
J. Math. Soc. Japan
Vol. 49, No. 1, 1997

On the number of apparent singularities
of the Riemann-Hilbert problem

on Riemann surface

By Masanori YOSHIDA

(Received Jan. 27, 1995)

1. Introduction.

Let $X$ be a compact Riemann surface of genus $g$ . For a given finite subset
$S$ of $X$ , let $O(S)$ be the set of linear differential equations on $X$ with mero-
morphic coefficients having singularities $S$ . In this article we investigate the
monodromy map from $g(S)$ to the set of representations (up to conjugacy)

$\pi_{1}(X-S)arrow GL(n, C)$ .
The Riemann-Hilbert problem is, roughly speaking, the question whether this
map is surjective or not. During this century, many mathematicians have
given affirmative answers under various situations. To solve this problem, we
have to think of a differential equation with some singularities, besides given
$S$ , such that around each of these singularities the monodromy is trivial. Such
singularities are called apparent singularities. An estimate for the number of
these apparent singularities was made by M. Ohtsuki [9] a decade ago. He
used the formulation given by P. Deligne [1]. Deligne’s formulation is explained
as follows. For a holomorphic vector bundle $E$ over $X$ constructed by using a
given representation, this problem is reduced to find a holomorphic line sub-
bundle of $E$ . In fact any line bundle with sufficiently small degree can be
realized as a subbundle of $E$ . To improve the estimate, however, we need a
line subbundle of $E$ with larger degree. Ohtsuki used the Riemann-Roch
theorem to estimate the largest possible degree.

Recently a similar situation to Deligne’s formulation is considered in a
different context by P. Kronheimer and T. Mrowka [7]. The main tool of
their argument is the Riemann-Roch-Grothendieck theorem.

In \S 2 we shall use the Riemann-Roch-Grothendieck theorem for our context
to improve Ohtsuki’s estimate.

THEOREM A. Let $X$ be a compact Riemann surface of genus $g$ and $p_{1},$ $\cdots$ $p_{m}$

distinct points in X. Assume that

$\rho:\pi_{1}(X-\{p_{1}, \cdots, p_{m}\})arrow GL(n, C)$



146 M. YOSHIDA

is an irreducible representation and that, for each $i$ , the image of $\rho$ for a $sufficientl\iota-$

small circle around $p_{\iota}$ is semi-simple. Then there are holomorphic line bundles
$V,$ $W$ over $X$ and a nonzero differential operator

$Q$ : $\Gamma(X, \mathscr{M}(V))arrow\Gamma(X, \mathscr{M}(W))$ ,

(for a vector bundle $E$ over $X,$ $\mathscr{M}(E)$ is the sheaf of meromorphic sections of $E$),

satisfying the following properties.. The monodromy of differential equation $Qt=0$ is isomorphic to $\rho$ .. The number of apparent singularities is at most

$(n-1)(g-1)+ \frac{n(n-1)}{2}(m+2g-2)$ .

In \S 3 we consider a similar problem for meromorphic projective connections
and their monodromies on $X$ .

THEOREM B. Let $X$ be a compact Riemann surface of genus $g$ and $p_{1},$
$\cdots,$ $p_{m}$

distinct points in X. Assume that

$\rho:\pi_{1}(X-\{p_{1}, \cdots , p_{m}\})arrow PSL(2, C)$

is an irreducible representation and that, for each $i$, the image of $\rho$ for a suffi-
ciently small circle around $p_{l}$ is semi-simple. Then there exists a meromorphic
projective cmnection satisfying the following two properties.. Its monodromy is isomorphic to $\rho$ .. The number of apparent singularities is at most $m+3g-3$ .

In [4], K. Iwasaki gave a geometric interpretation of generalized Painlev\’e
equation on Riemann surface. By using Theorem $B$ , we solve Iwasaki’s con-
jecture (Problem 5.11 of [4, p. 495]) of the surjectivity of the monodromy map
of meromorphic projective connections and show that this map is a $2^{g}$-fold
covering.

ACKNOWLEDGMENT. I am most grateful to Prof. M. Furuta for numerous
discussions and suggestions. I also thank Prof. K. Iwasaki and Prof. M. Ohtsuki
for pointing out errors and giving useful comments.

2. The Riemann-Hilbert problem.

2.1. Deligne $s$ solution.

Let $p_{1},$ $\cdots$ $p_{m}$ be distinct points in $X$ , and $\rho$ a representation

$\rho:\pi_{1}(X-\{p_{1}, \cdots p_{m}\})arrow GL(n, C)$ .
In \S 2 we consider the following problems.
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(a) Find a linear differential equation on $X$ with meromorphic coefficients
with the monodromy isomorphic to $\rho$ .

(b) Estimate the number of apparent singularities.

Here a linear differential equation with meromorphic coefficients means a
linear differential operator

$Q$ : $\Gamma(X, \mathscr{M}(V))arrow\Gamma(X, \mathscr{M}(W))$ ,

for some holomorphic vector bundles $V,$ $W$ over $X$ .
In \S 2.1 we shall deal with (a) according to P. Deligne $[1, 9]$ .
Let $\gamma_{l}$ be the homotopy class of a sufficiently small counter-clockwise-

oriented circle $C_{t}$ around $p_{i}$ . From now on, we assume that $\rho$ is irreducible
and that $\rho(r_{i})$ is semi-simple for all $i$ .

2.1.1. Construction of a vector bundle.
Let $E$ be a vector bundle with flat connection $\nabla_{0}$ over $X-\{p_{1}, \cdots, p_{m}\}$

induced by $\rho$ . Since $p(\gamma_{i})$ is semi-simple, we can take a $n\cross n$ matrix $B_{i}$ which
satisfies

$\rho(\gamma_{i})=\exp$ ( $-2\pi$A $B_{i}$).

In this step we construct a vector bundle $\tilde{E}$ over $X$ whose restriction on
$X-tP_{1},$ $\cdots$ , $p_{m}$ } is $E$ . To do so, choose a sufficiently small local coordinate
system $(U, z)$ around $p_{1}$ such that $p_{i}$ is not in $U$ for $i=2,$ $\cdots,$ $m$ . Consider the
meromorphic connection $\nabla_{1}$ for the trivial vector bundle $U\cross C^{n}$ over $U$ of the
form

$\nabla_{1}=d+\frac{B_{1}}{z}dz$ .

Since the holonomy of $V_{1}$ along $C_{1}$ is $\rho(\gamma_{1})$ , we obtain a new vector bundle
over $X-\{p_{2}, \cdots . p_{m}\}$ patching $E|_{U-tp_{1}\}}$ and $U\cross C^{n}$ together so that the flat
connection $\nabla_{0}$ of $E$ coincides with $\nabla_{1}$ over $U-\{p_{1}\}$ . Thus we obtain a vector
bundle over $X-\{p_{2}, \cdots p_{m}\}$ with a meromorphic connection which has a pole
at $p_{1}$ . Applying similar procedures for small local coordinate systems around
$p_{2},$

$\cdots,$ $p_{m}$ , we obtain a vector bundle $\tilde{E}$ over $X$ and its meromorphic connection
$\nabla$ with poles at $p_{1},$ $\cdots$ $p_{m}$ .

The value of $e=\deg(\tilde{E})$ depends on the choice of $B_{1},$ $\cdots$ $B_{m}$ . It is easily
seen, for example by using the Chern-Weil theorem, that

$c_{1}( \tilde{E})=-\sum_{i\Rightarrow 1}^{m}tr(B_{t})$ .

2.1.2. The Riemann-Roch theorem.
In this step we find a pair of $(L, \varphi)$ such that $L$ is a holomorphic line

bundle over $X$ and that $\varphi$ is a nonzero holomorphic cross section of $L\otimes\tilde{E}^{*}$ .
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The existence is easy to see by the Riemann-Roch theorem. For any line
bundle $L$ of degree 1, we have

$\dim H^{0}(X;L\otimes\tilde{E}^{*})-\dim H^{1}(X;L\otimes\tilde{E}^{*})$

$=\deg(L\otimes\tilde{E}^{*})+rank(L\otimes\tilde{E}^{*})(1-g)$

$=nl-e+n(1-g)$ .

So if nl–e is sufficiently large, we have

$H^{0}(X;L\otimes\tilde{E}^{*})\neq 0$ ,

that is to say, there is a nonzero holomorphic cross section $\varphi$ of $L\otimes\tilde{E}^{*}$ . Now
fix such a pair $(L, \varphi)$ .

2.1.3. Construction of a differential operator.
Here we shall construct a linear differential equation whose monodromy is

isomorphic to $p$ .
AS a first step, we shall construct a differential operator on a small open

set $U$ of $X-\{p_{1}, \cdots, p_{m}\}$ . Let $z$ be a local coordinate on $U,$ $s_{1},$ $\cdots,$ $s_{n}$ linearly
independent, holomorphic and parallel sections of $E$ on $U$ , and $\psi:L|_{U}arrow U\cross C$

a trivialization of $L$ over $U$ . Set

$Qt=\det(D\psi\circ t\psi\circ tD^{n}\psi\circ\langle\varphi,s_{1}\rangle\psi\circ\langle\varphi,s_{1}\rangle\psi 0\langle\varphi,s_{1}\rangle|\cdot\cdot D^{n}\psi\circ\langle\varphi,s_{n}\rangle D\psi\psi\circ\circ\langle\langle\varphi\varphi,s_{n}s_{n}\rangle\rangle)$ ,

where $D$ is $d/dz,$ $t$ is a local section of $\mathscr{M}(L)$ and $\langle, \rangle:(L\otimes\tilde{E}^{*})\otimes\tilde{E}arrow L$ is the
natural Pairing. Then $Q$ is a differential operator over $U$ , but direct calcula-
tions show that $Q$ is well-defined globally:

$Q:\Gamma(X, \mathscr{M}(L))arrow\Gamma(X, \mathscr{M}(L^{\otimes(n+1)}\otimes\det(\tilde{E}^{*})\otimes\kappa^{\otimes n(n+1)/2}))$

where $\kappa$ is the canonical line bundle of $X$ . It is clear that $Q$ is holomorphic
on $X-\{p_{1}, \cdots, p_{m}\}$ . We shall see that $Q$ has a pole at $p_{\iota}$ . By definition, we
can write locally

$Qt=A_{0}D^{n}\psi\circ t+A_{1}D^{n-1}\psi\circ t+\cdots+A_{n}\psi\circ t$ ,

where

$A_{0}=(-1)^{n}\det(_{D^{n-1}\psi\circ\langle\varphi,s_{1}\rangle}^{\psi\circ\langle\varphi,s_{1}\rangle}$ $||D^{n-1}\psi\circ\langle\varphi,s_{n}\rangle\psi\circ\langle\varphi,s_{n}\rangle)$ .

Around $p_{t}$ , noticing that $s_{J}’ s$ are parallel, we have
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$D\langle\varphi, s_{J}\rangle=\langle\nabla_{D}\varphi, s_{J}\rangle$

$=\langle B_{\iota}\varphi\tilde{\wedge}\underline{1}s_{J}\rangle$

$+$ (regular term).

Here we regard $L|_{U}$ as $U\cross C$ and $\nabla$ means the natural connection of
$L\otimes\tilde{E}^{*}|_{U}$ determined by $D$ and $\nabla$ .

Then we obtain

$A_{0}=(-1)^{n} \det(_{\frac{1}{z^{n-}}\langle B_{l}^{n-1}\varphi,s_{1}\rangle}^{\langle\varphi,s_{1}\rangle}\frac{1}{z}\langle B_{t}\varphi,s_{1}\rangle 1|.|\cdot\cdot\frac{1}{z^{n-1}}\langle B_{l}^{n-1}\varphi,s_{n}\rangle\frac{1}{z}\langle B_{l}\varphi,s_{n}\rangle\langle\varphi,s_{n}\rangle]$

$+$ (lower singularities),

and it is clear that the right-half-side of above equation is independent of the
choice of $s_{1},$

$\cdots$ $s_{n}$ (up to non-zero constant). Thus $A_{0}$ has a pole at each $p_{\iota}$

of order at most $n(n-1)/2$ .
It is shown in [9, Proposition] that the irreducibility of $\rho$ implies that the

order of $Q$ is $n$ , i.e., $A_{0}$ is nonzero.

2.2. Apparent singularities.

In this subsection we shall deal with (b) of \S 2.1, that is, the number of
apparent singularities of the equation $Qs=0$ .

Summing up \S 2.1, we notice the following points.

(A) $Q$ exists if $nl-e+n(1-g)>0$ .
(B) $A_{0}$ is holomorphic on $X-\{p_{1}, \cdots, p_{m}\}$ and $p_{\iota}$ is a pole of $x1_{0}$ of order

at most $n(n-1)/2$ .
(C) The zeros of $A_{0}$ are apparent singularities.

NOW we estimate the number of the zeros of $A_{0}$ (counted with multiplicity).

Since $A_{0}$ is a meromorphic section of $L^{\emptyset n}\otimes\det(\tilde{E}^{*})\otimes\kappa^{\otimes \mathcal{R}(n-1)/2}$ ,

$\#$(Zeros of $A_{0}$) $-\#$ ($Poles$ of $A_{0}$)

$=\deg(L^{\otimes n}\otimes\det(\tilde{E}^{*})\otimes\kappa^{\Theta n(n-1)/2})$

$=nl-e+n(n-1)(g-1)$ . (D)

From (A), (B), (C), and (D), M. Ohtsuki obtained

THEOREM 1 ([9]). Let $X$ be a compact Riemann surface of genus $g$ and
$p_{1},$ $\cdots,$ $p_{m}$ distinct points in X. Assume that
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$\rho:\pi_{1}(X-\{p_{1}, \cdots p_{m}\})arrow GL(n, C)$

is an irreducible representatim and that, for each $i$, the image of $p$ for a suffi-
ciently small circle around $p_{i}$ is semi-simple. Then there is a holomorphic line
bundles $L$ , a rank 2 vector bundle $\tilde{E}$ over $X$ , and a nmzero differential operator

$Q:\Gamma(X, \mathscr{M}(L))arrow\Gamma(X, \mathscr{M}(L^{\otimes(n+1)}\otimes\det(\tilde{E}^{*})\otimes\kappa^{\otimes n(n+1)/2}))$

satisfying the following properties.. The monodromy of differential equation $Qt=0$ is isomorphic to $\rho$ .. The number of apparent singularities is at most

$n(g-1)+1+ \frac{n(n-1)}{2}(m+2g-2)$ . (1)

2.3. Better estimate.

In \S 2.1 we considered only the degree of holomorphic line bundle over $X$ .
That is to say, for any line bundle of sufficiently large degree 1 such that
$nl-e+n(1-g)>0$ , we can construct a differential equation whose monodromy
is isomorphic to $\rho$ . There may exist a holomorphic line bundle $L$ such that
$H^{0}(X;L\otimes\tilde{E}^{*})\neq 0$ even if the degree 1 of $L$ satisfies $nl-$ e+n(l–g);$O. If such
$L$ exists, it is possible to get a better estimate for the number of apparent
singularities. The following argument is an extension of that of Kronheimer-
Mrowka [7, \S 9]. They considered rank 2 vector bundles, while we consider
vector bundles of general rank.

Fix an integer 1. Recall that all of the holomorPhic line bundles of degree
1 over a Riemann surface of genus $g$ is parameterized by its Jacobi manifold
$\mathscr{L}_{l}=T^{g}$ . It is well known that there is a universal bundle of this family $9_{l}$

over $e\not\in_{\iota}\cross X$ called Poincar\’e line bundle which is uniquely determined if we
assume its restriction on $\ovalbox{\tt\small REJECT}_{\iota}\cross\{p\}$ is trivial for a fixed $p\in X$ . Let $a_{t},$ $\beta_{i}$

$(i=1, \cdots , g)$ be a set of generators of $H^{1}(X)$ satisfying

$\alpha_{i}\beta_{j}=\delta_{i!}$ , $\alpha_{i}\alpha_{j}=0$ , and $\beta_{i}\beta_{j}=0$ $(i, j=1, \cdots g)$ .
We denote by $\omega$ the standard generator of $H^{2}(X)$ . The following formula is
well-known

$c_{1}(9_{l})=I(1\mathfrak{U})+\epsilon$ . (2)

Here $\epsilon$ is expressed as
$\epsilon=\sum_{i=1}^{g}(a_{i}\otimes\tilde{\alpha}_{i}+b_{t}\otimes\beta_{i})$ ,

for some $a_{t},$ $b_{i}$ in $H^{1}(\ovalbox{\tt\small REJECT}_{l})$ . Then $a_{i},$
$b_{i}$ are dual of $\alpha_{i},$ $\beta_{i}$ respectively.

Let $P$ be the family of Dolbeault operators $\overline{\partial}_{a}$ on line bundles $g_{\iota}|_{1a1\cross X}\otimes\tilde{E}^{*}$ .
By contradiction we shall show that if $-nl+e+n(g-1)<g$ there is an element
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$a$ in $\ovalbox{\tt\small REJECT}_{\iota}$ satisfying
$\dim H^{0}(X;9_{l}|_{\{a\}xX}\otimes\tilde{E}^{*})\neq 0$ .

Take 1 and $e$ satisfying $0\leqq-nl+e+n(g-1)<g$ . SuPPose $H^{0}(X;9_{l}|_{1a\}xX}\otimes\tilde{E}^{*})$

$=0$ for any $a\in\ovalbox{\tt\small REJECT}_{l}$ . Then $\dim H^{1}(X;B_{l}|_{\{a1xX}\otimes\tilde{E}^{*})$ is constant, and hence

-ind $P=IIH^{1}(X;9_{l}a\in\ovalbox{\tt\small REJECT}\iota|_{\{a1xX}\otimes\tilde{E}^{*})$

is regarded as a vector bundle, not only as a virtual vector bundle, over $\ovalbox{\tt\small REJECT}_{l}$

with rank $-nl+e+n(g-1)$ . In particular, for $k=-nl+e+n(g-1)+1$ , we have

$c_{h}$ (–ind $P$) $=0$ .
On the other hand we can calculate $c_{k}(-indP)$ by using the Riemann-Roch-
Grothendieck theorem.

From (2), we have

$ch(9_{l})=1+\{l(1\otimes\omega)+\epsilon\}-\Theta\otimes\omega$ ,

where

$\Theta=-\sum_{l=1}^{g}a_{t}^{arrow}b_{i}$ .

Let $\pi:\ovalbox{\tt\small REJECT}_{l}\cross Xarrow\ovalbox{\tt\small REJECT}_{l}$ be the natural projection. The Riemann-Roch-Grothen-
dieck theorem implies

$ch(-indP)=\pi$ ! $ch(g_{\iota}\otimes\tilde{E}^{*})Td(\ovalbox{\tt\small REJECT}_{l}\cross X)$

$=[(1+\{l(1\otimes\omega)+\epsilon\}-\Theta\otimes\omega)(n-l(1\otimes\omega))(1+(1-g)(1\otimes\omega))]/[X]$

$=-nl+e+n(g-1)+n\Theta$ .

Here we used the formulae

$ch(\tilde{E}^{*})=n-l(1\otimes\omega)$ ,

$Td(\ovalbox{\tt\small REJECT}_{l}\cross X)=1+(1-g)(1\otimes\omega)$ .

Using the Newton formula, we obtain

$c_{j}$(-ind $P$) $= \frac{n^{j}}{J^{[}}\Theta^{j}$ .

Since
$\Theta^{j}=0$ if $j>g$

$\neq 0$ if $0\leqq j\leqq g$ ,

$c_{k}(-indP)=0$ if and only if

$k=-nl+e+n(g-1)+1>g$ .
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This contradicts the condition $0\leqq-nl+e+n(g-1)<g$ . Summing up, we have
Proved

(A) $(L, Q)$ exists if $nl-e+n(1-g)>-g$ .
From (A), (B), (C), and (D) we obtain

THEOREM 2. Under the same circumstances of Theorem 1, there exists a
Pair $(L, Q)$ that has at most

$(n-1)(g-1)+ \frac{n(n-1)}{2}(m+2g-2)$ (3)

aPParent singularities.

Our estimate (3) is less $g$ than that of (1). This follows from the fact that
we think about the family of line bundles and the difference $g$ comes from the
dimension of the parameter space 5 $l$ .

3. Meromorphic projective connections and apparent singularities.

3.1. Meromorphic projective connections.

In this subsection we review the definition of meromorphic projective con-
nections on $X$ and its relation with SL-operators.

DEFINITION 3. A meromorPhic Projective connection on $X$ is a collection
of the following data.. A holomorphic $CP^{1}$-bundle $P$ over $X$ with a meromorphic flat connection

whose poles are $p_{1},$ $\cdots$ $p_{m}$ .. A non-Parallel holomorPhic cross section $s$ of $P$.

We refer as the projective monodromy representation of a meromorphic
projective connection to the representation

$\rho:\pi_{1}(X-\{p_{1}, \cdots, p_{m}\})arrow PSL(2, C)$

induced by the meromorPhic flat connection.
The apparent singularities of a meromorphic projective connection $(P, s)$ is

defined by the points at which $s$ is tangent to parallel leaves of $P$.
Assume that $L$ is a holomorphic line bundle over $X$ .
DEFINITION 4. Let $cU=\{(U_{\alpha}, z_{\alpha})\}$ be a coordinate covering of $X$ , and $\xi=$

$(\xi_{a})$ the transition function of $L$ according to $c_{U}$ A Fuchsian SL-operator
(simply call SL-oPerator) on $L$ for $c_{U}$ is a collection $Q=(Q.)$ of second order
linear meromorphic Fuchsian differential operators which obey the following
two conditions.
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. For each $\alpha$ ,
$Q_{\alpha}=-D_{\alpha}^{2}+q_{a}$ ,

where $D_{\alpha}=d/dz_{\alpha}$ and $q_{\alpha}$ is a meromorphic function on $U_{\alpha}$ .. If $h_{\alpha}=\xi_{\alpha\beta}h_{\beta}$ where $h_{\alpha}$ and $h_{\beta}$ are meromorphic functions on $U_{\alpha}$ and $U_{\beta}$ ,

respectively, then Q. $h_{\alpha}=0$ is equivalent to $Q_{\beta}h_{\beta}=0$ as differential equations.

Let $Q$ (respectively $Q’$ ) is an $SL$ -operator on $L$ for a coordinate covering
$c_{U}$ (respectively $c_{U’)}$ $Q$ and $Q’$ are said to be equivalent if $Q\cup Q’$ is an
SL-operator on $L$ for the coordinate covering $\subseteq U\cup q]’$ . An $SL$ -operators on $L$

is an equivalent class of an $SL$ -operator on $L$ for some coordinate covering
of $X$ .

The following proposition indicates the relation between these two concepts.

PROPOSITION 5 ([4]). For a holomorphic line bundle $L$ over $X$ with $\deg(L)$

$=1-g$ , there exists $a$ one-to-one correspmdence between the set of $SL$ -operators
on $L$ and the set of meromorphic $pro_{J}$ ective connectims on $X$ .

Hereafter we identify $SL$ -operators with meromorphic projective connections
via above correspondence. We omit details about $SL$ -operators, which can be
found in $[4, 5]$ .

3.2. Geometric meaning.

Here we investigate a geometric meaning of meromorphic projective con-
nections whose singularities are all apparent. Most of the following arguments
are due to M. Furuta and K. Iwasaki.

Let $(P, s)$ be a meromorphic projective connection. For simplicity, we
assume in this subsection, that the flat connection of $P$ has no poles. Let
$p:\pi_{1}(X)arrow PSL(2, C)$ be the monodromy representation of $p$ . We denote the
apparent singularities by $q_{1},$

$\cdots$ , $q_{m}$ .
Let $\tilde{X}$ be the universal covering of $X,\tilde{P}$ the pull-back of $P$ through the

projection $\pi:\tilde{X}arrow X$ , and $s:\sim\tilde{X}arrow\tilde{P}$ the pull-back of $s$ . Since $\pi_{1}(\tilde{X})$ is trivial,
$\tilde{P}$ is a trivial flat $CP^{1}$-bundle $\tilde{X}\cross CP$ ‘. Then the developing map $\tau:\tilde{X}arrow CP^{1}$

is defined by
$\tau=pr\circ g$

where $pr:\tilde{P}=\tilde{X}\cross CP^{1}arrow CP^{1}$ is the canonical projection.
It is clear, by definition, that $\tau$ commutes with the action of $\pi_{1}(X)$ on $\tilde{X}$

through $\rho$ , and that the differential of $\tau$ is nondegenerate except at points of
$\pi^{-1}\{q_{1}, \cdots, q_{m}\}$ .

The ramification index $d:Xarrow Z$ is defined as follows. For any $p\in X$ , if
$p=q_{j}$ then $d(p)-1$ is the order of zero of the differential of $\tau$ at a point in
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$\pi^{-1}(q_{J})$ , and otherwise $d(p)=1$ . As mentioned above, $\tau$ is $\pi_{1}(X)$-equivariant, so
$d(p)$ is well-defined.

Let $q$] $=\{U_{p}\}_{p\in X}$ be an open covering of $X$ satisfying the following condi-
tion.. $P\in U_{p}$ .. If $p\neq q_{j}$ , then $q_{j}\not\in U_{p}$ .. $\pi^{-1}(U_{p})$ is the disjoint union of open sets each of which is biholomorphic

to $U_{p}$ .
For each $p\in X$ , fix a local biholomorphic section $\sigma_{p}$ : $U_{p}arrow\tilde{X}$, a local inverse

of $\pi$ . If necessary, replacing $U_{p}$ by a smaller one, we can take a local coordi-
nate $z_{p}$ around $p$ on $U_{p}$ such that if we choose some coordinate $w$ around
$\tau\circ\sigma_{p}(p)\in CP^{1}$ then the local representation of $\tau\circ\sigma_{p}$ is $w=z_{p}^{d_{(p)}}$ . Therefore,
since $\tau$ is $\pi_{1}(X)$-equivariant, we get a $0$-cochain $(z_{p})\in C^{0}(^{c}U, O)(O$ is the sheaf
of holomorphic functions on $X$) which obeys (up to $PSL(2,$ $C)$ conjugacy)

$z_{p}^{a_{(p)}}=g_{pq}z_{q}^{a_{(q)}}$ ,

where $g_{pq}\in Z^{1}(V, PSL(2, C))$ is the representation cocycle of $P$. This implies
that the apparent singularities of meromorphic projective connection correspond
to branched points of \v{C}ech representation.

If the projective connection is holomorphic, i.e., there is no apparent
singularities, then $d(p)=1$ for any $p\in X$ , so $(U_{p}, z_{p})$ determines a projective
structure (see, e.g. [3]). Hence our geometric description of meromorphic
projective connection with only apparent singularities is a natural extension of
holomorphic one.

3.3. Estimate for apparent singularities.

In this subsection we consider the following Riemann-Hilbert type question.
For a given representation

$\rho:\pi_{1}(X-\{p_{1}, \cdots p_{m}\})arrow PSL(2, C)$ ,

find a meromorphic projective connection whose projective monodromy is
isomorphic to $p$ , and estimate the number of apparent singularities. That is
to say, find a $(P, s)$ satisfying the followings.. The monodromy representation of $P$ is isomorphic to $\rho$ .. The number of points at which $s$ is tangent to a parallel leaf of $P$ (counted

with multiplicity) is as small as possible.

From now on, we assume that $\rho$ is irreducible and semi-simple around $p_{i}$

for each $i$ .
By using a parallel argument of \S 2.1.1, replacing vector bundles by $CP^{1}-$

bundle, we can construct a holomorphic $CP^{1}$ -bundle $P$ with a meromorphic
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connection determined by $\rho$ . The fundamental group of $X-\{p_{1}, \cdots , p_{m}\}$ is
generated by $\alpha_{1}$ , $\cdot$ .. , $\alpha_{g},$

$\beta_{1}$ , $\cdot$ .. , $\beta_{g},$
$\gamma_{1}$ , $\cdot$ .. , $\gamma_{m}$ with the only relation

$\gamma_{m}\cdots\gamma_{1}[\alpha_{g}, \beta_{g}]\cdots[\alpha_{1}, \beta_{1}]=1\in\pi_{1}(X-\{p_{1}, \cdots, p_{m}\})$ .

Here we set $[\alpha, \beta]=a\beta\alpha^{-1}\beta^{-1}$ and denote by $\gamma j$ the homotopy class of a sufficient-
ly small clockwise-oriented circle around $p_{j}$ . Set $R_{j}=\rho(\alpha_{j}),$ $S_{j}=\rho(\beta_{j}),$ $T_{j}=p(\gamma_{j})$ ,
and fix a lift $R_{j},$ $S_{j},$ $T_{j}\in SL(2, C)$ of $R_{j},$ $S_{j},$ $T_{j}\in PSL(2, C)$ , respectively.

TO begin with, we consider the case $m\geqq 1$ . In this case, choosing a good
lift of $T_{1}$ , we can assume that

$\mathcal{T}_{m}\cdots T_{1}[\tilde{R}_{g},\tilde{S}_{g}]\ldots[\tilde{R}_{1},\tilde{S}_{1}]=Id\in SL(2, C)$ .

In this situation, $P$ is the projective bundle of some holomorphic vector bundle
$E$ with a meromorphic flat connection whose poles are $p_{1},$

$\cdots,$ $p_{m}$ , and the
meromorphic flat connection of $P$ is induced by that of $E$ .

From the argument of \S 2.3, we can find a holomorphic line bundle $\tilde{L}$

which obeys
$H^{0}(X,\tilde{L}^{-1}\otimes E)\neq 0$ ,

$-2\deg(\tilde{L})+\deg(E)\leqq g-1$ .
Taking the tensor product of $\check{L}$ and some line bundle on $X$ , we get a line
subbundle $L$ of $E$ with 2 $\deg(L)\geqq\deg(E)+1-g$ .

Fix such $L$ and denote the inclusion $LgE$ by $\varphi$ , then we get a meromor-
phic projective connection $(P, s)$ where $s:Xarrow P$ is defined by $\varphi$ Since $\rho$ is
irreducible, $s$ is not parallel.

Choose $p\in X-\{p_{1}, \cdots , p_{m}\}$ and let $(U, z)$ be a local coordinate system
around $P$ such that $U\subset X-lp_{1},$ $\cdots$ , $p_{m}$ }. Fix trivializations of $L$ and $E$ over $U$ ,

where the trivialization of $E$ is defined by an $SL(2, C)$-frame on $U$ . According
to these trivializations, $\varphi$ is represented by

$\varphi:(z, v)-(\begin{array}{ll}\varphi_{1}(z, v)\varphi_{2}(z, v)\end{array})$ .

Of course, $\varphi_{i}(z, v)$ is linear for the second variable $v$ . It ls clear that $q\in U$ is
an apparent singularity if and only if either $\varphi_{1}/\varphi_{2}$ or $\varphi_{2}/\varphi_{1}$ is critical at $z=z(q)$ ,

that is,

$( \frac{d}{dz}\varphi_{1})\varphi_{2}-\varphi_{1}(\frac{d}{dz}\varphi_{2})=0$

at $(z(q), v)$ for all $v$ . Hence apparent singularities are the zeros of a meromor-
phic cross section $\psi$ of $\det(L^{-1}\otimes E)\otimes\kappa$ which is locally expressed by

$(-d \frac{d}{z}\varphi_{1})\varphi_{2}-\varphi_{1}(\frac{d}{dz}\varphi_{2})$ .
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We can use a similar argument to \S 2.1.3 to show that $p_{j}$ is a pole of $\psi$ of
order at most 1. Hence the number of poles of $\psi$ (counted with multiplicities)

is at most $m$ . Therefore the number of apparent singularities is at most

$\deg(\det(L^{-1}\otimes E)\otimes\kappa)+m$

$=-2deg(L)+\deg(E)+4(g-1)+m$

$\leqq m+3g-3$ .

Secondly we think about the case $m=0$ . In the spin case, i.e.,

$[\tilde{R}_{g}, g_{g}]\ldots[\tilde{R}_{1},\tilde{S}_{1}]=Id\in SL(2, C)$ ,

the above argument can be taken.
In the non-spin case, i.e.,

$[\tilde{R}_{g},\tilde{S}_{g}]\cdots[\tilde{R}_{1},\tilde{S}_{1}]=-Id\in SL(2, C)$ ,

we can regard $P$ as a projective bundle associated not to a holomorphic vector
bundle, but to some $orbibundle^{\uparrow}$ . Such a holomorphic orbibundle $V$ over $X$ is
constructed as below.

Fix $p\in X$ and a sufficiently small local coordinate $(U, z)$ around $p$ . Let
$c\nu^{c}(U)=(Z_{2}, O)arrow U$ ’ be a ramified covering $\hat{U}\ni w->z=w^{2}\in U$ such that the
action of $Z_{2}$ is $w\mapsto-w$ . For $X-\{p\},$ $\wp^{c}(X-\{p\})$ is “ $(1, X-\{p\})arrow X-\{p\}$

where 1 is the trivial group. Thus we get a orbifold structure $CV^{c}$ over $X$ .
Next let $B(U)=(Z_{2},\tilde{\pi}_{U} : O\cross C^{2}arrow\tilde{U})$ be a trivial vector bundle with $Z_{2}$-action
$(w, v)rightarrow(-w, -v)$ . For $X-\{p\}$ , $B(X-\{p\})$ is $(1, \tilde{\pi}_{X-1p1} : \hat{V}arrow X-\{p\})$ where
$\tilde{V}$ is the flat bundle associated to $\rho$ . It is easy to see that $P$ is just the
projectification of the orbibundle $V$ determined by $B$ .

If we find a holomorphic orbibundle $W$ with rank 1 whose $Z_{2}$-action on
the fibre at $p$ is non-trivial, and a nonzero holomorphic cross section $\varphi$ of
$Hom(W, V)$ , then we get a meromorphic projective connection induced by
$(W, \varphi)$ . However $Hom(W, V)$ is a holomorphic vector bundle ( $Z_{2}$-actions are
canceled each other), so the situation is just the same as the spin case. Hence
we have prove $d$ the following

THEOREM 6. Let $X$ be a compact Riemann surface of genus $g$ and $p_{1},$ $\cdots$ $p_{m}$

distinct points in X. Assume that

$\rho:\pi_{1}(X-\{p_{1}, \cdots , p_{m}\})arrow PSL(2, C)$

is an irreducible representatim and semi-simple around each $p_{i}$ . Then there
exists a meromorphic $pro_{J}ective$ connection satisfying the following properties.

$\uparrow$ For the general definitions of orbifolds and orbibundles, see [6]. Here we use the
terms orbifold and orbibundle instead of $V$-manifold and $V$-bundle of [6].
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. Its $pro_{J}ective$ mmodromy is isomorphic to $p$ .. The number of apparent singularities is at most $m+3g-3$ .

3.4. The monodromy preserving deformation.

In this subsection, we shall briefly review the monodromy preserving defor-
mation, and examine the projective monodromy map by using Theorem 6.

Iwasaki considered the following situation (for details, see [4]). Choose
$m\in N$ such that $n=m+3g-3>0$ . Let us introduce a total order $\succ$ into $C$ by

$\lambda\succ\mu d\Leftrightarrow ef\{eitherRe(\lambda)>{\rm Re}(\mu)or{\rm Re}(\lambda)={\rm Re}(\mu),{\rm Im}(\lambda)$

iii ${\rm Im}(\mu)$ .
We put

$C_{+}=\{\theta\in C|\theta\succ 0\}$ .
For a fixed $\theta=(\theta_{1}, \cdots, \theta_{m})\in(C_{+}-Z_{+})^{m}$ , let $E(m;\theta)_{irr}$ be the set of all irre-
ducible $SL$ -operators with ordered $m+n$ regular singularities such that the
characteristic exponents of the first $m$ singularities are determined by $\theta$ and
the last $n$ singularities are apparent with multiplicity1. Then $E(m;\theta)_{\ell rr}$

becomes an analytic space. We denote by $R(m;\theta)_{irr}$ the set of irreducible
representations (up to conjugacy) from $x_{1}(X-S)$ to $PSL(2, C)$ whose eigenvalues
around each punctured point are determined by $\theta$ , where $S$ runs the set of
ordered $m$ distinct points of $X$ . Then $R(m ; \theta)_{irr}$ is a complex manifold.
Iwasaki considered a certain nonsingular open subset $\mathcal{E}(m;\theta)_{trr}$ of $E(m;\theta)_{irr}$ ,

and showed that the projective monodromy map

$PM:\mathcal{E}(m;\theta)_{irr}arrow R(m;\theta)_{trr}$

is locally biholomorphic. A canonical foliation is induced on $\mathcal{E}(m;\theta)_{irr}$ via this
monodromy map $PM$ and this foliation describes the monodromy preserving
deformation on $\mathcal{E}(m;\theta)_{irr}$ .

Together witb Theorem 5.9 of [4, p. 494] which says that the image of
excited states by $PM$ is nowhere dense in $R(m;\theta)_{t\tau r}$ , our Theorem 6 gives an
answer to Problem 5.11 of [4, p. 495].

COROLLARY 7. The above monodromy map $PM$ is a covering map if the
base space is restricted to some Zariski dense open subset $R(m;\theta)$ of $R(m;\theta)_{irr}$ .

We know about this covering map further by using a similar argument to
Kronheimer-Mrowka [7, \S 9 (iii)].

PROPOSiTION 8. At generic points of $R(m;\theta)PM$ is a $2^{g}$-fold covering.

The next lemma about transversality indicates this proposition by the same
way of [7, Lemma 9.15], and we shall only prove the lemma.
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LEMMA 9. For a generic Point $\rho$ in $\tilde{R}(m;\theta)$ , any meromorPhic projective
connection $(P, s)$ in $PM^{-1}(\rho)$ is induced by some pair of vector bundles $L\subset E$

(respectively pair of orlnbundles $W\subset V$ ) just as in \S 3.3, which satisfies
(a) $deg(L^{-1}\otimes E)=g-1$ (respectively $deg(Hom(V,$ $W))=g-1$ ).

(b) $\dim H^{0}(L^{-1}\otimes E)=1$ (respectively $dimH^{0}(Hom(V,$ $W))=1$ ).

(c) The natural map

$H^{1}(O)arrow Hom(H^{0}(L^{-1}\otimes E), H^{1}(L^{-1}\otimes E))$

(respectively $H^{1}(\mathcal{O})arrow Hom(H^{0}(Hom(V,$ $W)),$ $H^{1}(Hom(V,$ $W)))$ )

is onto.

This lemma corresponds to Lemma 9.16 of [7]. It dealt with stable bundles,

while we consider flat $SL(2, C)$-bundles.

PROOF. For simplicity we shall discuss vector bundle case only. In orbi-
bundle case a similar argument can be taken.

(a) Firstly we assume that $m=0$ . Here we denote $fl_{(O;}*$) simply by $\hat{R}$ .
Let $\{\rho_{n}\}$ be a following sequence in $\hat{R}$ .. The sequence $tp_{n}$ } converges to $\rho$ in Zariski topology of $\tilde{R}$ .. There is a meromorphic projective connection in $PM^{-1}(\rho_{n})$ induced by $L_{n}\subset E_{n}$

with $\deg(L_{n}^{-1}\otimes E_{n})=-2\deg(L_{n})<g-1$ for each $n$ .
Recall that, for an algebraic family of vector bundles, the set of points

corresponding to stable bundles is Zariski open (see [10, Lemma 6]). Hence
$\hat{R}_{s}:=$ { $\tau\in R|Theve$ctor bundle induced by $\tau$ is stable.} is Zariski ope $n$ in Ri,
and we may assume that $p$ is in $R_{s}$ and that $E_{n}’ s$ are stable. In particular
we get

$0<\deg(L_{n}^{-1}\otimes E_{n})=-2deg(L_{n})<g-1$ .

Since the fibre of the map from flat $SL(2, C)$-bundles to flat $PSL(2, C)$-bundles
is finite, we may assume that the sequence $\{E_{n}\}$ converges to some flat
$SL(2, C)$-bundle $E$ in the fibre of $p$ .

Then we get a sequence $\{(L_{n}, E_{n})\}$ in

$\ovalbox{\tt\small REJECT}_{\ell<\iota<0}\cross$ { $a$ neighborhood of $E$ in the moduli of flat $SL(2,$ $C)$-bundles},

where $\ell=(1/2)(1-g)$ and $\ovalbox{\tt\small REJECT}_{\ell<l<0}$ is the disjoint union of Jacobi manifolds $\ovalbox{\tt\small REJECT}_{l}$ for
$\ell<l<0$ . Since $\ovalbox{\tt\small REJECT}_{\ell<l<0}$ is compact, we may assume that the sequence $\{(L_{n}, E_{n})\}$

converges to $(L, E)$ . In particular the degree of $L$ coincides with that of $L_{n}$

for sufficiently large $n$ , that is,

$deg(L^{-1}\otimes E)=-2\deg(L)<g-1$ .

Hence we have proved (a) in the case of $m=0$ .
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In the case of $m>0$ , we can prove similarly using the concept of parabolic
stable bundles (for parabolic bundles, see [8]). Here the parameter $\theta$ of $R(m;\theta)$

corresponds to the weights of parabolic bundles.
(b) is proved by using a similar argument to (a) and the proof of (c) is just

the same as that of [7, Lemma $9.16(c)$].
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