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§0. Introduction.

In this paper we construct self-similar diffusions on a class of infinitely
ramified (self-similar) fractals.

Construction of self-similar diffusions on finitely ramified fractals has been
done by Goldstein [7], Kusuoka [12], Barlow-Perkins and Kumagai for
the Sierpinski gasket, and Lindstrgm [14] for the nested fractals.

As for infinitely ramified fractals, Barlow-Bass [1, 2, 3, 4] and Barlow-Bass-
Sherwood [5] studied the two dimensional Sierpinski carpet. Although some
strong estimates of transition probability densities were obtained, the self-
similarity and uniqueness of their Brownian motions were not known. Recently
Kusuoka-Zhou have constructed self-similar diffusions on the recurrent
fractals; a class of fractals containing the two dimensional Sierpinski carpet.

One crucial step to study the infinitely ramified fractals in the above works
was to use the quantities such as resistance and Poincaré constants. We
however take a different approach: We first consider the equation [2.9)] of
hitting probabilities in the fasion of Lindstrgm [14];

2.9) P(q) =q (g€ Qe u(F)).

Here Qg x(F') is the set consisting of hitting probabilities. Then we construct
self-similar diffusions from its solutions.

In the case of nested fractals, Q¢ n(F') can be regarded as a compact convex
set in R” and the map @ is continuous by the geometrical symmetry of fractals.
Accordingly Lindstrgm could solve by applying® Brouwer’s fixed point
theorem. If the fractal is infinitely ramified, Q¢ 4(F') becomes infinitely dimen-
sional and it seems difficult at present to use fixed point theorems.

To solve the equation [2.9), we reduce the problem to the existence of an
approximate solution q€Q¢ x(F; F) and obtain the solution r by taking r=
lim,_.®*q) (Theorem 2.1). We also prove that such an approximate solution
exists if the fractal has a nice surjection to another fractal where a self-similar
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diffusion exists (Theorem 3.1I).

The main result is [Theorem 4.8. By this theorem we can construct self-
similar diffusions from known self-similar diffusions (see Examples (5.1) and
(5.4)). Indeed provides a procedure to lift self-similar diffusions
on a fractal F, to ones on a more complicated fractal F;. Here even if F, is
finitely ramified, F, becomes infinitely ramified in general (see Figs. 5.1 and 5.2
in Section 5 for examples of F, and F;, respectively). Example (5.4) does not
satisfy the assumption (R) in for at least d=3. Hence our results are not
contained by [13].

The fractals in the present paper are quotient spaces of symbol dynamics
and not necessary imbedded in R™ (cf. [10]). We restrict our attention to
compact space.

The organization of this paper is as follows. In Section 1 we prepare
definitions and notations to be used throughout this paper. In Section 2 we
solve the equations of hitting probabilities [2.9) and transition times (2.27) under
the assumptions (2.10), (2.11) and [2.26). In Section 3 we present sufficient con-
ditions for the above assumptions to be true. In Section 4 we construct self-
similar diffusions from the solutions obtained in Section 2. In Section 5 we
present examples of self-similar diffusions on infinitely ramified fractals.

§1. Definitions of cell fractals and (G, H)-self similar diffusions.

Let I be a finite set endowed with a discrete topology and I=I¥ the coun-
table product with a product topology. We denote by 6° the shift operator on
I such that 0%(,, i,, 5, - ))=(, 7y, 25, ).

Let F be a topological space. Let f*: F—F be an injection for each i/
and 7 : I—>F be a surjection. Then (F, I, {f*}, w) is said to be self-similar set
if it satisfies that '

1.1 moft = flom for each e/,

and that F is endowed with the quotient topology induced by =.

Let I'={@}, I"={G,, -, in); ;€1} and I*=\U5s-, I". For i=@G{1), -+, i(n))
eI™, we set fi=fiMo.ofiD Hi=FiMo...cf*D where f? and 6¢ denote the
identity on F and I respectively.

A self-similar set F=(F, I, {f*}, =) is called a quasi fractal with (B, B) if
(B, B) satisfies (1.2), ---, [1.6):

(1.2) B is a finite set of subsets of F such that fib) are closed for all
be B and i I*.

(1.3) B=\Ub and F-B # @.
beB
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(1.4) bNfUF) C fib) for each be Band i< 1.
(1.5) FUFINfIF) = fA(B)N\f¥(B) for each i, j I™ with i +j.

These conditions are slightly restrictive than, but essentially same as those
in [15]. Condition is necessary for (4.7). The conditions (1.2) and
imply that B is a closed set. We call B the boundary of F and an element of
B a boundary cell. B may be empty in general. By we see

(1.6) BC igjf"(BL

from which the open set condition ([9]) follows.

We next introduce the l-cell condition. Let F=(F, I, {f'}, =) be a quasi
fractal with (B, B). We say that F' satisfies the 1-cell condition if either B is
empty or (B, B) satisfies (1.7) and (1.8):

(1.7) For each b € B, there exist I, & I and a surjection w,: I,V —b
and a continuous map ¢,: I,¥ — I such that b=(b, I, {f|s}, 7p) is
a quasi fractal with (B,, B,), and that mwe¢, = m,.

Here B, is a subset of b and B, is a set of subsets of B,; (B, B, satisfies

(1.2), -, for b=(b, Ip, {f*|s}, Ts).

(1.8) For each b, b’ € B and i, i’ = I* such that fi(b)+ f*(b’) and that
i,i = I" for some n=0,

FiONFEO) = FA(BINSf(By).

Let B(1)=B. We call an element of B(1) a 1-bouudary cell. We define k-
cell condition and B(k) inductively as follows:

A quasi fractal F=(F¢ I, {f%}, m) satisfies k-cell condition if F satisfies
(k—1)-cell condition, and for each b=B(k—1), b=, I, {f*|s}, m) is a quasi
fractal with (B,, B;). Here

acB(k-1)

DEFINITION. A quasi fractal F=(F, I, {f'}, =) is a cell fractal if it satis-
fies k-cell condition for all k=1, 2, ---.

REMARK. There exists a £ such that B(k)={@}. Hence we set
(1.10) ko = min{k; B(k) = {D}}.

We quote the following lemma from [15].

LEMMA 1.1. A cell fractal is a compact metric space.

REMARK. Since F is a Hausdorff space, f* is continuous. Moreover, each
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f* has a unique fixed point and = is determined by (F, I, {f*}) uniquely. Also,
{f*} is determined uniquely from (F, I, #). Hence we often write F=(F, I,
{f*}) and F=(F, I, x).

To help reader’s understanding we give a simple example :

ExaMpLE. Let F=[0, 1]Xx[0, 1] and I={(0, 0), (1, 0), (0,1),(1,1)}. Then we
can regard (F, I) as a cell fractal as follows: (See Fig. 2.1).

)= (02", 3ia2"),  i= (G i) e Y,
B = B(1) = {bi} 15454,
where by = {0} X[0, 11, by = {1} X [0, 11, by = [0, 11 {0}, ba = [0, 11 {1}.
B(2) = {{b%}}1sis4,
where b3 = (0, 0), b} = (1, 0), b%= (0, 1), b3 = (1, 1).
Bk = (g} for k=3

bi=(0, 1) bFEOiJX {1} b2=(1, 1)
fﬁ)r b\
bi=1{0} %[0, 1] < = b.=1{1} X [0, 1]
\(‘L ;0,
Y
bi=(0, 0) by=[0, 11X {0} bi=(1, 0)
Fig. 2.1.

The following notation will be used throughout this paper: Let F=(F, I,
{f*}, ) be a cell fractal with (B, B) and k-boundary cells B(k). For F we set

C":{C;C:fi(F) eI}, C= ron.
(L11)  B¥k) = {fb); ic I be Bk} (k=1), B"0)=C" (k=0).
B = \J fiB), B==\B".

icl?™ n=0

Further we set A(k)=¢ (k=k,), where k, is defined by [1.10), and
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AR)y={b—\J U a;beBk)} for ky>k=1

i>kacA(i)

1.12) AMEY = {f{a); a € A(k), i € I
A= Q}A(k), A" = {fi@); ac A, ic I, A= \J A"

REMARK. A is a partition of B: B=3},c,a. Moreover for each b B (k)
there exist a,, -, a,€U 21 A(J) such that b=13,c:<n a;.
We set a*[x]= A" such that xea™[x] for x&B®, and a*[x]=@ for x&
F—B~,
For acA™ and x&F, we set
C*lal= U ¢, Brlal=( U bNC"[a],

aCesC? bNa=7,bcBn"
(1.13)
Crx]= M6 B*x] = ( V) HNC*[x].

ceCn dNalz1=0,bcB"
For ac=A' with aCB'—B, let f,: C*[a]—C![a] be the map defined by
(1.14) fo(x)= flo(f)e(fH N (x) if xece .

Here i, j&=I are such that f% f{(F)=c. It is easy to see that f, are well-
defined. f, are not injective in general.

We next turn to the definition of self-similar diffusions. Let o(x, n) =
inf{t>0; X,eB*[x]}, where {X,}=C{[0, «)—F}.

DEFINITION. A system of diffusion measures {P.}.er is a self-similar dif-
fusion with a time scaling factor A if

(1.15) Pz(fi(Xlt/\a(r,O))E )= Pfi(.r)<Xt/\a(fi(z),l)e °)
for iel, x&eF—B.

DEFINITION. A diffusion {P.} is strongly self-similar if, for a=A' such
that aCB'—B and x=C![a]—B'[a],

(116) Px(XU/\a(x,O)e ) = Py(fa.(Xt/\a(y,l)>E )
for each yef;'(x).

REMARK. We note that does not imply [1.16). Brownian motions on
nested fractals and p-stream diffusions on the Sierpinski gasket are
strongly self-similar diffusions.

Let F,, = (Fpn, In, {fa}, 7n) (m=1, 2) be cell fractals and S, (m=1, 2) their
subsets respectively, A homeomorphism /i : S;-—S, is a cell homeomorphism if

{h(c); ce BUk), cC S} = {c; c € B%k), cC Sy} for all k, n.
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Here BZ%(k) is B™(k) for Fi,.
We next introduce groups acting on cell fractals: We set
G(F)= {g; g: F—-F is a cell homeomorphism}.
We set for a=A™ such that aCB'—B,
HYF)=1{h: C*a]l]— C"[a]; h is a cell homeomorphism, h|, =id.},

and for x&B'—B, HYF)=Hyn.(F). We regard G(F) and H%(F) as groups
under the operation of composition of maps. Let for x&B'—B

(1.17) m@w:ﬁywwam.mm: I H.(F).

zeBl1-B

Here T1 denotes the direct product of groups.

DEFINITION. We call F a (G, H)-cell fractal and also (G, H) is the structure
group of F, if G and H=I]I,ep _pH, are subgroups of G(F) and H(F) respec-
tively, and satisfy the following:

(1.18) H?% is a subgroup of HR(F) such that H}=H} if y=a™ x], where H,
=T

(1.19) {glentzr; £ € G, glantzy=1d.} T HE.

(1.20) {hlon+ite1; he H2 C H?**  for x = B'—B.

(1.21) H? = H?%, with the isomorphism h—geheg™ for g = G.

Here = denotes the group isomorphism.

DEFINITION. Let F be a (G, H)-cell fractal. A self-similar diffusion {P,} .er
is a (G, H)-self similar diffusion if {P.}.er is (G, H)-invariant;

(1.22)  P.(gXipoz.0)E ") = Pooy(Xipotgmr. 00 €+) for all g€ G.
(123} Py(h(Xt/\a(x,n)>€ ) = Ph(y)</Yt/\o(x,n)E )
for all x € B'—B, he H?, y = C*[x].

§2. Equations of hitting probabilities and transition times.

Let F=(F, I, {f%, =) be a (G, H)-cell fractal with a boundary B and k-
boundary cells B(k). We denote by @B(x) the Borel o-field of a topological
space *,

We set for n>1

QMF)= {q: (B*—B)X 8(B~)—[0, 1]; ¢ satisfies (2.1), (2.2)}
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2.1) g(x, -) is a measure such that g(x, B*[x]°)=0 for each x.
(2.2) g(-, A) is 8(B™— B)-measurable for each A € 8(B%).
Let
Qe.a(F)={qge Q™F); ¢(x, B*[x]) =1 ("x), ¢ satisfies (2.3), (2.4)}.
(2.3) q(-, %)= q(g(-), gx)  forall g&G.
(24) q(x, A)=q(x, h(A)) for "h = H} and YA = 3(B™) such that ACB"[x].

Q" F], n=1, 2, --- are sets of hitting probabilities and Q% x(F') are their
(G, H)-invariant elements. If a self-similar diffusion {P,} exists, then ¢"(x, dy)
=P.(Xsz.nyEdy) is an element of Q*»(F). By the self-similarity of {P,}, we
see

(2.5) gL, 1) =g, %) for el n=1.
Moreover if {P.} is a strongly self-similar diffusion, then by
(2.6) "y, 1310)) = ¢"(x, %) (y € £31(x))

for ac A with aCB*—B, n=1.
Taking (2.5) and into account, we set

QF)={g=(g" e }le"<F); q satisfies (2.5)},
2.7) QF(F) = {q = (¢") € Q(F); q satisfies [2.6)},

Qe.n(F)={a=(¢g") € QF); ¢" € Q%.n(F)}.

REMARK. From (2.5) q=(¢") is determined by ¢*(x, -), where xB'—B
and n=1, 2, ---. Moreover if q=Q¥F) and f, are injective, then q=(¢") is
determined by g¢'.

To define the function @: Q(F)—Q(F) below, we prepare several nota-
tions. We set

W = {w=(w? w’); we A" X A" such that w®C B"[w%]}.

We call w=(w,, ws, ---, W) an n-walk and m its length, denoted by m=|wl|,
if w,eW™ (1=/<m) and wi,,=w? (1=i<m—1), where w;=(w$%, w?. We denote
by W?* the set of n-walks. We set

Wnx]
= {w S Wn, X & wlf, w;?(\B"”[x] = ¢ (1 é "k é ‘wD’ wll)wl C Bn-—l[x]}’

Alw) = wiXwiX--Xwh,  for w=(w;), w; =(w$, wi.
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Let @: QMF)—Q" '(F) be the map defined by

2.8) D(g)(x, A) = zg 1T Gimos d2m) LaTin), (%0 = ).

Whlz1JAw) m=1

We regard @ as the map @: I3, Q*(F)—113-. Q"(F) by
Q(q) = (®(qn+l))n=1,z, 3, (q = (q")) .

The key step to construct (G, H)-self similar diffusions is to solve the fol-
lowing equations:

(2.9) D@ =q (qe Qs u(F)),
and
(2.9 P)=q (g€ Qea(F)NQXF)).

REMARK. a) If a (resp. strongly) (G, H)-self similar diffusion {P,} exists,
then (P.(X;(z, n)E *))n=1,2,.. satisfies ((2.9)) by the strong Markov property.

b) The equation discussed in 48 p. essentially corresponds to (2.9").
See also and [10].

Let & be a sub o-field of ®(B) and " a sub o-field of %(B") such that
gr=a[{f{(A); AT, icI™}]. We set

QF: )= {qeQF); ¢*(-, A) is F"-measurable for A = §*, n € N},
Qo n(F: F)=QF: $)N\Qe. u(F).
We now consider a reduction of the equation [2.9).
THEOREM 2.1. Suppose that there exist  and q satisfving (2.10) and (2.11):
(2.10) Q= Qe u(F; F) and AC F, (A is defined in (1.12)),
(2.11) D)+, A) = ¢™(-, A) for all A= g" nx=1.
Then there exists a solution r=>r")=Qe y(F'; F) of (2.9) such that
(2.12) Lig@"(q"”“)(x, Ay =r™x, A for x <= B"—B, A& A=,

Moreover if q=QF(F), then reQX(F).

The following lemmas are analogous to the [Lemma 3.2 and [Lemma 3.3 in
[15]. Hence we omit the proofs.

LEMMA 2.2. Suppose q € Qg y(F). Then @%q) = Qe x(F) for Yn =1.
Moreover, if q=QF(F). Then O™(q)=QF(F) for all n=1.

LEMMA 2.3. Let q=(¢")eQ(F: F) satisfy (2.10) and (2.11). Then
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(2.13) O™ ™)(-, A) = O g"*" ), A)  for A€ I, m=1.

PROOF OF THEOREM 2.1. Since B™[x] is compact and @"(¢™*")(x, B™[x])
=1, {@"(¢™*")(x, *)} nao is tight for all x and m. Hence for x&B™—B there
exists a probability measure »™(x, -) and a sub sequence n(x) depending on x
and m such that »™(x, B™[x])=1 and that

(2.14) lim @"@®(gm*n®)(x, ) = r™(x, ) weakly.

n(x)—oco

Let m be fixed. We will prove r™ satisfies [2.12). Let ¢yf={acsA™k);
aCB™ and ¥r=\U%-»YE. Then ¢y?CF”. From [Lemma 2.3, we see

(2.15) lim @™(g™*")(x, A) exists for xeB™—B, A qy.

Let B™(k)=\Ugwm, b, where B™(k) is defined by (1.11). Then B™(k) is
compact, and

(2.16) lim @ (gm ™) (x, +) = ri(x, -)

n(xr)—soo
weakly as measures on B™(k). Here @ (¢™)(x, -) and »* denote the restric-
tions of @™ (¢™)(x, -) and »™ on B(B™(k)) respectively.
Now we see easily that B™(k)=\U;% Y7, where k, is defined by [I.10).
Since B(k,)={@}, each elements of @5, are open and closed in B™(k,), endowed
with the relative topology. Hence by [2.15) and [2.16)

2.17) lim @™ (¢™*™)(x, b) = r™(x, b) for Yb e Yj,.

We next prove for @5 _.. Let a,=Yi,-,. Then a, is open in
B™(ky—1). Hence by

(2.18) 3_1)m QD (gmHr ) (x, ay) Z r™x, o).
For a,, there exist be B™(k,—1) and a,, ---, a,€%Y5, such that b=l ay,

and that a;N\a;=@ if i#s. Note that b is closed in B™(k,—1). Hence

1
rm(x) aO) = ?,m(x, b)— ElrmCV, ai)

é ll_m @n(x)(qm+n(z))(x, b)—‘ lim é¢n(z)<qm+n(x))(x’ ai>

n(Z)=rco n(x)—~oo =1

= im_om@ (" )(x, a),

n(x)-rco

which together with implies for @5,_.. We can prove for
1<k<k,—2 by induction with respect to k& similarly, which together with

O™(g™* ™) (x, Bm[x]9)=r™(x, B™[x]°)=0 yields [2.12).
By [2.12), »™(-, A) is ®(B™— B)-measurable for YA=A=. Hence by using
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the monotone class theorem we conclude r™(-, A) is #(B™— B)-measurable for
YA€ ®(B*). Moreover by [Lemma 2.2, we see r=(r")=Qq, g(F), which completes
the proof of [Theorem 2.1. O

We next turn to the second equation (2.27) on transition times. In the rest
of this section, we assume that q€Qg x(F: &) is the solution of con-
structed by [Theorem 2.1. We write q instead of r.

Let

T™F)={t: (B*—-B)XB*X ®([0, «))—[0, 1]; t satisfies (2.19), (2.20)},
(2.19) t(x, v, -) is a probability measure for ali x and y.
(2.20) (-, *, S) is B(B™—B)X B"*)-measurable for all S.

Here t and ¢ are identified if #(x, y, S)=¢ (x, y, S) a.e. y with respect to
g"(x, dy) for all x and S 8([0, «)).
We set

Tg g(F)= {teT™F); t satisfies (2.21), (2.22)}.
(2.21) tx, v, S)=tgx), gy), S) for all g G and S = 8([0, «)).
(2.22) t(x,y,S)=1tx, h(y),S) forall he H,, y € B*[x] and S € 8([0, «)).

T™(F') are sets of transition times and T2 p(F') are their (G, H)-invariant
elements. Indeed for a diffusion {P,} t"(x, y, dt)=P.(¢(x, n)edt| Xy ny=Yy) is
an element of T*(F). If {P,} is a self-similar diffusion with a time scaling
facter 4, then

(2.23) "), fU*), S)=1t"(-, %, AS) for all i I, n, S e B([0, «)).
Moreover if {P,} is a strongly self-similar diffusion, then
(2.24) "y, 13'(x), S) = t"(x, *, 2S) (v € f3'(x))

for ac A* with aCB*—B.

Let 4 be a fixed constant such that 1<A. Taking (2.23) and [2.24) into
account, we consider the following;

TF) = {t = ") & [I T"(F); t satisfies (2.23)},
TXF) = {t = (t") & T(F); t satisfies [2.24)},
Te.w(F)= {t=0" e TWF); t"e TE a(F)}.
For teT™(F), let ¥(t): (B"'—B)X #(B"'x [0, «))—R* such that
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@2) Faxx, AxS) = 2 | a8 I 0", dn) Lixie),

Whrz]
where x=(x;, ***, Xj,51), ¥o=x, and
tw(x’ dsm) = t(xl)y xl) dsl)*'“*t(xm-l’ xm; dsfﬂ)-

Here * denotes the convolution on ds,, -, dsy.

Note that F(t*)(x, A X [0, 0)) = ¢"*(x, A). Hence ¥(")(x, dy, S) has a
Radon-Nykodim density, denoted by ¥(t")(x, y, S), with respect to ¢" '(x, dy)
for all x and Se 8([0, «)). We regard ¥ as the map ¥: T(F)-T(F) by ¥t)
:(w(tnﬂ))n:l,z,a,..-

For teT™F), we set i(x, A, S):Sdt(x, v, S)g™(x, dy), and consider the
condition
(2.26) f(-, A, S) is F"-measurable for A = ¥, S & 3([0, «)).
We set T(F: )= {t={t"} «T(F); t* satisfies (2.25)} and
Te g(F: F)=Te g(F)NT(F: ).

The proof of the following theorem is similar to that of [Theorem 2.1l
Hence we omit it.

THEOREM 2.4. Suppose that there exists t=0")&Te g(I'; F) such that
(2.27) Ty (x, AX*)=ix, A, *) for all A F" and n=1.
Then there exists u=wu™)&Ts y(F) such that
(2.28) Tu)=u.

Moreover, if teTE(F), then ucTEF).

REMARK. When F is finitely ramified, for each solution q of there
exists a unique A>1 such that for this 4, (2.28) has a unique solution u of

(up to a constant multiplication) satisfying S stu(ds)<co in componentwise.
0

This result is a generalization of Lindstrgm’s result, Theorem VI. 5 in for
nested fractals. In Kigami construct Laplace operators from harmonic
structures for P.C.F. self-similar sets. Here harmonic structure is a solution of
an equation similar to (2.7’).

§3. Sufficient conditions for solvability.

Before proceeding to the construction of self-similar diffusions, we present
in this section a sufficient condition for (2.10) (2.11) and (2.27) to hold.
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Let F;=(F;, I;, {f}, m;) G =1, 2) be (G;, H))-cell fractals. Throughout
this section the subscripts j (=1, 2) of C?, A%, --- will indicate that they are
related to F;. For example C7 is C" for F,, and A} is A" for F,.

DEFINITION. A map {: F,—F, is called a fractal covering map if { satis-
fies (3.1), (3.2) and (3.3).

(3.1)  is a surjection such that, for Yiel,, 3j=l, satisfying { fi = f4-(.
3.2) f(a) e A, for Ya € A,.
(3.3) L(Bilx]) = Bill(x)] for Yx € Bi.

REMARK. We immediately see the following.

3.1 {c)e C} for Y¢c= C? and n =0.
(3.2") {(a) = A% for Y‘a= A% and Yn = 1.
3.39) {(B%[x]) = B3[&(x)] for Yx = B% and Yn = 1.

Moreover { is continuous by (3.1’) and an open map from (3.3'). However
is not a covering map in the usual sense.

We consider a condition such that { is compatible with (G;, H,).
(3.4) For YgeG,, there exists g’G, such that g’o{=C-g.
For YheH,, there exists h’eH, such that h’e{=C-h.

Since { is a surjection, g’ and A’ in (3.4) are unique. Hence we can define
maps {¢: G,—G, and L™ ® : HYF,)—H . (Fs) by

{lg)=g" and L{F™2(h)=h'.

It is easy to see that {¢ and {#‘»® are group homomorphisms.
For a’=A% and be A}, we set {a’>y={acsA}; {(a)=a’, aCB%b]}. Let

La'he = {a €<a’Ds; a € ATG0)},  i=min{i; AY@)N<a’), # D},
and {a"M=@ if <a’ =0 (see for the definition of A"()), and
ah = U La"s.
vea}

By (3.2) and (3.3), we can regard £ as the map from W7 to W? such that
Cw)=@Cw*), L(w?®), where w=(w,, w,). For x=B>, we set

1" ={w=(w* w) e W?; x € w?, w* e (CW")wa!.

[x, wl={we [x]"; {W)={(W)}, where we< W,
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Let (qs, t») be a solution of and with 4. For (q., t.) we define
(F1, @i, t,), Wwhere q,=(g7) and t,=({%) by

;= o[ AJTT(B(B))],
qi(x, A) Zwe[Z”nq’z‘(C(X), CwenA)/*lx, wl (W= (", w),
ti(x, y, -) = 13&(x), L), -).
Here ¢%: (B}—B,)XF%—R and Fi=0c[{fi(4); AcF,, icl?}].
For a technical reason we need the following condition (3.5):
(3.5) A finite measure on &, can be extend to a measure on B(BY).

By (3.5) we can extend the domain of ¢%(x, -) from 7% to $B(BT) to obtain
qieQ™(F,). Since q, satisfies (2.5), so does q;, by (3.1). Hence q,=(g1)=Q(F).
It is clear that t,=T(F).

We can easily verify the condition (3.5) to the examples in Section 5. We
conjecture that (3.5) always holds.

We now state the main result of this section.

THEOREM 3.1. Let F; (j=1, 2) be (Gj, Hy)-cell fractals and {: Fi—F, be a
map satisfying (3.1), -+, (3.5). Suppose that [ satisfies (3.6) and (3.7):

(3.6) Ker (¢ is transitive on {a’) for each a’A}; for all a and d<={a’) there
exists g&Ker (¢ such that g(a)=a.

(3.7) Ker#™® 4s transitive on [x, w] for each weW7; for all w, welx, w]
there exists heKer L™ sych that h(W)=w".
Here Ker + denotes the kernel of a group homomorphism *.
a) Suppose that (q., t.) s a solution of (2.9) and (2.28) with A for F.. Then

(Fy, qu, ty) satisfies (2.10), 2.11) and (2.27) with A.
b) Moreover if q.€QF(F,) and t,=TE(F,), then q,=QF(F,) and t,=TE(F,).

To prove [Theorem 3.1, we prepare three lemmas. In the following we
assume { satisfies (3.1), -, (3.7).

Now we regard { as the map from % to W%, by setting (w)=(l(w,)),
where w=(w;)e W1. For xB%} and w' Wi, let

(wh: = fw=(w) e Wi; x € wi, {w)=w', wi € (Lwhhwe (")}
LEMMA 3.2. Let we W% and x=B%. Then
) = #Lw)ewy  for g e KerlF.

PrROOF. Let g be regarded as the map g; Wi— W7 naturally. Then g is
a bijection. Since geKer (% g({lw)))={@)hew. O



604 H. Osapa

LEMMA 3.3. Let w=(w,, Wy, -+, Wn)E W?%?. Then
(B8 HC@)e, = I *lx, Wi,  where wi=(w$, wh) and x & wt.

Proor. First suppose that w is included by a cell ceC™'. Let f=fiie
I77Y) such that fiF,)=c. Then

#«C(w)»xl = #«C(f—l(w))»f—l(zl); #lxs, wil = *[/N(xy), [T (wy)].

Hence it is sufficient to prove the case n=1. Suppose (3.8) holds for m—1.
Then

L = 35 ey (V=04 ),

velfyirwy

where w=(w,, .-, w,,) and x(v) is a point such that x(v)ert. By (3.6) and
#(L(W)Yz vy is independent of ve[x,, w,], which yields (3.8) for m.
Hence (3.8) holds for all m by induction.

Next suppose w is included by \U¥,¢;, where c¢;=C?"'. Then we divide
w to w;, -+, wy such that each w; is included by ¢; to reduce the above case.

O
LEMMA 3.4. a) q,€Qq, u,(F:: 9,) and t,&Te, g, (F1: F1).
b) Suppose q.=QF(F,) and t,=TEF,). Then q.=Q¥F,) and t,eTEF,).

PROOF. We first check (2.3). Let g&G, and A= 8(B%). Then
71(g(x), g(A)) = wetgmnqé‘(C(g(X)), Ew*Mg(A))/*g(x), w]
= we[%?]n 7:(8(g(x)), Lgw)Mg(A))/*[g(x), g(w)]
= WEEEM,, g3 C(@)E(x)), CH@)Cw N AN/ #[x, w] = qi(x, 4).

We can check (2.4) similarly.

For we[x]* and A=9}, {(w'NA)ed;. Then by q:€Qqe, u,(F:: F2), ¢3(-,
L(wPNA)) is F3-measurable, which implies ¢2({(-), {(w* N\ A)) is F%}-measurable.
Clearly, #[., w] is o[A}]-measurable. Combining these we see ¢7(-, A) is F%-
measurable. Hence we obtain q,&Qg,, »,(F:: F,). The proofs of t,&Ts,, o, (F;:
%,) and b) are similar to the above. Hence we omit them. O

PROOF OF THEOREM}3.1. A,C%, is clear and q€Qq, »,(Fi: F,) follows
from We next check (2.11). Let A=%"'. Note that

@1(4711)(95, A) = e[zEJ"“IQI(q?)(x’ Amwb) (W = (wa’ wb)>-
Hence we assume ACw® for some we[x]""'. Let

A=0ANT U @ (w= (0% 2Y).

~
welz, wl
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We see by (3.7) that

3.9) Di(gt)(x, A) = Di(gh)(x, A)-*[x, W]
Let

w’ = {(w), xi = §(x4), x'={¢x) and A ={A).
Then
(3.10)  @,(g¥)(x, A)

1T 350, 42 La(rie)

w' EW“[I ]wc<\w'>>mSA(w i=1
1w ' ’ - 7
g T {g3(Vics, d20/#Lx0c, Wil Le(wur)
w eW”[z ]we«w WrJAw') i=1
L’ 2 1 ’
S IT 03(xims, dx) - Lo(xler)
w'ewg[l"] A(w') i=1

= Q,(gB)(x", A) = g5~ (x', A).

Here we used to pass from the third line to the forth, and the fact
that q,=(¢%) is a solution of for the last equality.

Combining and (3.10) proves that gq,=(q%) satisfies (2.11). We can
prove similarly that t, satisfies [2.26). Hence we obtain a). b) is already proved
in Lemma 3.4b). O

§4. Construction of self-similar diffusions.

Let F=(F, I, {f'}, ) be a (G, H)-cell fractals. In this section we assume
that equations (2.9) and have solutions q=(¢")€Q¢, x(F; F) and t=("e&
Te u(F; &) with time scaling factor A>>1, ((q, t) is written (r, u) in Theorems
2.1 and (2.4)). We construct (G, H)-self-similar diffusions from this (q, t). Our
argument follows the line in Lindstrom. Indeed it is a standard analysis ver-
sion of Section VII in but with appropriate modifications due to the infinite
ramifiedness of fractals.

To construct Brownian motions, we first define a Markov chain induced by
(q, t). Let {@%,} be a Markov chain with the state space B"X[0, «) whose
transition probability is given by

PIVso AXTIY = (', ) = | g, an oo, 5, aw
it x"B"-B
= 5(1',8')(A><T) if x, E B
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and Q% (1 ,=(x, s))=1. Here Y= ,, T:)eB"X[0, ) and d« is the point
mass at .

Let X: {B*X[0, o)} ¥ — D{[0, o) — B*X[0, =)} such that X({¥,})={X.},
where X;=Y, if T,<t<T 1. We set

PZ = x"Qg,o-

Here X-Q% o(-)=Q% X&-); X-Q?% , is the image measure of Q7 , induced by X.
We shall use the same convention in the rest of this section.
We shall construct the self-similar diffusion as the limit of {P?}.

LEMMA 4.1.
4.1) Py Xi=a)z= P Xi=a) for Yacs A™, YxeB™, Ynz=m.
4.2) PrXicu) X PPY(X, e u) for ‘ueu™, ‘xeB™ Ynzm,
where U™ = {u; u = c—B"* ¢ C"}.

PrOOF. Let Tn’k:inf{t>’l'n’k_1; X¢EB”~—a|:Xf
7,,0=0. Then

P (X € a)

n:k—lj} for n, kgl, Where

Ms

& oPgH( {in,,, € 4a, Tn,k _S_ 1< Tn, k+1s X7n+1»l € a, Tpyi,L = Z‘<'1'n+1.l+1}’)

~
1]

=
k

e

0P2+1({th,k = Cl, Tn,k é t < Tn,k+1y Tn+1,l é t < Tn+1,l+1})

1
[
ibge

P2+1({Xrn,k EaQ, T =t < Tn, k1))

= é}opg(x,n,k Ea, Tos St< Tas) =PUX, € a).

Here we used the fact that q and t are solutions of and (2.27) to pass
from the forth line to the fifth.

Let ceC™ such that u=c—B". Then

PZ-H(Xg S u)

Ms

. Pgﬂ({th,k EC Tok St < Tn, k+ly X’nﬂvl E U, Tna1,t st < Tn+1,l+1}>

-~
It

0

= X
=

2 PeXe, €t o s S U< T par, Xepiy ) €Uy Trant S < Tnugria})

0

= kgo P;;'-H({in’k S U, Tn,k st <L Tn,k+1}>-

The rest of the proof is similar to that of [4.1). Hence we omit it. O
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Let ﬂzt = XpPZ.

LEMMA 4.2. There exists a family of probability measures {p; .}, x= B>,
te[0, o), such that

(4.3) lmp} = po weakly for all x and t.

00

PROOF. Since F is compact, {p% .} is tight for all x and ¢. Hence there
exist a subsequence {p% . and a probability measure p. . such that
liMn wpt? o(O)= pts,:(O) for all open sets ©. By Lemma 4.1, lim,.. g%, ((v) exists
for 'wveU5g-1 U™UJA> Since open sets © in F are countable disjoint unions of
elements of U5z~ U"UA™, we obtain limy: .. g7 ((O)=lim,_. p%,:(©). Combining
these we see limy.. g%, :(O) =2, :(©), which means (4.3). O

Now we set for x&F
(4.4) Drix]= cecm, Gzt
and

0D x] = {y € D"[x]; ¢ € C™ such that vy = ¢ and ¢c"\(D*[x])° # @}.

Then we easily see

4.5) D*[x] D D" [x], ND*[x]= {x}.
(4.6) For xeF —B, there exists an n such that D*[xINB=¢@.
4.7 D x]NeDMx] = @ for x and n.

ExaMPLE. Let F=[0, 11X [0, 1]. We regard F as a cell fractal as the
example in Section 1. Let x=(1/8, 1/8). Then D x]=[0, 3/8]X[0, 3/8] and
0D x] is the bold lines in Fig. 4.1; dD*[x]={1/2} x[0, 1/2]7U[0, 1/2]x {1/2}.

o n (ONpY)

\\\\ \
RN

0,0  pi[x] (L, 0)

Fig. 4.1.
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We note (0, 0)&dD*[x].

Let 7(x, n)=inf{t>0; X,€0D"[x]}. In the rest of this section we assume
4.8), -+, (4.11).

(4.8) For x&B'—B and meN such that D" '[x]"\B=¢, there exists
{en}nan satisfying 0<e, <1, ITzn(l—¢.)=0 and

e Py Xezn-1 € @) £ P2 Xean-» € @) = &7" PY(Xeznon € @)
for v, z€dD"[x], acF"* and n=m.
4.9 There exist C, 6>0 such that
sup  Pir(x, n—1) < A7*-27m) < C-27Uhm
y€dD M z]

for xeB'—B, n, meN such that D" '[x]"\B=@.
(4.10) Pllrg<oo)=1 for x € B!, where rz=inf{t > 0; X, € B}.
(4.11) lim sup P%o =¢) =0 for e >0 (o =inf{t >0; X # Xo}).

n-oo z&Bl1-B

REMARK. These assumptions are satisfied, for example, if (q, t) is obtained
by Theorems 2.1 and 2.4 from an approximate solution (qi, t,), and (q;, t,) is
obtained in from (q,, t,) that satisfies (4.8), ---, (4.11). We see
this fact from the following:

C"P?,r - P72L,C(J;) .
Here P7? .(i=1, 2) are P? for (q;, t;). See the remark after [Theorem 4.8

Let E? denote the expectation with respect to P?. Recall that " is the
o-field such that $"=ga[{f}(A); AcF, icl™}].

LEMMA 4.3. Let x&B>= and [N such that D'[x]IN\B=@. Let h be a F*-
measurable function on B'. Set h=sup h(x) and h=inf h(x) Then for n=m>
k=l

| B3 (X e, 0= E2(X e, )] < ( TT (0—20) {hi—h},

i=k+1

for v and ze D™[x]\UB".

Proor. Let g(v)=E?[h(X.z.1;;)]. Then by (4.10), h=g(y)<h for each
yveD™[x]. Hence we can suppose h=0. By qeQF": &) and teT(F: 9), g
is FJ-measurable on B’/ for j=k. Hence the problem is reduced to the case
n=m=*k+1=[41. So we suppose this. Let v be the signed measure on &'
such that

yv=Pi( Xz, € )P} Xz, € 7).
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Then there exist (positive) measures v;, v, and S;, S,&=F! such that y=y,—v,
and v;(S;°)=0 and S,N\S,=@. By (4.8)

SSlhdm < (I—en) Ep[h 15,(Xee.0)] = L—20) 1,
and

[, hdvs = A=) B2 15, Xece )] S (L—20)-F-
Hence |g(x)—g(y)|<(1—e,)-h, which completes the proof. O

LEMMA 4.4. a) For ¢>0, zeB>*>—B and f<C(F), there exists an m such
that

lim SFfd,ug.t"SFfdﬂZ,t
b) For s, >0, x&B*—B and feC(F), there exists a 0 such that

SFfd#Z,r—SFfdﬂﬁ,a

< 4e for x,y e D"[z]JN\B>.

lim

n—>00

< 4e for s=t=s+o.

c) SF fdp, ¢ is continuous on B*—B for t>0 and feC(F).

PrROOF. There exists n(l) such that |f(x)—f(y)|<e for "x, yeceC"®,
Let r,=inf{u>t; X,€B"®}. Then by (4.10) and self-similarity, we see 7,<co
a.s.. Hence | f(X,)—f(X;,)| <e a.s., which yields

(4.12) |ERf(X)]—EZ[f(X:)]l <e  for n=zn(l).

Let n(2)=n(1) and g: B*Y—R such that g is F"®-measurable and that
sup{| f(x)—g(x)| ; x&B*®}<e. Then

(4.13) |EX[f(X.)]—ER[g(X: )]l <e for n = n(l).
By there exists an m such that
(4.14) EﬁlEQEg(th)]—E’JEg(XZ,)]I <e for x,y € D™[z]NB~.

Combining [4.12), and (4.14) yields a).
Let n(3)=n(2) such that x&B*®. Then for n=n(3)
(4.15) |E3lg(X:p]—ER[g(X: )] = |EZ®[g(X.p]—EZ®[g(X.,)]].

Here we used q=Q(F': ) and teT(F: ). Since g(X.,) is right continuous
for a.s. w, there exists 0 such that

(4.16) |EZ®[g(X. )] -Ez®[gX. )]l <e  for s<t=<s+d.
By (4.15) and [4.16) we obtain b).
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c¢) follows from a) and b) immediately. O

By Lemma 4.2, we obtain probability measures p, . for xeB=. We next
define y, . for x&F —B*.

LEMMA 4.5. a) For each x&F—B> and t>0, there exists a unique proba-
t, weakly. Here {(x., tx)}
is a sequence in B*X(0, o) converging to (x,t) with t,=t.

b) For A B(F) and t=0, p. (A) is B(F)-measurable.

bility measure p.,. on F satisfying p. =lim..p.,,

Q) For 2,3, 5,1, | pe.o(dy) ry, ld2) = prr, 01l d2).

PROOF. a) follows from (4.3) and immediately.

b) follows from by the monotone class theorem. Next we
prove ¢): For a measure g on F and feC(F) we set y(f):SFfd‘u. Let ¢«(s)=

min{{=0; 7;>s} and g% =Y Q%o Then by the strong Markov property
Of {Qg.o},

@1 |, TeoeQtu(dy, du)ghenlf)= a0 (f € CF)).
Noting Y,-1€C™* Y, 5] a.s. Q% and pi =Y ,(5-1°Q% s We see

(4.18) }Ligloﬁg,s(f) = }liglopﬁ,s(f) = ps.o(f)  for fe CF).

Moreover since lim,_.sup{| f(y)—f(2)|; v, zeC"[x], x&F}=0,

(4.19) nglo ggglﬁg.s(f)—#ﬁ.s(f)! =0.

From (4.11), lim,,.‘.wQ;‘_O(T,(s)——sze)-:O for Y¢>0. Hence

(4.20) mr,mec@g,o = p% s X0s weakly.

Here §; is the point mass at s. By (4.17), (4.18), [4.19), and c¢) of
4.4 we obtain c¢) of O

By there exists a family of probability measures {P%} on F[o=
such that

PEXyedy - Xpe Aw={ T et @dr) (o= 1)

ApxexAg

for 14116.@(}?), 0<t1<"'<tm.

LEMMA 4.6. P3 has a continuous modi fication P, ; there exists a probability
measure P, on C{[0, «o)—F} whose finitely dimensional distributions are equal
to P3.
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ProOOF. We prove the continuous modification only on [0, 1), since the
general case follows from the scaling immediately.

Let X, ¢=Xi/e1n, and p®; F*"XF"—R be the function such that
p™(x, y) =min{m = 1; there exist z,, -, zn such that

D*Mz;JN\D"zil +# @  forall 05i<m—1, zp=x, zn = ¥}.
Then
P2({0™ (X, 4oy X ) 2 3)) < P2{0" (X b1, X ) 2 2)).
Hence by (4.9) there exist positive constants a« and 8 with a<f such that
P3{o" " (Xn, ko1, Xnx) Z 3}) = C-27%.277F*D

for Yn, B with 0<<£<(22)". By the Borel-Cantelli lemma we see

P2Um{p" (X k1, Xnx) =2, 0= Tk = 2O™) = 1.
This implies Lemma 4.6 O

Collecting the above results we obtain

THEOREM 4.7. Suppose that the solutions q=Q¢ x(F ; F) and tTe z(F; F)
of (2.9) and (2.27) satisfy (4.8), (4.9), (4.10) and (4.11). Then there exists a (G, H)-
self similar diffusion {P,}. Moreover {P,} is strongly self-similar if q=QF(F)
and teTE(F).

PrROOF. By [Lemma 4.4 ¢), Lemma 4.5 and [Lemma 4.6, {P.} is a diffusion.

The self-similarity and (G, H)-invariance are clear from those of {P%}. [

We call (q, t) is induced by {P.} if 4= (X, n°P:) and t = (a(x, n)o
Pz(' ‘Xa(x.n):y»-

THEOREM 4.8. Let F;(j =1, 2) be (Gj, Hj)-cell fractals and  be a map
satisfying (3.1), .-+, (3.7). Suppose that there exists a (G,, Hy)-self-similar diffusion
{P, »} on F, with a time scaling factor A. Suppose that (qs, t;) is induced by
{P, ;} and satisfies (4.8), (4.9), 4.10) and (4.11). Then there exists a (G,, H))-
self-similar diffusion {P, .} on F, with the same time scaling facter A. Moreover
if {P, .} is strongly self-similar then so is {P, .}.

PROOF. is an immediate consequence of Theorems and
4.7 O

REMARK. In the following cases (q,, t,) satisfies (4.8), (4.9), (4.10) and (4.11).

a) F, is a nested fractal and {P, .} is Brownian motion.

b) F, is the n-dimensional cube [0, 11% and {P,, .} is the standard Brownian
motion.



612 H. Osapa

§5. Examples of self-similar diffusion on infinitely ramified cell fractals.

Let I be a finite set and I=/". We set #* asin Section 1. An equivalence
relation ~ on I is called the self-similar equivalence relation (s.s.e.r.) if ~
commutes with 6¢; i~i’ if and only if @i(i)~8%Gi’) for all ie\Us-_.I". Here
I'"={—i; ieclI®}(n=1) and for —icI™™ 6% is the inverse map of #'. We
call F=(F, I, {f*}, =) the self-similar set associated with ~ if F=I/~, n:I-F
is the canonical surjection and f¢: F—F is the map defined by ffer=n-0'G]).
We call F the cell fractal associated with ~ if in addition F is a cell fractal.

For a subgroup G of G(F'), we denote by H[G] the maximal subgroup of
H(F) such that (G, H[G]) is a structure group of F.

For i=(,) we write i=(@,, 7, ---, 1,) if i,=1, for all m=n. For a finite set
Iy, we set Ly, Iy, 0%, --- similarly as in Section 1. The subscripts * of I, 7,
fx, --- mean that they are related to Is.

ExaMPLE (5.1). For d(d=2) we set
IX - {xly Ty xd+1}U{xjk; lé ] < k § d+1}.

Let x,;=x;, for j<k. We consider the following relation ~y on Iy;

’

X’;X if x=(x; %;), X' = (x4, %) and { # .

We write the s.s.e.r. generated by ~, with the same symbol ~, and denote
the cell fractal associated with ~y by Fy=(Fy, Iy, {f%}, nx). Fy with d=2
is homeomorphic to Fig. 5.1. Fy can be regarded as a nested fractal and
G(Fy)=&,,,, Wwhere &, is the symmetric group of order d.

/5231

/5232 Aps=

VAN A
Qs \/ Qg

.Bmza'u an:ﬁm

5 /\
o \/lsus a,, \\/ ﬁlzs

=ay =ﬂm

ay, .
a ;=7 x((xy, X5))

Fy with d=2 Bisr=mx((Xs;, %4))
Fig. 5.1.
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Let Iy={yi, =+, yq} and let ~y denote the s.s.e.r. on I, generated by
yyy it y=iu 30, ¥ =0, ) andi+J.

Let Fy=(Fy, Iy, {f}}, my) be the cell fractal associated with ~yp. It is easy to
see that Fy is homeomorphic to the (d—1)-dimensional Sierpinski gasket for
d=3 and the segment [0, 1] for d=2. Hence G(Fy)=&,.

Let I;=IyXIy={xXy; x&lyx, yely}. For xely and yel;, we set xXy
=(x;Xyy)€l;, where x=(x;) and y=(y;). Then for each zcI; there exists

unique x&Iy and y=Iy such that z=xXy. We write xXy~;X’ Xy’ if one of
the following holds;

(5.2) xr;x’ and y=y’,

(5.3) x=X"= (x4, %) (k #1, j) and g(my(y)) = nx(y’) for some g € G(Fy).

Let ~z denote the s.s.e.r. associated with ~; and Fy=(Fz I, {f%}, 7z the
cell fractal associated with ~,. Let F; be equipped with the boundary cells
Bz={rmz(x;XIy); 1=Z:<d+1}. By (6.3) and the definition of s.s.e.r., wz(x;XIy)
are homeomorphic to Fy. Hence F is infinitely ramified. F, with d=2 is
homeomorphic to Fig. 5.2. Fig. 5.3 shows how 1l-cells of F, are connected
with each other.

sy Qo
r & 3
%\ 7
b < - be
7
\ jL /
Qa ar as
b,

bi=mz((x:) X Iy)

n a;;=7 (%)X (5;))

Fig. 5.2.

F; with the structure group (G(Fz), H[G(F]) and Fy with (G(Fy),
H[G(Fy))]) satisfy the assumptions in Indeed we can take {: F,—
Fy by {xXy)=x, F;=F; and F,= Fy. Since Fy is a nested fractal, Fy
satisfies the assumptions (4.8), ---, (4.11). Hence we can construct self-similar
diffusion on Fj.
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Fig. 5.3.

ExAMPLE (5.4). We next take Fy = [0, 1]¢(d = 2), that is Fyx is the d-
dimensional cube. We regard Fy as a cell fractal in the following way. Let

Iy =AUy -, Ja); 7e=0,1} = {0, 1}¢.

Let my: Iy—Fx such that
P = (B w2 s 3 jame2 ™ e R

where =) and jn = (Jr.n)€1{0, 1}%. For j & Iy we define f§ by mye0% =
fiemy. Then Fy=(Fy, Iy, {f%}, nx) is a cell fractal. Let By be the topolo-
gical boundary of Fy in R¢, thatis By=\U%_;{x=(X1)i1sesq; *EFx, x;=0 or 1}.
Iy is naturally imbedded in R For i, jely with |i—j]=1 let H;; be the
(d—1)-dimensional hyperplane including ; and perpendicular to the vector Z?
Let b;;=H;;\By and b,;Cb;; be the (d—1)-dimensional cube with the edge
length 1/2 and a corner at . See Fig. 5.4. We set By = {by;; li—j| =1, 4,
jely}.

Let Iy={—1, 1} and Fy=1Iy". Then Fy=(Fy, Iy, {0}}:cy, id) is a (trivial)
cell fractal.

We consider an equivalence relation ~ on FyXFy such that

fy()Xy ~ fHR;(x)X(—y) if x &b; and y € Fy,
fEx)Xy ~ fHR;i(x)xy if x €b;—bs and y € Fy,

where 7, j&ly such that |/—j|=1 and R;;: Fx—Fyx is the reflection such that
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1=(0, 1) biv=b; 7=, 1)
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k=(0, 0) 5“=EU 1=, 0)
Fy (d=2)
Fig. 5.4.

Ri0)=j. Let I;=IxyXIy and ~z be the s.s.e.r. on I, generated by ~. Let
Fz=1;/~, and =m; be its canonical surjection. Then F;=(Fg Iz, {f%}, 7z) is a
cell fractal with B;={b;;XIy; b;EByx}; F; satisfies the assumptions in The-
orem 4.8. Indeed we can take F,=Fjy and {P, .} as the Brownian motion on
Fx. Cleary if d>2, P, ,(t,<o0)=0 for all acF;— Bz, where t,=inf{t>0; X,
=a}. We conjecture {P, .} is symmetric and its spectral dimension is greater
than 2 if d=2.

References

[1] M.T.Barlow and R.F. Bass, The construction of Brownian motion on the Sierpinski
carpet, Ann. Inst. H. Poincaré, 25 (1989), 225-257.

[27 M.T.Barlow and R.F. Bass, Local time for Brownian motion on the Sirpinski
carpet, Probab. Theory Related Fields, 85 (1990), 91-104.

[3] M.T.Barlow and R.F. Bass, On the resistence of the Sierpinski carpet, Proc. Roy.
Soc. London Ser. A, 431 (1990), 354-360.

[4] M.T.Barlow and R.F. Bass, Transition densities for Brownian motion on the Sier-
pinski carpet, Probab. Theory Related Fields, 91 (1992), 307-330.

[5] M.T.Barlow, R.F. Bass and J.D. Sherwood, Resistence and spectral dimension of
Sierpinski carpets, J. Phys. A, 23 (1990), L253-L1.258.

[6] M.T.Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab.
Theory Related Fields, 79 (1988), 542-624.

[7] S. Goldstein, Random walks and diffusions on fractals, In: Percolation theory and
ergodic theory of infinite particle systems, (ed. H. Kesten), IMA Math. Appl., vol.
8, Springer, New York, 1987, pp. 121-129.

[ 8] K. Hattori, T. Hattori and H. Watanabe, Gaussian field theories on general networks
and the spectral dimensions, Progr. Theoret. Phys. Suppl., 92 (1987), 108-143.



616
L9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

H. Osaba

J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713
747.

J. Kigami, Harmonic calculus on p.c.f. self-similar sets, to appear in Trans. Amer.
Math. Soc., Vol. 335, Num. 2 (1993), 721-755.

T. Kumagai, Construction and some properties of a class of non-symmetric diffu-
sion process on the Sierpinski gaskets, In: Asymptotic Problems in Probability
Theory : stochastic models and diffusions on fractals, (eds. K.D. Elworthy and N.
lkeda), Pitman, 1993, pp. 219-247.

S. Kusuoka, A diffusion Process on a fractal, Probabilistic Methods of Mathematical
Physics, Proc. of Taniguchi Symp., Katata and Kyoto 1985, (eds. K. Ito and N.
Ikeda), Kinokuniya, Tokyo, 1987, pp. 251-274.

S. Kusuoka and X.Y. Zhou, Dirichlet forms of fractals: Poincaré constant and
resistence, Probab. Theory Related Fields, 93 (1992), 169-196.

T. Lindstrem, Brownian motion on nested fractals, Mem. Amer. Math. Soc., 420
(1990).

H. Osada, Cell fractals and equations of hitting probabilities, In: Probability theory
and mathematical statistics, (eds. A. Shiryaev, V. Korolyuk, S. Watanabe and M.
Fukushima), World Scientific Publishing, 1992, pp. 248-258.

E. Seneta, Non-negative matrices and Markov chains, Springer-Verlag, 1980.

Hirofumi OSADA

Department of Mathematical Sciences
University of Tokyo

7-3-1 Hongo, Tokyo 113

Japan



	\S $0$ . Introduction.
	\S 2. Equations of hitting ...
	THEOREM 2.1. ...
	THEOREM 2.4. ...

	\S 3. Sufficient conditions ...
	THEOREM 3.1. ...

	\S 4. Construction of ...
	THEOREM 4.7. ...
	THEOREM 4.8. ...

	\S 5. Examples of self-similar ...
	References

