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1. Let Ay, ---, A, be bounded skew-adjoint linear operators on a separable
Hilbert space 4 over C. We put the sum A=A+ --- +A4, For an arbitrary
x <R, their exponentials e*41, .-+, ¢4 and e®4 are unitary. For a sequence of
numbers k,, -+, k, for 1<k,<q, we consider the product

(1.1) Q = e%B1.¢%B2 ... p%Br

where B, denotes p,A:, for some p,=R. The operators Q and e*# have Taylor
expansions as bounded operators

B B

(L2) Q= 5 e
vl,"',UrZO y]! e v»r!
(1.3) e*4 =3 A' x*.
vz0 Y.
Suppose that we can choose p,, -+, p, with >3/_, p,=1 such that
(1.4) |Q(x)—e4| = O|x|*** for |x|<p (p a positive number)

for some s=Z-, (|| | denotes the norm of vectors in 4 or bounded operators
on Ji).

is equivalent to the equality

B'i... B s x
1.5 xrttvr T = Sy A,
(1.5) osvlz vy vl u! vgo !

We say then Q(x) is an s-th order approximation of e*“.

We fix the above p,, -+, p, and ki, ---, k.. Suppose now that for each
meE Zs,, there exist N real numbers pu.1, =, Pm v With 3, pn ;=1 (N=N(m)
depends on m) such that the ordered product

(1.6) Q™ (x) = Q(Pm.1%) Q(Pm,2%) -+ Q(Pom, 5%)

is an m-th order approximation of e¢*4, i.e.,
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(1.7) Q™ (x)—e*| = O]x|™*.

On the background of general approximation scheme of physical systems,
M. Suzuki has recently proved the following theorem as an extension of
Trotter’s formula (see [7]).

THEOREM OF SUZUKI. In addition to the condition (1.4), suppose the follow-
ing conditions are satisfied.

(Cl) 3N, Dpm.o| are bounded for all m, j, i.e., there exists a positive number
K such that |3, pm.| K.

(C2) liMpoe 24| P, 5127 —0.
Then for each x=C, we have

(1.8) lim |Q™ (x)—e*| = 0.

The convergence is uniform with respect to x in a compact region in C.

Actually his statement is more general. He does not assume that the
operators A; are skew-adjoint.

2. The aim of this note is to prove the same result, in case where
Ay, -+, A, are not necessarily bounded, but with additional conditions.

We denote by 9(S) the domain of an operator S on 4.

Let A,, ---, A, be skew-adjoint operators on 4 such that the intersection
9 of all the domains D(A;A;, - A4;,), 1=<j,=¢, is dense in H:ID=N3-
Nissy, o insaD(Aj Az, -+ Aj,). Let the sum A+ - +A, be an essentially skew
adjoint operator. We denote by A its closure which is a skew adjoint operator.
By Stone’s each e®4j and ¢*# define one parameter unitary group of
operators on 4.

In the sequel we make full use of Nelson’s results in [2]. First we intro-
duce the absolute values |A;|, |A| of the operators A; and A and their norms
respectively as follows. For p>0, p,>0, -+, p,>0, we put

oo Py p+y Av - oo
@.1) leea+1dng) = Eﬁ Ei"_ﬁi‘_’ﬂ_ﬁbﬂ for ¢ = D(A) :yQ D(AY)
o A A - A,
(2.2) | gP1tdst++oqidg) p)| :Eo IS%SqH 71 Jzn! Rl 03,05, 01>

for ¢ respectively.
We denote by 4 ,(A) the set of all ¢=D(A) such that ||er *1 4D || <o, and
by H,..0, the set of all =D such that [ef1!4 ™ +rgldalh| <o, We simply

write Hpp,.p, Dy H, if p; are all equal to p. We put further H,(A)=
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Upso p(A) and Ho=\U 50 H p=\Up .o 050K 1. 0 g ¢ in H(A) or 4, is called
an analytic vector for A or the system {A,, ---, Ag}. Then 4,4 ,(A) and
[eer 41| < ller4d]| for A=]|A;|+ -~ +]A,|. Since A is skew adjoint, Jo(A) is
dense in 4 (Corollary to in [2]).

LEMMA 1. Let L;=X%,a;,A,, a;, =R and s,=X]_(t;a;,. Suppose t,, -,
t,>0. Then

(2.3) iletllLll+--~+lr(L‘rl¢l| g |]e'81(|A1[+w+'sq|[Aql(p“ )
In fact,
S “L o L. Sb“
byl Lyl tettp) Ly = 7”7”.171_**]_7‘*# e b
”e 1= ritr ¢'| 71;0 léjl’;jngr n! 71 in
n=0 151"]"“)”7@5‘1 n' yl‘ vole

In particular we have

(2.4) lect 4]l < [ler4dll for ¢ & J,.

The following is an easy consequence of the definition.
LEMMA 2. Suppose that ¢& K .10 for >0. Then eApe 4, and
(2.5) ec4(et )| < |lete 1tPAD]f .

LEMMA 3. epeD(A; -+ A;) for =, if |t|<p. There exists a posi-
tive constant C, depending only on j,, -+, j. such that

(2.6) ”Ah A]_netAgb” < Cl”epAgl!H )

PROOF. For an arbitrary positive number 6, J4;CD(A;, -+ A;,) and

|5A

@ 14y, Al = m 1€ 020

for p= ;.

The Lemma follows from if we choose ¢ such that [¢|+0<p.
We now return to the operators and [(1.3). In place of [1.4), we assume
that

B

(2.8) > ant *"TB

0%y vy !
yyteturss

Sg=Hall

for ¢ 4L,.
For simplicity we assume that x is non-negative and that 3/_,7|p.|<p.

Then from Lemma 1|,
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2.9 %25 - o=Brg] < [lotr =311 1B g

< fler= BB < [ordg)] .

Q(x)) (= 4,) has the Taylor expansion as follows

B ... B
(210) Q(X)¢— 2 gyt 21 T ¢
05y . vy V1! Vr!
y1+~--+yT§s
B{‘1gys+131 ... B#tro¥s+1Br
= 5 6+ Ay, dy,, DHeT e Birern
0 ftyse My 0<Yg41SwSY;ST #1. ”T.

/.11+-~-+‘u.,.=s+l
Hence for a small positive ¢ and a positive constant C,

(2.11) I The LHS of (2.10)] = Ca|x|**]er @*iznasu==+iBrbg|
= Colx "4

due to Lemma I, Lemma J and the inequality

|
(2.12) HB{qeysﬂBl B/:Teys+1BT¢l| < ,?W_“er<5+|x|)(|B11+...+|Br|>¢” .

(2.12) is proved as follows. The LHS is majorized by

vitetup

31 + ,
'*~s—~4—~!~”Bfl YL Bt

- SRRV

| x|t
LTy B g
X

IA

2

05”1""’”7‘ yll ey

co Ix |v1+---+yr

S BBy Bidl

n=8+1  0Zyy, vy )J1! y,! 1<jyonin
vyt duptstl=n

IA

(remark that p;+ -+ +pr=s-+1)
(s+D! & r"@+]x])"

< 2 4 L . B. ... B,
= psrigst ngo n! 1$j1-§jnsruB"B’2 Byl
!
< %%I|er<5+|r|)(|B1|+---+13r|>¢“,
>

since

7,8+158+1 | X ,v1+~-+u,. - rn(a_I__ | X | )71.

08y} vy (s+Dly!-eop !l — n!
v ebyp s tl=n

In the same manner for 0=<x<p,
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(2.13) i e“gb— g %A”g{)” = ”S dy; - dys+1As*ley3+1A¢||

0SYsy1SSYST

= Colx|*Hle@r =gl < Cof x [ e 4] .

(2.11) and (2.13) hold for a negative x too.
Combining (2.11) and (2.13) we have

1Q(x)p—e 4| < (C,+Cy)|x|* e 4P| for ¢ = H,.
Hence we have proved

LEMMA 4. Suppose that ;v p.l x| <p for all j. Then there exists a
constant C such that

(2.14) 1Q(x)p—e Pl < Clx|* M er4d| for ¢ = 4,.

We are now in a position to prove the following [Theoreml

THEOREM 1. In addition to the condition (2.8), suppose the condition (Cl),
(C2) in Theorem of Suzuki are satisfied. If |x| is sufficiently small such that
vix|<p for v=sup, mNIZS’:jpm,,,\. Then for all p= 4,

157

<
<js

(2.15) Um [Q(pm,12) -+ Q(pm, yx)Pp—e* "] = 0.

ProOF. The way of proof is similar to Suzuki’s in [7]. But we must
be careful of domains of definition of operators. First we remark
limy,..maxX;sjsy| pm. ;] =0. Whence we may assume that there exists a >0
such that » (33— pu1) | pm. ;1 1x] <0 and 6-+v|x|<p. Then

(2.16) 1Q(Pm,1%) -+ Q(Pm, X )p— 4]

2

= 2 1Q(pnax) = Q(pm -1 X)Q (P, ;0)—ePm 7= e Fm. 417t m, W24

J

A

AT

=3

I
M

[(@(rm, ) ePm 3740 P 331+ 2im, 1245

1

<.
1

I
M=

i
ot

Cl x| * [ Ae@m isrt=+pm, 024 (Lemma )

J

< C 3 [pmsl* |51 erg] (Lemma D).

Hence holds.

To obtain the limit formula for all xR, we use the notion of
analytical dominancy due to E. Nelson.
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We say that 14| A| analytically dominates A=|A,|+ --- +|A,| if the fol-
lowing holds.

(i) A= 1+]AL ie, 3149 < cgl+IAD, ¢ & DA
(i) (ad (| AD) < e (1] A, e,
lad A;, ad A;, -+ ad A; (APl < ca(lPll+14P1), ¢ € D(A)

. n
where ¢ and ¢, denote positive constants such that w(p)= 3] Cn,@_ - is finite for
n=1

n!
.. pdt
a positive constant p. We put x(p)—SO—lij—)—. Then
LemMA 5 ([2]).
(2.17) ler4gll < [[ef= @ 14D, & D(A).

Under this circumstance we get the following

THEOREM 2. In addition to the condition of Theorem 1, suppose that 14 |A|
analytically dominates A. Then 4(A) (CD(A)CD) is dense in 4 and (2.15)
holds for all ¢= 4 and all x=R.

PROOF. ¢*4 being a one parameter unitary group, e**% ,(A)C 4 ,(A) for
any xR and p>0. Suppose ¢& H.e(,y(A). We use the inequality (2.16). Let
xR be arbitrary. We denote by pFf the sum X, pn..;. Then since
limy e pm, ;=0, wWe have

2.18) Qb s)— ePmes=4)a05 1244
< Clpm. x| er4ePin®4g|  (Lemma 4)
= Cl P, g2 Moo= 4140 gPF 14|

P = v f;_‘_le
=ClpnxI'" S 5 (c,c(p>)#+»”:fl,£,p,r,'“ﬂ
A=0 v=0 uly!
- C | pm,jx I s+l i i (Cﬁ({))),uwliﬁ{i‘i(/)iu
A=0 v=0 ply!

— C I pm,jx i s+1”ec:c(p) (1+1A|)¢“ .
Therefore
(2.19) 1Q(Pm.1%) -+ Q(pm. ¥X)P—e* 4]
< C 3 | p s | e @t 140 g
J=1
This gives the limit formula [2.15) for ¢& H(A)=\U,% K ,(A). The limit in

is uniform for x in a compact region in R. Since [|[Q(pn. %) Q(Pm. vX)
—e*4| <2 and J(A) is dense in &, we have for all = 4. has
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thus been proved.
It seems unknown if the Theorems still hold without the assumption of
analytical dominancy although the original Trotter formula was proved without

it (see [1]).
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