\xi\Gamma(\Sigma_{1})\cross\cdots\cross\sigma(\Sigma_{t})$ .
Similarly, $\overline{s}_{F}=(\overline{s}_{1}, \cdots , \overline{s}_{t})$ can be regarded as an element of $\sigma\tau(F_{-})=\mathscr{F}(\Sigma_{1.-})\cross\cdots$

$\cross g(\Sigma_{t.-})$ , where each $\Sigma_{i.-}$ is a copy of $\Sigma_{i}$ and $F_{-}=\Sigma_{1.-u}$ .. $u\Sigma_{t,-}$ . By
Lemma 1, for any $\epsilon>0$, there exist compact, connected, oriented, hyperbolic
3-manifolds $M_{i}$ $(i=1, \cdots , t)$ with totally geodesic, two-component boundary $0.p.-$

homeomorphic to $\Sigma_{i}|\lrcorner\Sigma_{i}$ .-and with $d_{\Sigma_{i}}(s_{i}, s\text{\’{i}})<\epsilon,$ $d_{\Sigma_{i.-}}(\overline{s}_{i},\overline{s}_{i}’)<\epsilon$ , where (s\’i, $\overline{s}_{i}’$ )
$=[\partial M_{i}]\in\sigma(\Sigma_{i}u\Sigma_{i,-})=\sigma(\Sigma_{i})\cross\sigma r(\Sigma_{f,-})$ under a suitable identification $\partial M_{i}$ with
$\Sigma_{i}U\Sigma_{i.-}$ . This implies that

(3.1) $d_{F}(s_{F}, s_{F}’)<\epsilon$ , $d_{F_{-}}$ ( $\overline{s}_{F}$ , si) $<\epsilon$ ,

for $s_{F}’=(s_{1}’, \cdot , s_{t}’)\in\xi\Gamma(F),\overline{s}_{F}’=(\overline{s}_{1}’$ , $\cdot$ .. , $\overline{s}_{t}’)\in X(F_{-})$ . Let $\Phi_{i}$ be the isometric o.r.-
involution of $M_{i}$ given in Lemma 1 exchanging $\Sigma_{i}$ with $\Sigma_{i.-}$ . For any $n\in N$,
let $M_{i}^{(1)},$ $\cdots$ , $M_{i}^{(2n)}$ be $2n$ copies of $M_{i}$ with identification maps $h_{t^{j)}}^{(}$ : $M_{i}arrow M_{i}^{(j)}$

$(j=1, \cdots , 2n)$ . Consider the hyperbolic 3-manifold $M_{t,tn}$ obtained from $M_{i}^{(1)}$ ,
, $M_{t}^{\langle 2n)}$ by connecting $M_{i}^{(j)}$ with $M_{i}^{(j+1)}$ via the $0.r$ .-isometry $h_{i}^{(j+1)}\circ\Phi_{i}\circ$

$(h_{\ell}^{(j)})^{-1}|_{\Sigma_{i.-}^{(j)}}$ : $\Sigma_{\ell.-}^{(j)}arrow\Sigma_{i}^{(j+1)}(j=1,2, \cdots, 2n-1)$ , where $\Sigma_{t^{j)}}^{\langle},$ $\Sigma 1_{-}^{j)}$ are the compo-
nents of $\partial M_{i}^{(j)}$ corresponding to $\Sigma_{i},$ $\Sigma_{i.-}$ of $\partial M_{i}$ . Note that $M_{i,8n}$ admits the
$0.r$.-isometric involution $\Phi_{i,2n}$ exchanging the two components $\Sigma_{i}^{(1)},$ $\Sigma_{i.-}^{(2n)}$ of
$\partial M_{i.Sn}$ and with Fix $(\Phi_{i.2n})=\Sigma_{t.-}^{(n)}=\Sigma_{i}^{(n+1)}$ .

For any $J^{=1}$ , , $n$ , consider the compact submanifold $M_{i.2!}$ of $M_{i.2n}$ with
$\partial M_{i,2j}=\Sigma_{i}^{(n-j+1)}u\Sigma_{i.-}^{(n+j)}$ . From now on, we identify $\partial M_{i.2j}$ with $\Sigma_{i}u\Sigma_{i}-$ via
the $0.p$.-isometries $h_{t}^{(n-f+1)}|_{\Sigma_{i}}$ : $\Sigma_{i}arrow\Sigma_{i}^{(n-j+1)},$ $h_{i}^{(n+_{J})}|_{\Sigma_{i}}-:\Sigma_{i,-}arrow\Sigma_{i}^{(n+j)}$ . Then,
$[\partial M_{i,2j}]\in\sigma r(\partial M_{i.2j})$ coincides with $(s_{i}’,\overline{s}_{i}’)\in\sigma(\Sigma_{i}u\Sigma_{i.-})$ . Suppose that

$\beta_{i.2j}=conf:QH_{0}(M_{i.2!})arrow gj(\Sigma_{t}u\Sigma_{i,-})$

is the homeomorphism for $M_{i.2j}$ given in (1.1). For $J^{=1}$ $n$ , let $N_{i,2j}=$

$H^{3}/\Gamma_{i.2j}$ be the hyperbolic 3-manifold containing $M_{t.2j}$ as a convex core. Since
$\partial M_{i.2j}=\Sigma_{i}u\Sigma_{i.-}$ is totally geodesic in $N_{i,2j}$ , the subgroups $\pi_{i}(\Sigma_{i}),$ $\pi_{1}(\Sigma_{i,-})$ of
$\Gamma_{i.2j}$ are Fuchsian. This implies that $\beta_{i}2j([N_{i.2!}])=(s_{\iota}’,\overline{s}_{i}’)$ . By Lemma 2,
there exists a compact, connected, oriented, hyperbolic 3-manifold $M_{0}$ with
totally geodesic boundary admitting an $0.r$.-homeomorphism $g:\partial M_{0}arrow F$. Fixing
an $0.r$.-isometry $\alpha:M_{0}arrow\overline{M}_{0}$ , the $0.r$.-homeomorphism $g_{-}:$

$\partial\overline{M}_{0}arrow F_{-}$ is given by
$\Phi_{i}\circ g\circ\alpha^{-1}(x)$ if $x\in\alpha(g^{-1}(\Sigma_{i}))$ . Set $W_{0}=M_{0}u\overline{M}_{0}$ , $Y_{2n}=M_{1.2n}u\cdots uM_{t,2n}$ and
define the $0.r$ .-homeomorphism $\gamma_{2n}$ : $\partial W_{0}arrow\partial Y_{2n}=FuF_{-}$ by $\gamma_{2n}(x)=(h_{i}^{(1)}|_{\Sigma_{i}})\circ g(x)$

if $x\in\partial M_{0},$ $g(x)\in\Sigma_{i}$ , and $\gamma_{2n}(x)=(h_{i}^{(2n)}|_{\Sigma_{i,-}})\circ g-(x)$ if $x\in\partial\overline{M}_{0},$ $g_{-}(x)\in\Sigma_{i.-}$ , see
Figure 4.
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The case of $n=2$

Fig. 4.

Since $[\partial M_{i.2j}]=(s_{i}’,\overline{s}_{i}’)$ for any $i\in\{1, \cdots, t\}$ ,

(3.2) $[\partial Y_{2j}]=(s_{1}’, \cdots, s_{t}’,\overline{s}_{1}’, \cdots \overline{s}_{t}’)=(s_{F}’,\overline{s}_{F}’)\in X(FuF_{-})$ .
Since $Y_{2n}$ and $W_{0}$ are atoroidal, acylindrical and Haken, $Y_{2n} \bigcup_{\gamma_{2n}}W_{0}$ is a closed,
atoroidal, Haken manifold. Then, by Thurston’s Uniformization Theorem, it has
a hyperbolic structure. The $0.r$ .-homeomorphisms $\alpha,$

$\alpha^{-1},$ $\Phi_{1.2n},$ $\cdots$ , $\Phi_{t.2n}$ deter-
mine the involution $\Phi$ on $Y_{2n} \bigcup_{\gamma_{2}}$ ., $W_{0}$ with Fix$(\Phi)=F^{(n+1)}=\Sigma_{1}^{(n+1)}u\cdots u\Sigma_{t}^{(n+1)}$ .
By Mostow’s Rigidity Theorem, we may assume that $F^{(n+1)}$ is totally geodesic
also in the new hyperbolic 3-manifold $Y_{2n}U_{\gamma_{2n}}W_{0}$ . The $0.r$.-involution $\tau_{2n}$ :
$\partial(Y_{2n}uW_{0})arrow\partial(Y_{2n}uW_{0})$ determined by $\gamma_{2n}$ : $\partial W_{0}arrow FuF_{-}$ and $(\gamma_{2n})^{-1}$ : $F\lfloor\lrcorner F_{-}arrow$

$\partial W_{0}$ induces an isometry

$(\tau_{2n})_{*}:$ $q(\overline{F}u\overline{F}_{-})\cross X(\overline{\partial W_{0}})arrow Z(FuF_{-})\cross\Psi(\partial W_{0})$ .
Under our identification of $F^{(1)}-F,$ $F_{-}^{(2n)}=F_{-}$ , we have $\gamma_{2n}(x)=g(x)$ if $x\in\partial M_{0}$

and $\gamma_{2n}(x)=g_{-}(x)$ if $x\in\partial\overline{M}_{0}$ . Thus, $(\tau_{2n})_{*}$ is independent of $n$ . We set $[\partial W_{0}]$

$=s_{W}\in q(\partial W_{0})$ . Since the topological type of $Y_{zn}$ depends on $n$ , the skinning
map

$\sigma_{zn}$ : $q(FuF_{-})\cross\sigma\tau(\partial W_{0})arrow\sigma\tau(\overline{F}u\overline{F}_{-})\cross f(\overline{\partial W_{0}})$

also does. However, for the $s’=(s_{F}’,\overline{s}_{F}’, s_{W})\in\Psi(FuF_{-})X\xi\Gamma(\partial W_{0}),$ $\sigma_{2n}(s’)$ is inde-
pendent of $n$ . In fact, each component $X$ of $\partial M_{i,2n}=\Sigma_{i}u\Sigma_{i}$.-is totally geodesic
in $N_{i.8n}$ , the covering of $N_{i.2n}$ corresponding to $\pi_{1}(X)\subset\Gamma_{i,2n}$ is determined only
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by the hyperbolic structure on $X$ and independent of the topological type of
$M_{i.2n}$ . Since the similar fact holds on each component of $\partial W_{0}$ , we have the
desired independence. In particular, the Teichmuller distance $d(s’, (\tau_{2n})_{*}\circ\sigma_{2n}(s’))$

$=L$ in $\xi\Gamma(FuF_{-})\cross f(\partial W_{0})$ is independent of $n$ . According to McMullen [10], the
solution $s_{2n}’’\in f(FuF_{-})\cross\sigma r(\partial W_{0})$ to the gluing problem for $(Y_{zn}, W_{0})$ is contained
in $B_{FuF_{-}u\partial W_{0}}(s’, L/(1-c_{0}))$ , where $c_{0},0<c_{0}<1$ , is the constant dePending only
on the topological type of $FuF_{-}u\partial W_{0}$ and hence independent of $n$ . The
$(FuF_{-})$-entry $(s^{\chi(1)},\overline{s}^{\chi(2n)})\in\xi\Gamma(FuF_{-})$ of $s_{2n}’’$ is contained in $B_{FuF-}$ (( $s_{F}’$, si),
$L/(1-c_{0}))$ . Let $p_{i.2j}$ : $N_{i.2j-2}arrow N_{i,2j}(j=2, \cdots, n)$ (resp. Pi.2: $N_{i.0}arrow N_{i.2}$) be the
covering associated to $\pi_{1}(M_{i.2f-2})\subset\pi_{1}(M_{i,2j})=\pi_{1}(N_{i.2j})$ (resp. $\pi_{1}(\Sigma_{i}^{\langle n+1)})\subset\pi_{1}(M_{i.2})$

$=\pi_{1}(N_{i,2}))$ . Each $p_{i,2j}$ induces the pull-back $\delta_{i.2j}:QH_{0}(M_{i,2j})arrow QH_{0}(M_{i.2j-2})$ ,
where $M_{i.0}=\Sigma_{i}^{(n+1)}\cross[0,1]$ . Consider the map

$\eta_{2j}$ : $q(FuF_{-})arrow f(FuF_{-})$

defined by

$\eta_{8j}|_{5(\Sigma_{i}u\Sigma_{i.-})}$ : $f(\Sigma_{i}U\Sigma_{i.-})QH_{0}(M_{i.2j})\underline{(\beta_{i.2j})^{-1}}\underline{\delta_{i.2j}}$

$QH_{0}(M_{i.2j-2})f(\Sigma_{i}u\Sigma_{i.-)}\underline{\beta_{i.8j-2}}$ .
By (3.2), for any $j\in\{1, \cdots, n\}$ , we have $\eta_{2j}(s_{Ff}’\overline{s}_{F}’)=(s_{F}’,\overline{s}_{F}’)$ . We set inductively

$\eta_{zn}(s^{\chi(1)},\overline{s}^{\parallel(2n)})=(s^{r(2)},\overline{s}^{\chi(2n-1)}),$ $\eta_{2n-2}(S^{\chi(2)},\overline{s}^{p(2n-1)})=(s^{p(3)},\overline{s}^{l(2n-2)}),$ $\cdots$

$\eta_{2}(s^{\prime(n)},\overline{s}^{p_{(n+1)}})-(s^{\prime(n+1)},\overline{s}^{\prime(n)})$ .

Let $O_{i.2n}=(H^{3}\cup\Omega(\Gamma_{i,2n}))/\Gamma_{i,8n}$ be the Kleinian manifold, and let $q_{i.2n}$ : $\tilde{O}_{i.2n}arrow$

$O_{i.8n}$ be the covering associated to $\pi_{1}(M_{i.2n-2})\subset\pi_{1}(O_{i,2n})$ . Note that $N_{i.2n-2}\subset$

$\tilde{O}_{i.2n}\subset O_{i,2n-t},$ $q_{i,2n}|_{N_{i.2n-2}}=p_{0.gn}$ and $\partial(\tilde{O}_{i,2n})$ is a full-measure, open subset of
$\partial(O_{i.2n-2})$ such that each component $U$ of $\partial(\tilde{O}_{i,2n})$ , called a spot by McMullen
[10], is homeomorphic to an open disk.

It is easily seen that McMullen’s argument [10] for skinning maps is appl\’i-
cable also to $\eta_{2n}$ . We will review that briefly. The dual of the derivative
$d\eta_{2n}$ of $\eta_{2n}$ at $v\in q(FuF_{-})$ is given by

$(d \eta_{2n}|_{v})^{*}=\sum_{\sigma}\Theta_{U/X}$ : $Q(F(O)uF_{-}(\hat{v}))arrow Q(F(v)uF_{-}(v))$ ,

where $U$ ranges over all spots in $\partial(\tilde{O}_{1,2n})U$ $u\partial(\tilde{O}_{t,2n}),$ $X=q_{i.2n}(U)\subset\partial(O_{i.2n})$

and $\partial=\eta_{2n}(v)$ . Here, we set $\Theta_{U/x}(\varphi)=\Theta_{\sigma/x}(\varphi|_{U})$ for $\varphi\in Q(F(\hat{v})uF_{-}(\hat{v}))$ . By [9,
THEOREM 10.3], there exists a continuous map $c:\mathscr{M}(X)arrow R$ with $||\Theta_{U/X}||\leqq$

$c([X])<1$ . Since $B_{F\Delta F_{-}}$ (( $s_{F}’$, si), $L/(1-c_{0})$) is compact, there exists a positive
constant $c_{1}<1$ , depending only on $(s_{F}’,\overline{s}_{F}’)$ and $L/(1-c_{0})$ , such that, for any
$v\in B_{FuF_{-}}((s_{F}’,\overline{s}_{F}’),$ $L/(1-c_{0}))$ and all spots $U$ , I $\Theta_{U/X}||\leqq c_{1}$ . Thus, we have
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(3.3) I $d \eta_{2n}|_{v}||=||(d\eta_{2n}|_{v})^{*}||\leqq\sup_{\sigma}||\Theta_{U/x}||\leqq c_{1}$ .

NOW, since $\eta_{2n}(s_{F}’,\overline{s}_{F}’)=(s_{F}’,\overline{s}_{F}’)$ , the inequality (3.3) implies that

$\eta_{2n}(B_{FuF_{-}}((s_{F}’,\overline{s}_{F}’),$ $\frac{L}{1-c_{0}}))\subset B_{FUF_{-}}($( $s_{F}’$ , si), $\frac{Lc_{1}}{1-c_{0}})$ .

Since $B_{FUF_{-}}((s_{F}’,\overline{s}_{F}’),$ $Lc_{1}/(1-c_{0}))\subset B_{FUF_{-}}((s_{F}’,\overline{s}_{F}’),$ $L/(1-c_{0}))$ , the same constant
$c_{1}$ works for

$\eta_{2n-2}$ : $\sigma r(FUF_{-})arrow\sigma(FuF_{-})$

in BFUF.. $((s_{F}’,\overline{s}_{F}’),$ $Lc_{1}/(1-c_{0}))$ . This shows that

$\eta_{2n-2(B_{FuF_{-}}((s_{F}’},\overline{s}_{F}’),$ $\frac{Lc_{1}}{1-c_{0}}))\subset B_{FUF_{-}}((s_{F}’,\overline{s}_{F}’),$ $\frac{Lc_{1}^{2}}{1-c_{0}})$ .

Since $(s^{\pi(1)},\overline{s}^{l(2n)})\in B_{FuF_{-}}((s_{F}’,\overline{s}_{F}’),$ $L/(1-c_{0}))$ , by repeating the same process $n$

times, we have

(3.4) $(s^{\chi(n+1)},\overline{s}^{\prime\prime(n)})\in B_{FUF_{-}}((s_{F}’,\overline{s}_{F}’),$ $\frac{Lc_{1}^{n}}{1-c_{0}})$ .

Let $Z_{2n}$ be the half of $Y_{2n} \bigcup_{\gamma_{2n}}W_{0}$ with $\partial Z_{2n}=F^{(n+1)}$ and $Z_{zn}\supset\overline{M}_{0}$ . Since
$\partial Z_{2n}=F^{(n+1)}$ is totally geodesic in $Y_{2n} \bigcup_{\gamma_{2n}}W_{0}$ , we have $[\partial Z_{2n}]=s’’(n+1)$ Since
$Z_{2n}$ is a compact, connected, oriented, hyperbolic 3-manifold with totally geodesic
boundary, $\partial Z_{2n}$ represents an element of $R(F)$ . If we choose $n\in N$ so large
that $Lc_{1}^{n}/(1-c_{0})<\epsilon$ , then by (3.1) and (3.4),

$d_{F}(s_{\Gamma}, [\partial Z_{2n}])\leqq d_{F}(s_{F}, s_{F}’)+d_{F}(s_{F}’, s^{\prime\prime(n+1)})<2\epsilon$ .

Thus, $R(F)$ is dense in $\mathscr{M}(F)$ . $\square$
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