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Introduction.

A smooth curve y parametrized by its arc-length is called a circle of geo-
desic curvature & (¢>0) if it satisfies the following equations with an associated
unit vector field Y along 7;

VxX =&Y, ViV = —kX,

where X(t)=7(t). Though this definition was given by Nomizu and Yano [§]
in 1974, the study on circles is just begun. We studied in [3] and [4] circles
on complex space forms, and in [2] we studied them on a surface of nonpositive
curvature. In this paper we study circles on a quaternion projective space and
on a quaternion hyperbolic space, and show that the similar properties hold as
for circles on complex space forms.

In the study of circles on complex space forms, complex torsion §=<X, JY >,
where J is the complex structure, for a circle plays an important role. On a
complex projective space, every circle with §=0, +1 is closed, but when 0<
18|<1 we have closed circles and open circles, just like geodesics on a torus.
On a complex hyperbolic space, there exist a bound x, for each # such that
circles with complex torsion # are unbounded if x#=<&k, and bounded if x>«x,.
As a corresponding invariant for circles on a quaternion Ké&hler manifold M, we
define the structure torsion @. For a circle y on M with associated unit vector
fields X, Y, we set © as the norm of the projected vector Proj(X,) of X, onto
the 1l-dimensional quaternion subspace {Y.-e|le is a quaternion} (see for detail
§2). This plays the same role as the complex torsion for circles on a Kéhler
manifold. By using the Hopf fibration, we take a horizontal lift of a circle
on a quaternionic space form. Under the identification of the algebra of quater-
nions with 2-dimensional complex vector space, we find it satisfies linear
differential equations. By a usual method, computing eigenvalues and eigen-
vectors of associated matrices, we solve them and give explicit expressions of
circles. With the aid of these expressions we can show some fundamental
feature of them.

The author is grateful for Professor Hiroshi Yamada for his encourage-
ment.
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§1. Preliminaries.
Let H denote the division algebra of quaternions;
H= {a+bitci+dkla, b, c, d=R),

where *=*=Fk?*=—1, ij=—ji=k, jhk=—lkj=i, ki=—ik=j. We identify this
algebra with C*={a+f/|a, B&C} in the following manner ;

(a1+ﬂ1j)+(a'~z+,32]') = (a1+a'z>+(,31+,82>j ,
(ar+B17)(a:+Bs7) = (ala2—‘8152>+(alﬁ2+ﬁ1&2>j )

where @ denote the complex conjugate of a. This means that aj=ja for any
a=C. For a quaternion e=a-+bi+cj+dk we denote by & the quaternion con-
jugate; é=a—bi—cj—dk. Clearly we have ¢6=d-z. Under the expression eé=
a+pBj we find e=a—gj.

Let H™ be a right quaternion vector space, which means that the action of
H is given as follows;

§-e=(bee, -, &ne)  for §=(&,, -+, §)EH” and e H.
We define real linear transformations 7, ]N, K on H” by

fe=¢(—i, Je=¢&(—j, KRe=¢&-(—k), for ecH™
which satisfy I°=/*=K*=—id, I[=—JI=K JR=—RKj=I Ki=—IK=]. In
this paper we frequently use the notation in identifying H" with C*". For a
vector &=(z;,+w.J, -+, zZ,tw,))H™ we denote by &=z+wj, where z=
(z, -+, 2n), w=(w,, -+, w,)eC". Since the right action and left action are the
same on a complex vector space, we some times mix these actions: For ex-

ample, for a=C and z=C™ we use both az and za. Under the identification
H"™ with C?®*, the actions of 7, /, K are expressed as follows;

[(z+wj) = (—iz)+(w)j,

(1-1) Jz4+w)) =w4(—-2),
K(z+wj) = (—iw)+(—iz)j .

Let (,) denote the quaternion Hermitian inner product on the right vector
space H™ defined by

@ m=2Gm  for §=(E, -, &) = -, q)EH"

Clearly we have (&-¢, n-0)=&(§&, 5)d for ¢, 6H and (7, &)=(&, 5). The fol-
lowing basic lemmas will be useful in our argument.
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LEMMA 1. If unit vectors &, n, L& H™ satisfy (&, p)=(§&, {)=0and |(y, 0)|
#1, then they are H-linearly independent.
Let {,) denote the quaternion Hermitian form on the right vector space
H"*! defined by
(& n) = —&mot+ t::;lg_ﬂ}l

for §=(&, -, &), n=(5s, -, p)EH"*. We also have (&-¢, n-8)=8(&, 7)d
for ¢, dc H and (7, £)=TE 7).

LEMMA 1. If wvectors &, y, LEH™ ' satisfy (&, &)=—1, (n, n)=( O)=1,
(& p)=«& L)=0 and |{n, {)| 1, then they are H-linearly independent.

§ 2. Structure torsion for circles on a quaternion Kihler monifold.

A Riemannian manifold M with a 3-dimensional subbundle & of the bundle
Hom (T M, TM)—M is called a quaternion Kiahler manifold if the following con-
ditions hold. For each point x&M, there exist a neighborhood U/ of x and
local frame field {7, J, K} for & on U such that

i)y I*=*=K*=—id, I]J=—]JI=K, |[K=—K]=I, KI=—IK=],

ii) there exist 1-forms p, ¢ and » on U satisfying

Vil = r(X)J—qX)K

Let y be a circle on a quaternion Kéhler manifold M; VyX=¢V, V3V =—¢X
X=7. We define the structure torsion @ for y by

)

O = {(X, IV )*+<X, JY)*+<(X, KY %2,

Since <X, X>=1, we have (X, Y)>=0. Therefore the structure torsion is the
norm of the projected vector Proj(X,) of X, onto the H-linear subspace
{Y.e|lecH}, hence it is not greater than 1. We also find that ® does not de-
pend upon the parameter :

—}z——%@z — (X, IVYRY, TV S4(X, HX)JY —g(X)KY —£IX))

+X, JYO Y, JY)+<X, —r(X)IY +p(X)KY —kJ XD}
+(X, KY>(eY, KY)+<X, g X)IY —pX)]Y —kKX>}
=0.
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I. Circles on a quaternion projective space.
§3. Quaternion projective space.

Let (,) denote the quaternion Hermitian inner product on the right vector
space  H™* and <,)> denote the real scalar product; <§, n>=Re(§&, n)=
{(& 9)+(n, £)} /2. We therefore have

(&, n) = <& ny4<&, Indi+<&, Jndi+<& Kk .

The quaternion projective space HP™ is defined as the orbit space on S*"**=
(Ee H* (&, €)=1} under the action of SH={i=H|i1=1}. We denote by
m: S**** - HP" the S®-principal fiber bundle. When it admits the Riemannian
metric g(,)=4<{,>/c, we denote as HP™(c). Let T S*"*3 =4 S Py .S*"**
denote the orthogonal decomposition of the tangent space of S*"** at & into
horizontal and vertical subspaces, where

._4[554n+3 = {(s, 7])|77€Hn+1, ((6’ 7?)):0}
CYeSints = {(§, §A)|A€ H, Re 2=0}.

For given & we can identify T, HP™ with 4:S*"*%. We shall denote p(X) the
identified vector for X&T,HP". In case we can see the base point & we
some times just denote it by X. For more detail see Besse [6] and also Tsu-

kada [9].

We first study the relationship of connections. Let V, V and ¥ denote the
Riemannian connection on HP®(4), S***' and H"*' respectively. If we denote
by N the outward unit normal of S**** in H™*!, we have for any vector fields
X and ¥ on S*»** that

ViV =TV <X, ¥ON .
For the relation between V and V we have the following.

LEMMA 2. Let y be a smooth curve on HP™4) and ¥ be one of its horizontal
lift onto S*"**. For a vector field Y along y we define a vector field along 7 by
?(t):pm)(Y). Put X=7 and X:f, then we have

050y (TxY) = V32V —<(X, IVYIN—(X, JY>JN—<X, KY>RN.
PROOF.
07 (VxY) = ViV —0s¥, INSIN—CO:¥, INYIN— 0¥, RNYEN
= VeV +<¥, VeNDIN+<F, Y JNOIN+<F, T(BN)Y RN
=¥V +<F, TeUNDINHT, T3 NN +<F, T2(EN)> BN
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‘*<Iz

+<¥, IXYIN+CY, ]X)jN—i—(Y KX}KN

Vi
VeV —(X, IVYIN—(X, J¥SIN—<X, K¥>EN .

Let y be a circle on HP"(4) with geodesic curvature £; VyX=«Y, V;Y =
—£X. For a horizontal lift 7 of y, we set

0=07=<X IV), o=¢F =X, JT>, ¢=¢F=1<X K¥).
Since we have
d%a = Tz X, IV>+<X, IT:7)) = Ve XN, ITV>+<(X, [(V:7)>

= (VxX), [Py +<X, I{T17 )+ 0IN+ N+ PRN}>
= k¥, IV)4+<X, —kIX—ON+oKN—¢JNy =0,

the index # does not depend on the parameter. Similarly ¢ and ¢ do not de-
pend on the parameter. Though they depend on the choice of horizontal lifts,
(0*+¢@*+¢*)'* does not depend on it, hence it is the structure torsion for the
circle y. By applying we have

PROPOSITION 1. Let y denote a circle on HP™(4) with geodesic curvature k
and structure torsion O :VyX=xY and VY =—xX. Then its horizontal lift §
on S*™*% is a helix of order 2, 3 or 5 corresponding to ©@=0, @=1 and 0<O<]1.
It satisfies the following differential equations:

ViX = e,

ViV = —kX +6S,

ViS = -0y + V1=,

ViU = —+/1-6°S +£V,
ViV = —kU,

where X=p3X)=7, Y =pxY), S=1/0-(0IN+¢/N+¢KN), U=1/60T—6".
OIX+ojX+pKX+6F), and V=1/0v1—6.(0IY +¢JY +dK ¥ —6°X).
By solving these equations we shall show the following.

THEOREM 1. Let y be a circle with geodesic curvature k and structure tor-
sion © on a quaternion projective space HP™(c).

(1) If 6=0, then it is alsimple closed curve with prime period 4m/~/4x*+c.

(2) If ©=1, then it is a simple closed curve with prime period 2m/ /& —+c.

(3) When 0<O<1, we denote by a, b and d (a<b<d) the nonzero solutions
for cA*—(4k*+c)A—24/ck®=0.
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(iy If ome of the three ratios a/b, b/d and d/a ts rational, it is a simple
closed curve. Its prime period is the least common multiple of 4w/~/c(b—a) and
dr/~/c(d—a).

(i) If each of the three ratios a/b, b/d and d/a isirrational, it is a simple
open curve.

Before we start the proof, we mention for the relationship between homo-
thetic change on metrics and the geodesic curvature of circles. Let y be a
circle on a Riemannian manifold (M, g) with geodesic curvature x. When we
change the metric homothetically g—m?-g for some positive constant m, the
curve a(t)=y(t/m) is a circle on (M, m*.-g) with curvature x/m. Under the
operation g—m?g, the prime period of a closed curve changes to m-times of the
original prime period. We therefore treat only for the case c—=4.

For a geodesic on HP™(4), which is the case with k=0 in [Proposition 1, we
get that a horizontal lift 7 of y satisfies #(¢)+7(H)=0. Hence we have the fol-
lowing expression.

PROPOSITION 2. The geodesic y on a quaternion projective space HP™4) with
1(0)=dn((&, 7)) is given by

7(t) = m(§ cos ¢+ sin t).

§4. Circles on HP*(4) with 6=1.

We first treat the case that the structure torsion @ is 1. In this case we
can write dawn Y as Y=—(0IX+¢/X+¢KX). Therefore, by [Proposition I,
our equation for a horizontal lift 7 is

(4-1) ViX = —k(@IX+oJX+¢KX),
or equivalently,
-1 T3 X = —k(0IX+oJX+¢pKX)—N .

We shall express 7 as 7(H)=Z@)+W()j, Z@), W({t)eC™**. By we can re-
write (4-1’) into the following linear differential equations;
7 = K(0i 7 — oW +iW)— Z
(4-2) { ) A
W =k(—0iWtoZ+piZ)—W.

The eigenvalues of the associated matrix of the linear equation
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Z 0 1 0 0 Z
d Z |-t ki 0 —xle—¢i)|| Z
dat| w 0 0 0 1 W

W 0 wlo+¢i) —1  —xbi J\W

are +ai, +bi, where
0= St VR, b= le— Vi),

Computing associated eigenvectors we obtain the following explicit expression
for # under the initial condition that

F0)=é=x+yj, 70)=9=utvj, x 3, uveC*",
When #+1 we have by putting w=(¢-+i¢)/(1—0) that
Z(t) — a)(Aeiat+Beibz)_Ce—iat__De—ibt ,

W(t) — Aeiat_}_Beibt_*_@(ce—iat_!_De—ibc),
where
A=1—-0)—bawx—by—idu—iv)/2+/k*+4,

B=1—-0)awx+ay+idutiv)/2+/k*+4,
C =(1—-0)bx—bwy—iut+iwv)/2+k*+4,

D =(1—-0)—ax+awy+iu—iowv)/2/*+4.
Hence we get

(4-3) 7)) = {(A+Ce'**+(B+Dj)e*} (w+7),

= {{eb(—a+ D+ n(—i@+ et

N 1— .
+{a@— i@+ i) ).
When =1 we have
(4_4) ?(t) — {S(_beiat+aeibt)+nz’(_eiat+eibt)} (x2+4)-—1/2 .

PROPOSITION 3. Let y be a circle with geodesic curvature x on HP™(4). If
its structure torsion @ is 1, then it is a simple closed curve with prime period
21 /K 4.

PROOF. Let 7 be a horizontal lift of y. The condition that y(¢,)=7(0) is
equivalent to the condition that
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(4-5) Flt,) = 7(0)e for some ¢=SH.

We may suppose 1. Since (7(0), ?(O))):O we have &, 7 are H-linearly inde-
pendent. Therefore by using the expression we find is equivalent to

{=b@—e**+a(@— e} (w+)) = (a—b)T_ig—e
gitto—gitto = ()
which hold if and only if

(a—bty/m = V¥ +4t /s Z and e=(w+j) ‘e (w+7).
Since

F(ty) = {(A+Ciae**to+(B+Dj)ibe" 0} (w+ 1)
= {(A+Cjiaet @D t(B+Dj)ib} e®o(w+j) = 7(0)e,

we can conclude 7 is a simple closed curve with prime period 2z/+/k*+4.

§5. Circles on HP*(4) with ©=0.

Next we shall concern ourselves with circles having null structure torsion.

In this case the equations for a horizontal lift 7 are
(6-1) ﬁ,ﬁ? = x?, ﬁf?:——xf
which are equivalent to
G-17) UiV X = —(e+1)X.
As in §4 denoting 7(t)=Z(t)+W(#); we can rewrite this into the following;
Z® = —(+1)Z
(5-2) .

We = —(*+1)W,

which are the same type equations as the equation for circles with null com-
plex torsion. Solving these equations under the initial conditions

O =¢&==x+yj, #0)=n=utvj, F0)+70)="Ck=(z+wjk,
X, ¥, u, v, 2z, wEC"™,
we get the following explicit expression of 7,
Z(t) = Aexp (ivE*+1t)+B+C exp (—ive*+11),

W(t) = Dexp GvVk*+11)+B+Fexp (—ivkiF11),
where
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A = {20+ 1)} T (x —k2)—i 2K+ 1)y
D= {2(&*+1)} "y —rw)—i2vVE*+1)"v
B =k(&®+ 1) kx+z), E =&+ eyv+w)
C = {2(*+ 1)} "(x—£2)+i2~/E*+1) u
F= {2(6*+ 1)} (v —kw)+i2+/K*+1) v,
Hence we have
(5-3) 7)) = (A+F))exp (VB +11)+(B+Ef)+(C+Dj)exp (—ivE*+11),
= {(¢—Le—ni/K*+1) exp GV +1)+E- 26+ 2k
+(E—Cr+nivVEP+1) exp (—ivV/EEH1 )} {2(s2+ 1)} 7L
PROPOSITION 4. Let y be a circle with geodesic curvature £ on HP"(4). If

its structure torsion © is 0, then it lies on a totally geodesic RP*(1), hence is a
simple closed curve with prime period 27/~/k>+1.

§6. Circles on HP"(4) with 9<6O<1.

The rest of this chapter is devoted to study the case 0<©@<1. In this case
the equations for a horizontal lift 7 of a circle are

~

Vg 14
(6-1) { .~ ~ N . ~
VY = —kX+(0IN+¢/N+¢PKN)

<
Il

which are equivalent to

(6-1) V59X = — &+ 1) X+x(0IN+o/N+PRN).

As usual, denoting 7(H)=Z()+W(t)j we can rewrite this into the following :
Z® = —(R+1)Z—k(i0 Z— oW +igW)

62 { W® = (LW 4k (GOW —pZ —idZ).

Consider a cubic equation 7*—(k*+1)r—x@=0. This equation has three nonzero
real solutions a, b, d (a<b<d), which satisfy a+b+d=0, ab+bd+ba=—(k*+1)
and abd=k®. The eigenvalues of the matrix associated to the differential
equations are the solutions of one of the cubic equations A*+(k*+1)A+x6:
=(, hence *as, £bs and +di. Under the initial conditions

F0)=&=x+v7, 70)=19=utvj, FHO)+F0)="Llk = (z+w))k,
X, ¥, U, v, z, weC"*?,

we get the following solutions of [6-2). When #+#6 we have
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Z(t) —_— w(Aeait+Bebit+Cedit)__De—ait_Ee—bit_Fe—dit ,
W(t) — Aeait+Bebit+Cedit+a—5(De—ait+Ee—bit+Fe~dit),

where w=wg=(¢+i¢p)/(60—0) and
_ 6—06

T 2d—a)a—b)®
_ O—06

T 2a—b)(b—ad)®
___ 6-0
 2(b—d)(d—a)®

D= ﬁ(d—(i)?ao;—b)_g {A+bd) x—wy)+ai(u—wv)—k(z—ow)},

A

{—A+bd)@x+y)+ailwu+v)+rl@wz+w)},

B

{—(Q+da)ax+y)+bil@utv)+r@z+w)},

{(—(1+ab)@x+y)+dil@u+v)+e@z+w)},

E= z(a_i)—(;)a_d)@ {A+da)x—wy)+bi(u—wv)—k(z—ow)},
O—6 )
= 2 dNd—a)0 {1+ab)(x—wy)+ di(u—wv)—K(z—ow)} .
Hence
(6-3) 7(t) = {(A+Dj)e* ' +(B+Ej)et  +(C+Fjle®t} (w+),

= {{—80+ba)@— )+ i@+ 1)+ Ce@— D b— e
+{—8(1+da)@— )+ nbil@+))+Lk@—j)} (d—a)e’
+{—4(L+ab)@— )+ di@+ )+Ln@— ) (@ —b)e?*|

0—0 .
x Z(a-b)(b_d)(d_a)@(w+_]).

When =6 we obtain

(6-4) 7() = {{—6(+bd)+nai+Te} (p—d)e

+ {—&(+da)+nbi+lk} (d—a)e®™

+{—§<l+ab>+vdi+c'f}W"’)ew}(a-b)(b—ld)(d~a> '

By these expressions we have
PROPOSITION 5. FEvery circle on HP™4) with geodesic curvature & and

structure torsion @ (0<O<1) is a ssimple curve. Further more, let a, b and d
(a<b<d) be the nonzero real solutions for the cubic equation v*—(k*+1)r —k®
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=0. Then it is closed if and only if one of the three ratios a/b, b/d and d/a
is rational. In that case, its prime period is the least common multiple of
2n/(b—a) and 2x/(d—a).

PROOF. Let 7 be a horizontal lift of y. We may suppose 6 #6 so we use the
expression [6-3). Since (7, X)=(7, ¥)=0 and |(X, ¥)|=6<1, we find 70)=¢,
)?0:77 and Y,=¢ are H-linearly independent. Therefore we can rewrite the
condition y(¢,)=y(0) into

(b—d)Y1+bd)@— j)e® to+(d—a)l+da)@—j)e**o

Ha—b)(L+ ab)@— e o} (0+ )
26
-6

(6-5) a(b—d)e* 0 4-b(d —a)e* ot d(a —b)et o = 0

= {(b—d)bd+(d—a)da+(a—b)ab}

g

(b—d)e?*o+(d—a)e’*o+(a—Db)et*o = (.

for some e=SH. The second and third equalities in imply (a—d)/(a—b)
and (a—d)/(b—d) are rational numbers. Since a-+b+d=0, this implies a/b,
b/d=Q. Hence if a/b#@Q, then y is a simple open curve. (Of course, by
a+b+d=0 the condition a/b=Q is equivalent to b/d=Q or d/asqQ.)

When a/bs@Q, or equivalently (a—d)/(a—b)=@Q, if we choose ¢, as a com-
mon multiple of 2n/(b—a) and 2r/(d—a), then the equalities hold with
e=(w+7) e (w+7). One can easily get 7(t,)=7(0)e and 7(t,) =7(0)c. Hence
we find y is simply closed if a/b=Q.

Summarizing up [Proposition 3, 4, 5, we get [Theorem 1.

II. Circles on a quaternion hyperbolic space.
§7. Quaternion hyperbolic space.

We shall start with recalling on a quaternion hyperbolic space. Let {,)
denote the quaternion Hermitian form on the right vector space H"*'. We set
{,>=Re{,), which is invariant under the action of SH; <A, nA>=<§, %> for
A=SH. The quaternion hyperbolic space HH" is defined as the orbit space on
Hi"B == H"" (&, £&)=—1} under the action of SH. We denote by n: H{**3—
ITH™ the S:-principal fiber bundle. When it admits the Riemannian metric g(,)
=4<{,>/c, we denote as HH"(—c). Let D,(H) denote the unit disk in H™;

Do(H) = {psH" (g, p)<1}.

We can identify HH" with D,(H) by the map ¢ : HH"—D,(H) which is given
by
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Q@) = (&7 -, Enbe™).

We denote by T :H{"**=4HHi"**PV:H{™** the orthogonal decomposition of the
tangent space of H{"*® at & into horizontal and vertical subspaces, where

HHP = {(§, p)IneH™, (&, n)=0}
VeH"* = {(§, ED|A€H, Re 1=0}.

For given § we can identify T, HH" with 4:H{"**. We shall denote p«(X)
the identified vector for X&T .o HH™.

We first study the relationship of connections. Let V, ¥V and ¥ denote the
Riemannian connection on HH*(—4), H{"*® and H"** respectively. If we denote
by N the position vector of H4"*® in H"*!, which satisfies <N, N)=—1, we have
for any vector fields X and ¥ on H{™** that

ViV =TV —<X, PON.

For the relation between V and V we get the following by a same argument
as in Lemma 1], except <N, N)=—1.

LEMMA 3. Let v be a smooth curve on HH™(—4) and 7 be one of its hori-
zontal lift onto Hi{™3. For a vector field Y along y we define a vector field
along 7 by ?(t):p;m(}’). Put X=7 and )?:75, then we have

0iw(VxY) = VeV <X, IVYIN+<X, J¥IN+<X, RYYRN .

Let y be a circle on HH"(-—4) with geodesic curvature £: VyX=¢Y, VyV =
—kX. For a horizontal lift 7 of y, we set

0=0)=<X Iy, o=@ =<X ]V, ¢=¢iH=<«X K>,
which do not depend on the parameter. The structure torsion @ coincides
with (824¢@*+¢*)'2.  Applying we can conclude the following.

PROPOSITION 6. Let y denote a circle on HH™(—4) with geodesic curvature
k and structure torsion O :VyX=kY and VyY=—kX. Then its horizontal lift
7 on Hi**® is a helix of order 2, 3 or 5 corresponding to ©=0, O=1 and 0<O<1.
It satisfies the following differential equations:

ﬁ,fr)? = lc?,

ViV = —kX —6S,

VzS = —6Y +V/1=6%U,

ViU = V1-6°S +xV,
ViV = —xU,
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where X=p3X)=7, V=p:Y), S=1/0-(0IN-+@/N+$KN), U=1/6/1—6".
OIX+@f X+ ¢KX+6F), and V=1/0v1=0%(0IV +¢JV +9 KV —62X).

A quaternion hyperbolic space is a typical example of a Hadamard mani-
fold, a simply connected Riemannian manifold with nonpositive curvature. For
a Hadamard manifold M we have an important notion of the ideal boundary
oM. Under the identification HH" with D,(H), the ideal boundary can be
identified with o0D,(H)= {{eH"|(Z, {)=1}, and the compactification of HH™
with its ideal boundary coincides with the topological compactification of D,(H).
For a curve y on a Hadamard manifold M, we call y two-sides unbounded if
both {r(#)|t>0} and {y(#)|t<0} are unbounded sets. We put

7(00) = lime p(?), 7(—o0) = lim;._a y(?),

if the limits exist in M=MUdM. We call 7(c0) and y(—oo) the points at in-
finity for y. We shall call y horocyclic if

i) it has single point at infinity ; y(co)=y(—c0),

ii) it crosses orthogonally at y(t) to the geodesic joining y(f) and y(cc).
Our theorem which we shall show in this chapter is the following.

THEOREM 2. Let y be a circle with geodesic curvature k and structure tor-
sion © on a quaternion hyperbolic space HH™(—c). We denote by kg the unique
positive solution for 27220*—4(3*—1)*=0. Then the following hold :

(1) When k<+/ckg/2, it is a simple two-sides unbounded open curve. If k=
Ncke/2, it is horocyclic, and if £<~/cke/2, it has two distinct points at infinity.

(2) When @=0 and k> +/ck,/2=+/c/2, it is a simple closed curve with prime
period 4n/~/Ak®—c.

(3) When O=1 and k> vck:/2=+/c, it is a simple closed curve with prime
period 2w/ /k*—c.

(4) When 0<O<1 and £>/cke/2, we denote by a, b and d¥(a<b<d) the
non-zero real solutions for cA*—(4k*—c)A—2+/ck@=0.

(i) If one of the three ratios a/b, b/d and d/a is rational, it is a simple
closed curve. Moreover, its prime period is the least common multiple of
4r//c(b—a) and 4n/+/c(d—a).

(ii) If each of the three ratios a/b, b/d and d/a is irrational, it is a simple
bounded open curve.

We first point out the expression of geodesics on HH"(—4). By
6, a horizontal lift 7 of a geodesic y satisfies 7—7=0. We hence get

PROPOSITION 7. The geodesic y on a quaternion hyperbolic space HH™(—4)
with 7(0)=d=n((§, 7)) is expressed as
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7(t) = m(§ cosh t+7 sinh t).

§8. Circles on HH"(—4) with 6=1.

We first treat the case that the structure torsion @ is 1, hence Y =
—(0IX+¢jX+¢KX). Our equation for a horizontal lift is

(8-1) VX = —x(0IX+ofX+9KX),
or equivalently,
(8-17) Ve X = —k(0IX+o]X+pKX)+N.
Putting #(O)=Z({H)+W ()7, Z(@), WH)eC™*!, we obtain the following linear dif-
ferential equations.
Z = k(0iZ—oW+giW)+Z
&2 { W= k(—0iW+oZ+PiZ)+W .
The eigenvalues of the matrix associated to these equations are +a, £, where
a= %(ICH— Vi—rY), B= %(/ci— VA—EY).

So the type of the solution for changes according to £>2, =2 and £<2.
Solving this equation under the initial conditions that

F0)=&=x+yj, #0)=7n=utvj, =x, 9, uveC",
we get the following. When #+#1 we get by putting w=(¢+ip)/(1—8) the
following.
w(Ae*4-Beft)—(Ce %+ DeFY), if k+2,
1-6 ] ) .
Z@) =1 5 \e{l—itf@x+y)ti@utv)e”
+{(1—}—z’t)(x—wy)+t(u—wv)}e““} if k=2,

Ae* 4+ Beft+@(Ce*+ De #Y), if k#2,

W(t) = 3 }—gi{{(l-—il)(@x—l- y)+t@u+v)} et

—cD{(l+z’l)(x-a)y)+t(u——wv)}e‘”} it k=2,
where
A= (1—-0)—pox—By+du+v)/2/4—¢°,

B =1—-0)avx+ay—adu—v)/2+/4—¢2,
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C=01-0)Bx—Bwy+u—wv)/2+/4—¢,
D=(10-0)—ax+awy—utwv)/2+/4—F¢.

Hence we have by putting a = (k++k*—4)/2, b= (x—/k*—4)/2, when £>2,
that

(8-3a) 78 = {(A+C e +(B+Dj)e*} (w+7)

= {{—£b@—)—ni@+i) e

+{&a(@— )+ ni@+ ) eb“}%}%%{@- if k2,
@) 0= e i tn@— i) —Ei@ i) et )), if k=2
83) A= (A+Die H(BLC e @)
= {{~&(@+aj)+n@—he
+ (8@t pi—y(@—pert} XD it e
When #=1 we obtain
(—gb—pierHEa by} (470, i k>
B4 =]t Iyt if 5=
(88 met+Ea—rpe™) (d—r) 7, if k<2

Using these expressions we show the following.

PROPOSITION 8. Let y be a circle with geodesic curvature £ on HH"(—4).
If its structure torsion O is 1, then the following hold.

(1) When £>2, it is a simple closed curve with prime period 2r/~/k*—4.

(2) When k<2, it is a simple two-sides unbounded open curve.

(3) When £<2, it has two distinct points at infinity, and when k=2, it is
horocyclic.

PrOOF. The second assertion follows from the expression. We can show

the first assertion along the same lines as [Proposition 3. We here just show
the third assertion. Let 7 be a horizontal lift of y with §+1. When £<2, by

the expression of ¥ we have
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-1(t) = ({1—&i(pa+ai+n@—i} exp (VE=r*1/2)
+ {6u(a@+ 1) —mu@— D} exp (— VI=#*1/2)}
x{{—6x(B@+ai)+m@— 1)} exp (VA=E*1/2)

+ (8ol + 1) —a(@— D} exp (—VImR DY)

hence get that 7 has points of infinity ;

limy.o @ o7(t) = ({—E:(B@+ i)+ 9u@— P} {— 6@+ i) +o@— ) ")

b
1sisn

limy.—o @p(t) = (16a@+87)— 7:@— )} E(a@+B)—7s@— )} )

1slsn

These lead us to y(co)s#7y(—oo) in the following manner. Suppose lim;..®-y(t)
=lim;, o @Poy();

{EBa+af)—n@— 1)} {§(fo+a))—n@—j)}
= {§i(a@+B7)— 7@ — )} {§olaw+B1)—no@—1)} !, 1=l=n.

Multiply both sides of the above equalities by &, from left and sum up with respect
to ! 1<I<n). We then have

(Bo+aj){6(Bo+as)—n@—)} ! = (aw+B1) {E(Bo+aj)—po@— 1)} .
Similarly by multiplying 7, we get
{Eo(Ba+as)—no@—)t ' = {§(B@+aj)—n@—5)} .

These lead us to a=p, which is a contradiction. We get y(co)#y(—c0) when
IC<I£9.
When £=2 we find

Mg @op(t) = lim; o Poy(2)

= (In@—)—i@+ 7} tn@— ) —&i@+1} )

1slsn

= ({e+niOi+i+k)} ot noBit+pj+gh)} )

1slsn »

Consider the geodesic ¢ on HH"(—4) with d(O):dn‘((E, v(0i77+g0iﬁ+¢f()7)).
We then have
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lim o @00 = (&4 7014 0i -+ &0t no0i+pi+k)} ™)

1slzn
= limy_e @oy(t) .

Since y and ¢ cross orthogonally at 7(0), we get the conclusion.

§9. Circles on HH"(—4) with ©=0.

Next we shall concern ourselves with circles having null structure torsion.
In this case the equations for a horizontal lift 7 are

(9-1) %X = x};, ViV = —kX

which are equivalent to

(9-17) V592 X = —(x*—1X.

Denoting 7(t)=Z(#)+W(#); we can rewrite this into the followin7y;
Z® = —(-1)Z

{ W® = —(—1)W,

(9-2)

which are the same type equations as the equation for circles on a complex hy-

perbolic space CH"(—4) with null complex torsion. Solving these equations
under the initial conditions

FO)=&=x+yj, 70)=7=utvi, FO)—F0) =L = (z+wk,

x, v, u,v z, weCrt,
we get the following;

Aexp (VI—=g2t)+B+C exp (—+/1—k%1), if k#1,
Z0 = (1+;—2)x+tu+f;fz, if k=1,
Dexp (V/1—g*t)+E+Fexp (—+/1—k%1), if k1,
Wit = (1+§)y+tv+—t—22£w if k=1,

where
A= 20—k} YUx+£2)+ 2/1—k% u

D = 20—} (y+rw)+{2vV1—x% "
B=—k(1—£*)"kx+2), E=—k(1—k)"'(y+w)
C = 20—k} "Nx+k2)— {21 —£2} 'u
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F= 20— (y+rw)— 2vVI—#* 0.
We hence have the following expression of 7.
(9-3a) 7ty = (A+F7)exp (VK2 =11)+(B-+E)+(C+Dj)exp (—ivk:—11)
= {—(E+Le+nivEE—1) exp (VE*—11)+2(E*+ k)

—(E+Le—nivEE—1) exp (—ivVE'—11)} -2—(;2}:1-5, if £>1,
. s 1’k .
©30)  F) = &1+ )+l if k=1,

(9-3¢c) 7(1) = (A+ D) exp (VI—£*)+(B+E)+(C+Fj)exp (— vI—£%)
= {(6+Lr+nV1—£) exp (VI—£)—2(8k*+ k)
G+ g VIR exp (— VI—F) 2<1“£x’2>’ it el
We therefore find out the following.

PROPOSITION 9. Let v be a circle on HH™(—4) with geodesic curvature k
and structure torsion @=0.

(1) If £>1, it is a simple closed curve with prime period 2m//k*—1.

(2) If <1, it is two-sides unbounded simple curve.

(3) If k=1, it is horocyclic, and if k<1, it has two distinct points at infinity.

PrOOF. By the expressions (9-3) the assertion (1), (2) are trivial. We shall
concern the last assertion. When <1 we have

lim, o @-7(8) = (@47 VIR EF oV I=e) 1)

1sl=n

lim, ... @+7(8) = (@t =7V TR Eot-Cor— o v/ 1=

1slsn

Here since &, 5, { are H-linearly independent, we see that &+ + 7o/ 1—£% 0.
Now suppose they coincide ;

E+Cue+ i V1I—£)(E+ Lok 410 vVI—£?)
:(El‘}‘Cl’f"ﬁz \/quxéo"}‘g)’f”ﬁo \/1':"_“}2')—1’ 1<i<n.

We multiply both sides of the above equalities by &, from left and sum up with
respect to /, then get 7,=0, by use of (&£, §)=—1 and (&, n)=(&, {)=0. Similarly
by multiplying 7, we get &+&«x=0. This is a contradiction. We therefore
have y(oo)#y(—c0), if k<1.

Whenjxk=1, we find
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lim, ... @op(t) = lim, . @op(t) = (E+L)E L))

1slsn

Consider the geodesic ¢ on HH"(—4) with ¢(0)=d=((&, {). It crosses ortho-
gonally to 7 at 7(0), and lim,... @-o()=lim,... @-y(t). Hence we get the con-
clusion.

§10. Circles on HH"(—4) with 0<6G<1.

We finally study circles on HH?*(—4) with structure torsion 0<@<1. In
this case the equations for a horizontal lift 7 of a circle are

{ Ve X
V2V = e X+ (OIN+JN+PKN)

~

kY

(10-1)

which are equivalent to

(10-17) T:9: X = —(— D) X+r(@IN+/N+PEN).

As usual, denoting 7(1)=Z(t)+W(t)j we can rewrite this into the following;
{ Z® = —(e2—1)Z — k(G0 Z — oW +igW)

(10-2) .
W® = — (2= D)W +i0W —Z—idZ).

For given O (0<®<1) we denote by ke the unique positive solution of the
equation 274*°0*=4(1*—1)*. We consider a cubic equation 7°—(x*—1)r—kO=0.
This equation has
(i) three nonzero real solutions a, b, d (a<b<0<d), when k£>«g,
(ii) a negative double root a and a positive solution d, when r=«g,
(iiiy two complex solutions f+ig, f—ig (g>0) and a positive solution d,
when k<kg.
The eigenvalues of the matrix associated to the differential equations are
the solutions of one of the cubic equations A*+4(k*—1)A+£G@:;=0. Hence they
are
(i) 6 distinct pure imaginary numbers +a, +f8 (a=ai, 8=bi) and =+di,
when £>«kg,
(ii) 4 pure imaginary numbers +ai and +di (a=—d/2=—~/(k§—1)/3, when
K=Kg,
(i) +a, =B (a=g-+if, B=—g+if, g>0) and distinct pure imaginary
numbers =+di, when g<kg.
Under the initial conditions

FO)=¢&=x+yj, #0)=75=utvj, F0)—F0) == (+wjx,

X, ¥, u, v,z weC"",
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we get the following solutions of [10-2). When §+#6 we have
(Ae* 4 Beft+Ce")—(De '+ Ee '+ Fe™ '),
Z(t) =
{ Ae*'4-BePt+Ce®' +@(De '+ Ee P4 Fe™ %),
W(t> = ~ ~ ~ o . ~ . .
Aeait+Bteait+Cedit+5(De—alt+Ete—a1t+ﬁ‘a—dtt)

where w=we=(¢+ip)/(@—8) and
6—60

w(]le'“"—{—ﬁte““—{—6e‘”‘)~(D~e“““-I—Ez‘e"“”—{—ﬁe"d“),

if k+#«kg,
if k=«g,
if k£«ke,

if k=«kg,

A= 2di—aya—p)@ {(—(1+Bdi)@ x+y)—al@u+v)—r@z+w)},
6—06 o _ _

B = 2(a~—ﬁ)([3——di)@ {(—(A+dia)wx+y)—p@ut+v)—rl@z+w)},
6—40 _ o _

C = 2B diNdi— )0 {—(Q4+ap)@x+y)—dil@u+v)—r@z4w)},
6O—06 .

D= di—aya—B)B {—(1+pdi)wy —x)+alwv—u)—klww—2)},
6—6 .

E = Sa— B f—di)O {—(1+dia)wy—x)+ flov—u)—rlow—2)},
60—6 .

F = B diXdi— )0 {(—(1+ap)wy—x)+ di(lwv—u)—rlww—2)},

A = {Ba*+1)@x+y)—2ai@u-+v)+r@z+w)} (O—0)/180a?

B = {—iQa*+1)@x+y)+a@u+v)—ki@z+w)} (O—6)/60a,

C = {(a*—1)@x+y)+2ai@u+v)—k@z+w)} (O—0)/180a?

D = {8a*+ 1wy — x)+2ai(wv—u)+rlww—z2)} (O—8)/180 a? ,

E = {i2a*+1) @y —x)+ a(wv—u)+xilww—2)} (O —6)/60a ,

F= {a?—1)(wy —x)—2ai(wv—u)—rlww—2)} (O —0)/18Ba? .

Hence we can conclude the following.

(10-3a) 7)) = {(A+Dje*** +(B+Ej)e?* +(C+ Fy)e®*} (w+ )

= [{e0—bd)@— )+ 7ai@-+ )+ Tr@— D b—d)e*"
+ {61~ daY@— )+ pbi@-+ )+ {e@— D d — a)e™
+ {6 —ab)@— )+ ndi@+ )+ {s@— D @ —b)e**t}

6—0

Na—bb—did—a)@ @ T, 1 £>Fe

X
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(10-3b) #t) = ((A+Dpyertt+(B+Eptestt+(C+ F ety (w+7)
= {{E@a*+1)@— /) —7-20i@+ )+Le@— )} e+

—3a{£2a*+1)i(@+j)—na@—)+Lri(@+ 1)} te®

+ {&(a*—1)@—))+1n-2ai@+7)—C@— )} em},_-_

(10-3¢) ) = {(A+E e +(B+Dj)eft+(C+Fy)e*} (w+7)
= {— {8@— 7)1+ Bdi)+n(aw+B1)+Lk@— )} (B—di)e
—{e@— )L+ adi)+np(Ba+af)+Le@— )} (di—a)e?!

— {8+ aB)@— )+ ndi@+ )+ Te@— D} a—Ble** |

XZ(a—ﬁ)(ﬁ@;:‘if)(di_a)@(w-l—j), if k<ke.
When §=6 we obtain
(10-4a) 7= {{E(l—bd)»+1;az'-+c,c}(b_d)eau
16— da)tgbi+ L) (d—a)e
+ {61 —ab)+ndi+Lx} <a_b;>em}za,:5 )Tb‘—l’aﬁiaj ,
if k>kg,

(10-4b) 7= { {£8a’+1)—n-2ai+k} e — {£i(2a°+1)—na+Lki} 3ate®

. a1 .
+ (8@ =Dy 20i—Cep et o, if £=hg,

(10-4c)  7(t) = {— {6+ Bdi)+na+Llx} (B—di)e™

— &L+ adi)+nB+Lk} (di—a)e’t

. . _ ait] 1
{600+ ap)+ ydic+ e am et b — s

if k<ko.
By these expressions we have

225

PROPOSITION 10. Let y be a circle on HH™(—4) with geodesic curvature &

and structure torsion @ (0<O<1).
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(1) If k<ke, then it is two-sides unbounded simple curve.

(2) When k=keg, it is horocyclic, and when k<ke, it has two distinct points
at infinity.

(3) When k>kg, it is bounded simple curve. Further more, let a, b and d
(a<b<d) denote nonzero real solutions for the cubic equation t°—(k*—1)r—x60=0.
Then it is closed if and only if one of the three ratios a/b, b/d and d/a is
rational. In that case, its prime period is the least common multiple of 2n/(b—a)
and 2r/(d—a).

ProOOF. Since a, 8 have their real part, we get the first assertion by the
expressions (10-4). The last assertion follows by the same argument as in

Proposition 5. We show the second assertion. When x=kg we have
limg_.m @°T(i) - lim“_m @'37’(1)

= (182" + i@+ )~ mia@— )+ Ciwi@— )}

X {6(20* + i@+ ) —noa@— )+ Cori@— 1)} )

1zlsn

= (162e*+ D)+ Bi+pj+Ph)a/O+Lin)

X AG2a*+ )+ Oi+oj+Pk)a/O+ Lt )

1slsn -

Consider the geodesic ¢ on HH"(—4) with ¢(0)=d=((§, p)), where

p= {n@i+ej+Pk)a/O+Lre} 2a*+1)7",  a=+/(kg—1)/3.
We then have (&, u)=0, (%, #)=0 and

Qa* 1, 1) = Xy, )~ g ko 10<In, D+o<Tn, D+<Rn, O +68E0)

= a°+2aOrg+kd = a*—2a{a*—(kg—1)a} +x}
= (2a%+1)%.

Also we have

lim; .. 0-0(8) = (E+p)G+pu)™) | =lim, . Gop(®),

isls

hence we find y is horocyclic.
When £<rg, we have
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limyo @+7(8) = ({6@— N(A+Bdi)+ (@B +B)+Ck@— )}
X 6@ — L+ B+ ya(ad+B)+Hm@— )

lim,.._ @7(t) = ({6:@— )1+ adi)+ B+ aj)+ Lus@— )}

X AGo@— 7)1+ adi)+no( B+ ay)+Lor@— 1)} > :

By the same argument as in we find they are distinct.

REMARK. The bound kg can be interpret in terms of curvature.

£y = —Riem (dx(¢, 1), dx(§, p),

where p is the direction of the point of infinity for horocyclic circle; p=
{nOi+oj+¢k)a/O+Lrel 2a*+1)7", a=—{(kg—1)/3}"".

(1]
(2]
£3]
[4]
[5]
[6]

Summarizing up [Proposition 8 9, 10, we obtain
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