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§0. Introduction.

Let X be a smooth complete intersection of dimension n=3. In this paper,
a complete interseciton always means a complete intersection of hypersurfaces
in a projective space over the complex number field C. Let €(X) (resp. L(X))
denote the variety of all conics (resp. lines) on X. Then we have the cylinder
homomorphisms
Ue: H, (C(X), Q) — Hi(X, @)

[7] —ycd
Ui Hy- o LX), Q) —> Ho(X, Q)
[7] — [ L]

where C, is the conic corresponding to t&C(X) and L; is the line corresponding
to s€.L(X).
A complete intersection X is called a Fano complete intersection if its anti-

canonical line bundle —Ky is very ample. The purpose of this paper is to
prove the following:

THEOREM. If X is a general Fano complete intersection of dimension =3,
then ¥, and ¥+ are surjective.

COROLLARY. [If n=2m—1, the Abel-Jacobi maps J™ (C(X))—J™X) and
J™ N L(X)—=]™X) are surjective for a general Fano complete intersection X.

We say that a property holds for a general complete intersection if it holds
for all complete intersections belonging to some Zariski open dense subset of
the Hilbert scheme of complete intersections of given dimension and multi-
degree.

It is known that every Fano complete intersection is covered by conics on
it (cf. [9]), and every Fano complete intersection of index =2 is covered by
lines on it (cf. [21]). (See §1 for the definition of the index.) These facts are
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the basis of our whole argument.

The method of our proof is as follows. The Hodge level of H™(X) is de-
fined to be max{|p—q| | p+g=n, h?4(X)>0}. In §2, we prove our
in the case where H™(X) has the Hodge level n—2 by using the method of
infinitesimal Abel-Jacobi mapping (cf. [5], [7], [12], [22]). If X is a hypersur-
face, an essentially same result as ours in this section has been obtained in [5].

In §3, we prove a general result about a cylinder homomorphism (Proposi-
tion in §3). Let <V be a smooth projective variety. Let W be a general hyper-
plane section of <V and W be a general hyperplane section of W. We consider
the cylinder homomorphism ¥ (W) (resp. T (W)) associated to a family of sub-
schemes in <V contained in W (resp. W). Our says that, under
certain conditions, if the vanishing cycles of W in W are contained in the image
of W(W), then the vanishing cycles of W in <V are contained in the image of
U(W). This result enables us to prove by induction with respect to
the dimension of X. The proof of is quite topological and different
from the method of infinitesimal Abel-Jacobi mapping.

For a Fano hypersurface of index 1, the cylinder homomorphism ¥ ; has
been studied and its kernel is determined in [13], [147, [15]. Also there are
many cases where cylinder homomorphisms are known to be isomorphisms (cf.
[2], [3], [4]. [6], [, [12], [20], [22]. See also the forthcoming paper [17]).

In [18], Shioda studied a cylinder homomorphism associated to the family
of lines on a hypersurface with ‘inductive’ structure. On the other hand, it is
known that, if X is a smooth cubic hypersurface, then .£(X) is smooth (cf. [1]).
Combined these, we get the surjectivity of ¥, for a smooth cubic hypersurface
via the monodromy argument. Unfortunately, if X is a hypersurface with
inductive structure and of degree =4, then .£(X) is singular and this method
cannot be applied.

The author would like to thank Prof. T. Shioda, Prof. Y. Kawamata, Prof.
T. Terasoma, and Prof. N. Nakayama for their useful advice and warm en-
couragement. He also wishes to thank the referee for many helpful suggestions.

§1. Preliminaries.

Let X be a smooth complete intersection in P¥ of dimension n=3 and
multi-degree (a,, a;, -, aq), with 2<a,<a,< -+ <a4. A complete intersection
X is a Fano complete intersection if and only if f:=N+1—>1%,a;>0. This
number f is called the index of a Fano complete intersection X.

LEMMA 0. The Hodge level of H(X) is n—2 if and only if 1<f<aq.

PROOF. See [23], SGA T7II, Corollaire 2.8. in Exposé XI.
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LEmMMA 1. If X is general, the variety C(X) of all conics on X is smooth
and complete.

PrOOF. Let V be the variety of all conics in P¥, defined as in [19]. This
variety V is smooth and complete. Since £(X) is a closed subscheme of V,
C(X) is complete. Let Q be the variety of all complete intersections in P¥ of
multi-degree (a,, a,, -+, ag). Suppose that

a1:"':ad1<ad1+1:"':ad1+d2< oo
v Qg tdgtetdy 41 = = Qg tdgbetdy

where d,+d,+ - +d,=d. We put au:=aq4,+.4q,- Then we have a sequence

of morphisms
7o To-» 1£¢) 7w

Q=0uw — Qu-v» Qo Qw = Spec C

where Q, is the variety of all complete intersections in PV of multi-degree
(al) asy o0y, ad1+""+di>' Let

Xy T PYXQ
‘ (D)
Y
Q(i)
be the universal family. Then the coherent sheaf m,xO(@u41) is locally free

because the function dimg,,H(X,, O(au+n)) of y=Q, is constant where X, is
the fibre of 7z, over yEQ . Hence we have a smooth morphism

Grass (dis1, TrxO(A cen)) —> Qi .«
It is obvious that Q. is a Zariski open dense subset of Grass (di41, 7 +O(@csn)).
Hence the morphism 741y is smooth. In particular, Q is smooth. Let Z.,C
VX Q> be the incidence correspondence
Zuw:={(C, X)eV xQun CCX}
with the natural projection B¢y : Zwy—Q«. Then we have a commutative

B+
Z vy —> Quisn

la(iﬂ) l T+

Z(i) —> Quw

ﬁ(i)
where Z,=V. We shall show that the natural morphism a.y, is smooth. Let
C—., PYXV
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be the universal family of conics. We put
Ceiy:=CXyZ
Fwi=XwoXepZa -

Then we have the following commutative diagram:

€ —— i’(i) s PNXZ(i)

| A

Z(i)
where 7, is the natural projection. Consider the coherent sheaf
Feoy:= O0(au+0)QF s

on X, where ¢, is the ideal sheaf of €, in X ,. This sheaf is flat over
Zy, by construction. Take an arbitrary point z&Z,. Let (C,, X,) be the
corresponding pair of a conic and a complete intersection which are defined
over k(z). Then we see that the kernel

K, :=ker (H(PP.,, 0(a+n)) — HY(X,, 0@ us1y)
of the restriction to X, is contained in the kernel
K, :=ker (H' (P, 0(au+n)) —> HY(C,, O(au+n))

of the restriction to C,, and the dimensions of both spaces over k(z) are indepen-
dent of z. We have

dimk(z)Ho(Xz’ Fr,2) = dimy i, Kp—dimg ) K .

Thus #+TF ¢y is locally free. It is easy to see that Z .y, is a Zariski open
dense subset of Grass(d;+i, TcorxF ). Hence ayp is smooth. Since Z =V is
smooth, so is Z:=Z,,. We put B:=Bw), a=aw @u-n°°Qu, and consider
the following diagram:

Z—>Q
(1.0) al ?
v

By the theorem of generic smoothness, 57'(X)=C(X) is smooth for a general
Xe@Q. O

Next, we investigate the normal bundle N, x of a smooth conic C on X.
Let ©¢(k) denote the unique line bundle of degree £ on C=P’.

LEMMA 2. Let Z be the incidence correspondence defined as in the proof of
Lemma 1. For a general pair (C, X)EZ, the normal bundle N¢;x of C in X is
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given as follows.

Oc(1)22I - Pogr-2/*! if 1 f=(n+1)/2
Nejx =4 0622 'PO(1)® P if (n+1)/2£f<n
0c(2)°" 2P0 :(4) if f=n+1 (f.e. X=P").

PrROOF. This is obvious if X=P". We assume f<n. We may
assume that X and C are smooth. As is well known, every vector bundle on
P! can be written as a direct sum of line bundles. Thus, we can set Ng, x=
PBrl0u(b;), where b;=<b, < --- <b,.;,. We have the exact sequence

A
0—> NC/X —_> IVC/pN —_—> IVX/leC —>0

and isomorphisms

Nepv = 0c(2)%7 2 B0:4), Nxpn|c = ©i.0c(2a;) .

Hence the integers {b;} satisfy the following conditions:
n-1 d
Sb=2N=-3a)=2Af~1), bi=2 buast.

Thus, in order to prove Lemma 2, it is enough to show that, for a general pair
(C, X)eZ, following equalities hold:

(1. h*(C, N1 xXR0c(—3)) =0,
(1.2) h*(C, N¢;x@0c(—2)) = max (0, 2f —n—1),
(1.3) h°(C, Ne;xQ0c(—1)) =2(f —1).
Choose homogeneous coordinates (x,, x1, -+, xx) in P¥ such that C is defined
by
XP—X1Xe=x3=--=2x5y=0.

If X is defined by f,=f,= - f,=0, where f; is homogeneous of degree a;,
then each f; is of the form

fi = (xoz_xﬂz)ﬁi(z\'o, X1, xz)‘l‘xsgai(xo; X1, Xo)F
o Fxngnixo, Xy, x2>+2Aioi1---iN(x0ioxlil XN,
where A;piy.i y €C, G040+ - +iy=a;, and i;+i,+ - +iy=2. Then the morphism
A a
Neipv (=2 0c(4)POc(2)°N ) —> Ny pr|c (= iE:Bl Oc(2a))
isTgiven by the matrix (A, g.:), 1=:5d, 3<v=<N, where

hi:= Hzl(} e H(C, 0c(2a;,—4))
g.ii= 8uile € HY(C, 0c(2a:—2)).
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For s=1, 2, 3, H(C, N¢;xQ0c(—s)) is the kernel of the morphism
A(—3s): H(C, N¢pvQ0Oc(—s)) —> H(C, Nx/pv|cQOc(—s))

given by (hs, g,:). It is easy to see that H(C, Ng;x®0c(—3))=0 unless h,= -
=h,=0. Thus the equality holds for a general X containing C. The
equality (resp. [1.3)) holds if and only if the linear map A°(—2) (resp.
A°(—1)) has the maximal rank. Because

h*(C, Neipv@R0Oc(—3s)—h(C, Nx,pv|cQOc(—5))

{ (N+1)—(2 éai—d> —2f—n—1  if s=2
B 2N—2§1ai=2<f—1) if s=1.

The subset
M = {(hq, g,3) | A2(—s) has the maximal rank,}

of L {H(C, 0:2a;—4)DH(C, 0c(2a;—2))°¥ -2} is Zariski open. Therefore,
if M, and M, are non-empty, the equalities and hold for a general X
containing C. It is not difficult to find examples of elements in M, and M, O

REMARK 1. For a general Fano complete intersection X of dimension¥n
and index f, and a general line L on X, the normal bundle N.,x is given as

follows:
Nape = { OA DO if 1=/
HET L g pa-riogo(1pd - if 2< f<ntl

§2. Proof of the theorem.
Let X, ¢(X), and ¥, be as in the introduction. We shall prove that the
dual cylinder homomorphism
e HY(X, Q) — H"*C(X), @)
is injective. We have the incidence correspondence
— X
q
’)
c(X),

where £ is {(C, x)eC(X)xX|x=C} and p, ¢ are the natural projections. The
dual cylinder homomorphism ¥ is by definition the composition of maps

q° bx
H"X, @) — HY2, @) — H"*C(X), Q).

2.a. Monodoromy argument. Let (ay, a,, ---, as) be the multi-degree of
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X in PY, with 2<a,Za¢,< - <aq. If X is Fano and general, we have a
smooth Fano complete intersection Y in P¥ of multi-degree (a,, a,, =+, aq-1),
and a Lefschetz pencil {X;};cp1 on Y cut out by hypersurfaces of degree a4
which contains X=X, as the member corresponding to o=P'. Recall that V is
the variety of all conics in P¥. We set

C:= {(C, HeVxP'| CcX}
and let =: C—P!' be the natural projection. By [Lemma I, we may assume
that there is a non-empty Zariski open subset I/ on P* such that
0) oeU,

1) X, is smooth for all ¢ on U, and
2) m is smooth over U.

Then the fundamental group =(U, 0) acts both on H*(X, Q)and H* *(C(X), @),
and the dual cylinder homomorphism ¥'# is =,(U, o)-equivariant. Consider the
Lefschetz decomposition of H*(X, @). If nis odd, the action of =, (U, 0) on the
vanishing cocycles H*(X, Q)=H?:m(X, @) is irreducible (cf. [1L]). If n is even,
the primitive decomposition H"(X, )=H2.m(X, Q)DQ[w]"'* coincides with the
decomposition into the vanishing cocycles and the invariant cocycles, where
[lw]leHY (X, Q) is the cohomology class of a hyperplane section. In this case,
the action of z,(U, 0) is irreducible on HZim(X, @) and trivial on Q[w]*’*.
Hence, in order to prove the injectivity of ¥'%, it is enough to show the follow-
ing two claims:

CLAM 1. If n is even, T¥([w]™'?) is not zero.

CLaM 2. The composition
¥ prim: Hiim(X, Q) —> HM(X, @) —> H"*(&(X), @)

of the inclusion and ¥ is not-trivial.

2.b. Proof of Claim 1. We set n=2m. We fix a (N—m)-plane PY~™ in
PV, and set W=XNP¥-™ The Poincaré dual of the homology class [W]&
H, (X, Q) is [w]"eH™X, Q)" It is enough to show that there exists an alge-
braic cycle Zcc(X) of dimension m-—1 such that the intersection number
U ([EF])-[W] is not zero. Let I', I', be the closed subvarieties of V' defined as
follows :

I':={CeV | CNPY "=p},
Ii:=1{CeV | dim(CNPY-™)=1}.

The codimension of I in V is m—1. Recall that in the diagram [1.0] the
natural projection « is smooth. Then we see that a~*(/") is a subvariety of Z
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of codimension m—1. The morphism 8 maps a (/") onto Q surjectively, be-
cause every Fano complete intersection is covered by conics (cf. [9]). Thus,
for a general Xe(Q, the intersection a™ '(/")NB~'(X) is a closed subvariety of
codimension m—1 in 37 (X)=C(X). On the other hand, the codimension of /7,
in V is more than m—1. For a general X @, the codimension of o '(/",))NB"1(X)
in B7Y(X)=C(X) is more than m—1. Therefore, for a general X, we have
a closed (m—1)-dimensional subvariety & of ¢(X) which intersects with
a ("N B7(X) at points and does not intersect with a '(/")NB"'(X). The sub-
variety ¢(p~'(&)) of X intersects with W at points. The homology class of
q(p~4&)) is just T([E]). This completes the proof of Claim 1. O

REMARK 2. It is known that every Fano complete intersection of index
f=2 is covered by lines (cf. [2I], the proof of in Lecture 4). For a
Fano complete intersection X of index f=1, we can easily see that a subvariety
of X of codimension 1 is covered by lines. Hence the above argument can be
applied to the family of lines.

2.c. Proof ¢f Claim 2 for the case where H" *'(X)#0. In this subsec-
tion, we assume that the Hodge level of H*(X) is n—2. The map ¥¥ ,rim:
Ll X, @)—H" (X)), @) is 2 morphism of Hodge structure of type (—1, —1).
We denotz the (n--1, l)-part of ¥¥ ,.im by ¢: H* 2 X)—H"2C(X)). We
shall prove that ¢ is a non-zero map. Take a general point o=C(X), and let
Tk ccx) be the cotangent space of ©(X) at 0. We define the infinitesimal dual
cylinder map
n-2
v HY(X, Q%) — A TEcx
at o to be the composition of the following maps:

HY X, Qv =, LY X)), (Dolbeault [isomorphism)
H? VWX —> H* 2o X)),

H»20 "Q\)) = HY(C(X), QF%y)  (Dolbeault isomorphism) and

[{ (L\ , .-( (1\) —_—> /\ TO C(X) (i’estl’lctlon at 0)

We show that ¢ is non-trivial. Let C, be the conic on X corresponding to
0=C(X). The map t can be described as the composition of five maps (cf.
p. 21, p. 826):

D HYX, Q%) — HYC,, 2% 0,
22t HY(Coy Q% 0,) —> H(C,y 25,@'A Nt 1x)
Tyt HH(Coy Q6,0 N NE 1) 25 H(Co "M Noysx)*
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n-2 n-2
T4 H(Coy N\ Negrx)* —> (N H(Co, Neyix))¥, and
n-2 . ~ n-2
75 (/N HCo, Noyix))* —> AT cx -
Here r, is the restriction map, 7, is derived from the exact sequence:
n-1 n-2
0—> AN§ i x —> Q¢ o, —> 2L, QANNEx —>0,

7, is the Kodaira-Serre duality, 7, is the dual of the natural map:

n—-2 n—2
¥t AN HC,, Ne,yx)—=HCo, A\ N¢,x), and 75 is derived from the canonical
isomorphism H°(C,, Ne,1x)=To ccx>. In order to show that = is non-trivial, it
is enough to prove the following inequality:

@.1) codim {im (rp71) © H(Coy 24,0 A N3, 1x)} < dim(im ).

Note that dim (im 7,)=dim(im z¥). By [Lemma 2 it is easy to see that z¥ is sur-
jective, and

2.2) h*(Coy A Neyix) = 2nf—4f —n-+3.

Next, we compute the left-hand side of [2.I]. Recall that ¥ is a smooth
complete intersection in P¥ of multi-degree (a,, -+, a4-,) which contains X as
a hyperplane section of degree a,. We have the following commutative dia-
gram of exact sequences:

0—> N%yvlc = Niylc —0

0—> Nty — e —R—0
{
v

0—>N&x —>LQile —>R6—0
0 0 0

(Here, we omit o in C,.) By taking n-th exterior product of the middle row
and tensoring Ny,y|¢, we get the commutative diagram:
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0 0 0
—1 n—2
0—> AN&x —>0 e  —> ANErQQ2 —>0
N
Y

n n—1
0 —> ANErQNxiy — DBONxivlc —> N NEvQRQR2EQNxy —> 0

l

n—1
0 —> Q%QNxivlc =5 N\ N xQREQNx iy —> 0

0 0

with exact lines and rows. Then, we have the commutative diagram of co-
homology groups:

g1 g2 n-1
HYX, Q3QNxy) —> H(C, Q3QNxv|c) —> H(C, NNExQRLESNxy)
|

¢ l l

T n—
HYX, Q1Y) —>  H'(C, Q37']0) —> HYC, N N&x@28)

V l l

n—1
HYX, 28QNxy) —> H(C, Q8QNxvlc) —> H(C, N N§yQR2I{QNxy),

where the vertical sequences are exact. It is clear that the map ¢, in this
diagram is an isomorphism. The line bundle 2% ®Ny,y is isomorphic to
Opv(—f-+ag)lx. Because the restriction map HYPY, Op(—f+ay))—
HYC,0p(—f+aq)lc) is surjective, the map ¢, in this diagram is also surjective.
Therefore we have

codim {im (coor) CH'(C, Q6@ 'A N0} = hH(C, 'A NoyR24@Nxv)
= h%(C, "/_\1Ngly®Nj‘§/y) (Kodaira-Serre duality)

Since Y is a Fano complete intersection of index f-+a,, we can use
to compute N¢gjpy. We set Nop=Br ,0c(c;). Then we have

n-1

BAC, A Nerw@Ngw) = 3 h(C, Oo@f+aa~1)—ci—2a4)
= z max(0, 2f—1—c;)

0 if f=1, m+2)/2f+a,,
=<{ n—1 if f=2, d=1, (d.e. Y=P"*"),
2nf—n—2f—2a,+2 otherwise.
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By virtue of Lemma 0, we may assume f=<a,. Comparing the above results
with [2.2), we see that holds under this assumption.

The case that the Hodge level of H*(X) is less than n—2 is dealt with in
the next section.

REMARK 3. Let X, Y be as above. For a general line L on X, we have
the following results:
dim(im ) = h*(L, A Nux) =nf—n—2f+3,
codim{im (rye7,) © HY(L, 21 %2 Fiot < 1L, KlNL/Y®Af§’/Y)
0 if 1=f
{ nf—n—f—az+2 if 2£1.

§3. Geometry of vanishing cycles.

Let & be a smooth complex projective variety of dimension n--1. Let &

be a variety parametrizing a flat family {P,}.ce 0of k-dimensional subschemes
of <. For any subvariety S of <V, we put

F(S):= {usg|P,CS}.

Let L and M be very ample line bundles on <. For a smooth member W of
|L|, we denote by V.(W/<v, Q) the subspace of H,(W, Q) generated by vanish-
ing cycles of W in <. For a smooth member W of |M|w]|, we define the

subspace V,_.(W/W, Q) of H,_,(W, @) in the same way. We have the cylinder
homomorphisms

UW): Hysn(FW), Q) —> H, (W, Q)  and
QT(W) Hn—l—zk((-:f(W): Q) —_—> Hn—l(W; Q) .

Let ¢x: H (W, Q—H,(W, @) be the natural map induced from the inclusion
¢: WS, W. The main result of this section is the following:

PROPOSITION. Suppose that, if we take a general member We|L| and a
general member We |M|yw!, then

(a) F(W) is smooth and complete, and
(b) the image of W(W) contains V,_.(W/W, Q).
Then we have
im TV +im s DV, (W/V, Q).
for a general We | L.

Before proving Proposition, we shall show how to deduce from
[Propositior,
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PrROOF OF THEOREM. We fix the multi-degree (a,, ---, a4) of a Fano com-
plete intersection X and prove [Theoreml by induction with respect to the dimen-
sion n of X. In §1, we have proved for a general Fano complete
intersection X with f<ay, i.e. n<a,—d—14+2¢,a,. Now assume that Theo-
rem is true for a general Fano complete intersection of multi-degree (ai, -+, aq)
and dimension n—1. We apply to the following case: <V is a
general complete intersection of multi-degree (ay, -+, a4-,) and dimension n-+1,
L=0(ay), M=06(1), and F is C(<V) or .L(<V). Then the assumption (a) of Pro-
position is satisfied by Lemma 1, and the assumption (b) is satisfied by the in-
duction hypothesis. If n is odd, the image of ¢x: H,(W, Q—H,(W, Q) is zero.
If n is even, the image is the space generated by the homology class of an
intersection of W and a linear subspace of P¥ of codimension n/2. Thus we
have H,(W, Q)=V .(W/<V, @Pim ¢s. Since Claim 1 in §2 holds for a general
Fano complete intersection of any dimension, we see that im W(W)Dim:*. Now
by [Proposition], we see that is true for a general We|L|, i.e. for a
general Fano complete intersection of multi-degree (a,, -+, a4) and dimension
n. O

PROOF OF PROPOSITION. First, we shall show some general lemmas. Let
¢ and A be holomorphic functions defined in a small neighborhood of the origin
o of C"** such that @(0)="h(0)=0. We denote by T, the holomorphic tangent
space of C™*' at o. Suppose that o is a non-degenerate critical point of ¢.
Then we have the Hessian

Qxx: ToXTy —>C

of ¢ at o, which is a non-degenerate symmetric bilinear form of 7. Suppose
also that o is not a critical point of h. Let (dh)f be the kernel of (dh),=T%#.
LEMMA 3. Assume that ¢ and h satisfy the following condition:

(#) the restriction of @xx from T, to (dh); remains non-degenerate.

Then there is a local coordinate system (wy, -+, Wnpyi) of C** around o such that
3.1 o = wi+ - +wii,
3.2) a@:} =0 for 1=1, ---, n,
oh
3.3 0)+0.
(3.3) awn+1< )
PrROOF. We have a local coordinate system (z,, -+, z,+,) of C**!' with the

center o such that h=z,,,. For s&€C which is small enough, we denote by ¢,
the restriction of ¢ to the hypersurface ~2~'(s). The critical points of ¢, are
given by
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{(zl, 0y Zns1) | Zna1 =S, a . (2)— gfn (Z):O}-

We put y;=0¢/0z; (i=1, ---, n). By the condition (#), the nXn matrix

5.
<az 62J> B %)li:ln

is non-degenerate at o. Hence (yi, =*, V., Zn41) 1S @ local coordinate system of
C™*' with the center 0. (Note that y,= --- =v,=0 at o because o is a critical
point of ¢.) Since ¢(y1, =+, ¥a)=¢(¥1, ===, ¥a, ) has a critical point at y,= -y,
=0, the Taylor expansion of ¢ is of the form

@(3’1, oy Yoy Zatl) = Zaar- 1(Zn+1>+ :41 Vi Hz‘;(yu Yy Zne1)

i 1
where H;;=H;;. We see that ¢,(0)#0 and the matrix (H;(0, -+, 0))i j=1,..n 18
non-degenerate, because the critical point o of ¢ is non-degenerate. In the

same way as the proof of lemma of Morse (cf. [16] p. 6), we can get a local
coordinate system (w;, -+, wy+1) such that

©» = Wi+ o A wiig, wn+1:Zn+1'\/§D1<2n+ij-

The function z,+1—Wn+1=2n+1°V¢1(2,+1) has its inverse in a small neighborhood
of w,+1=0. Since h=z,.+,;, we get (3.2) and [3.3] O

We take a sufficiently small polydisk 47*' in C™*! with the center 0. We

put
V.= (e)nd™,  V.,= @ (e)Nh (s)Nd™*.

We fix £¢#0 which is small enough. From [Lemma 3, we have

LEMMA 4. Under the condition (#) in Lemma 3, we have a small disk 4 in
C with the center 0, and two values sy, s_.;=4 such that

(1) V.. is smooth for all sA~{sy,, s_.}, and

(if)y Vs, G==1) has one and only one singular point p:, which is an ordinary
double point.

Note that, if (w,, -, w,4+1) is the local coordinate system in then
h is a function A(w,.;) of one variable w,,;, and we have s,,=h(ve), s.,=
h(—+¢).

Now we shall consider the vanishing cycles of V., and V., For simplicity,
we assume ¢ to be a small positive real number. Then the vanishing cycle
[§j]EHn(175, Z) corresponding to the ordinary double point ocV, is represented
by the n-dimensional sphere

§s = {(wy, =+, Was) | wi+ - +wii=e, w,eR (=1, -, n4+1)} C Ve
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with an orientation + (cf. [11]). We define a path 7,: [—1, 1]—4 connecting
s.; and s,; by 7,(0)=h(v-ve)=4. We put

Se v = {(Wy, 5 W) | Wi+t - wh=(1—2%),
Wpn=v-vV e, w,ER (=1, -, n+1)}
- §5lqve,;/o(v) .

We choose an orientation + of the (n—1)-dimensional sphere S, , . It is easy
to see that

Hn—l(Vs,ro(v): Z) = Z[Sg-,ro(v)] fOf UE(_l) l); and

Ss,ro(-l) - {p—l} s Ss,ro<+1> = {]3+1}-
We also have

Ss = U SE,;'OCU)-
vef-1,1]

By deforming the above construction continuously, we get the following:

LEMMA 5. Let 7:[—1,1]—4 be a path satisfying the following three con-
ditions:

(Cl) 7r(—=D=s_;, 7()=s41.

(C2) 71 isof C=, and if v#v', then 7(v)7r@’).

(C3) 7 can be deformed to 7, preserving the properties (Cl), (C2).
Then we have an (n—1)-dimensional sphere S. ,w» tn Ve, for each ve(—1, 1)
such that,

(1) with an orientation -+, S{,w» represenis the vanishing cycle correspond-
ing to both of the two ordinary double points p_,&V. ,c» and puiSVe i,

(i) {p-1}U Usecer, 0Se, 70\ I {41} 25 an n-dimensional sphere in V., and that

(iii) with an appropriate orientation, this n-dimensional sphere represents the
vanishing cycle (81 in Ho(V., Z).

Let {W:}tepl be a general Lefschetz pencil of the members of |L|. Suppose
that W, has an ordinary double point o=W,. Let {H,}.cp* be a general Lefschetz
pencil of the members of |M| such that H, is smooth and o= H,. We may
assume that o=V is not contained in the base loci of these pencils. Let ¢{w)
=t (resp. h(w)=s) be the local defining equation of W, (resp. H,) in a small
neighborhood of o=cy. By the assumption of generality, we may assume that

(3.4) ¢ and h satisfy the condition (%) in [Lemma 3.

We fix a small positive real number e. Let {W. s}scp! be the pencil cut out on
W. by {Hs}sep'. We may also assume that

(3.5) {W, s}sept is a Lefschetz pencil.

By the assumption (3.4), we can apply Lemmas 4, 5 to the local geometry
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of W. and W. ; around o=<V. We continue to use the notation [§j]EHn(Ws, Z),
the vanishing cycle corresponding to the ordinary double point oW, It is
enough to show that

im T(W.)-+im ¢y = [S7].

Note that because of (3.5), the image of the natural map

H,W.s, @ — H,W., @
is independent of s=P*, and this image is just im¢y. By and the
assumption (3.5), we have a small neighborhood 4C P! of s=0 and two points
S+1, s-1E4 such that (i) W, is smooth for sed\{s_,, s;.}, and that (ii) W.,,
(==1) has one and only one singular point p,, which is an ordinary double
point. Let 7: [—1, 1]—4 be a path which satisfies the three conditions in
Lemma 5. By Lemma 5, we have an (n—1)-dimensional sphere S. ;o CW. ;e

for each v&(—1, 1) which has the three properties in Cemma 5. In particular,
we see that

[Sirw] € VaeiWe /W, @).
Let §.CP*x 9 be the incidence correspondence
Fe={(s, ) eP'xXg | P,CW. s}

with the natural projection //: §.—P'. By the assumption (a) of [Proposition],
there is a Zariski open dense subset UC P! over which /7 is proper and smooth.
Then, for s&U, H,_1-:,(F(W.,s), Q) has a Q-Hodge structure of weight n—1—
2k, and if W, , is also smooth, then the cylinder homomorphism

?lrs = LUI(H/EQ : Hn—1~2k(g<We.s); Q) —> Hn—1<Ws,s’ Q)

is a morphism of Hodge structure of type (%, k). Let o= HNFW. ), Q) be the
restriction of a polarization class of &, to ¥(W. ;). By construction, e is in-
variant under the monodromy action of =, (U, s). Let

L* : H-+2(g(Ws,s)) Q) —_—> H<g(Wes>) Q)
be the cap product with w. We have the Lefschetz decomposition
Hn—l—zk(g(We,s>) Q) = @L:kpn—1~2k+‘zp(g(wzs,s)y Q)

where P,_i_op10(F(W. ), @) is the primitive part of H,_ ;1 s,22.(FW. ), Q). Note
that this decomposition is compatible with the monodromy action of =,(U, s).
On the other hand, we have the decomposition

Hy o Weoy @ =V (We o/ We, @BL.(W. o/W., Q

where I,_ (W E)S/VIN/'E, Q) is the space of invariant cycles (cf. [11]). This decom-
position is also compatible with the monodromy action of =,({U,’s), and =,(U, s)
acts irreduciblly on V,l_l(Ws,s/Ws, @) and trivially on In_,(WE,s~/WE, Q). Hence
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any m,(U, s)-invariant subspace of H,_(W.., @) which does not contain
Vn_l(Wa,s/VIN/s, Q) must be contained in In_l(Ws,s/We, Q). By assumption (b) of
[Proposition], there is at least one g such that

(3.6) U LYPososisolFWe,0), @) DV tasWe o/ We, Q).

We denote by ¥'% the restriction of ¥y to LAP, 1 sp42x(F(We 5), Q). Because
LEP, i sre2n(F(We,s), Q) has a polarized @-Hodge structure and ¥# is a morphism
of Hodge structure, we have the orthogonal decomposition

LféPn—l—zk +2y<g(VVe,s)’ Q) = ker(w@@ker(w@L-
Note that

(3.7) this decomposition is compatible with the monodromy action of =,U, s),
and that

(3.8) the natural isomorphism (ker U#)t=im ¥¢ is =,(U, s)-equivariant.

Now we can take the path 7: [—1, 1]—4 which satisfies an additional condition :
(ChH 7w)ednU for ve(—1, 1).
We devide the situation into two cases

Case 1. Vo s(W/W, Q+0, for general W and W.
Case 2. Vo W/W, Q=0, for general W and W.

In Case 1, we see that [S{;w]#0 in H,..(W. ,;w, @), because every vanishing
cycle of W, ;¢ in W. is conjugate to each other by the action of the global

monodromy (cf. [11]). By [(3.6), there is a unique cycle [z;¢y]<(ker ¥4 ,,)* with
coefficients in @ for each ve(—1, 1) such that

(3.9 gFr(v)(["'r(v)]) = [S:-,r(v)]-

Let n be a positive real number <1 which is sufficiently close to 1. Let w;:
[0, 2zx]—U (resp. w-,: [0, 2z]—U) be a small circle with the center s,,=7(1)

(resp. s.,=7(—1)) and 0+:(0)=w..(27)=7(7) (resp. ©-(0)=w_,(27)=7(—7%)) whose 4

interior does not contain any point of P\U except s.,(resp. s-:.

@-y 7 @y,

G r(—n) r(n a

Figure 1.
Let

w+1.* . Hn—l—zk(g(Ws,r(v)); Z) I Hn-1-2k<g(Ws,r(7/)): Z)
wil.* : Hn-1<We.r(17); Z)—> Hn—l(,Ws.r(n): Z)

.
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be the local monodromies along w,;. We shall show that there is a cycle [B,]&
Hn—l—-zk(ga/Vs,r((,)); Q) such that

[tyon] = q-(LRo)—wsx([Bo)) in Hulyo0n(F(We 0p), Q)
where ¢g=@Q<. Since the intersection form of H,_.W. ., Q) restricted to
Vn_l(We,,v(,l)/Ws, Q@) is non-degenerate, there is a cycle [a]eVn_l(Wa,Tm/We, Q)
such that [a]-[SZ,»]1#0. Let [Bo] be the unique element of (ker¥#.,,)* such
that ¥,,,([3.])=[a]. By the Picard-Lefschetz formula, we have

why «(Lal) = [a]=(Lal-LST ap DLST 0]
By (3.7) and (3.8), we see that
[Bo]—wsr, ([ Bo]) & (ker ¥4 ()t and

Vo ([Bo]—war (L Bo]) = £(Lal-[SE;pDLSE rep ]

Hence we have

[tropd = 21/ Lad-[ST,op D ([Bo]— w1, (L Bo])).

Let 7 HooioonlFWepop)y )= Hyo10x(F(We ;0y), @) be the natural map.
Note that ker: is the torsion part of M, 2. (F(W ;p), Z). There is an integer
N such that N-(kerz)=0. Now we have topological cycles [T;»1, [Bol<
Hyoyoox(FW . 10p), Z) such that

T ypd) = Mi-([7pepD), d[Bo]) = Mz-([B]) and
[Tyopl=L[Bo]—ws, (LB

where M,, M, are non-zero integers. For each 6<[0, 2x], we can construct a
topological (n—1—2k)-cycle By in (W, 4, ) such that B, represents [B,] in
Hy 1o0n(GWe 0y, £) and By deforms continuously as 6 moves. Then B,
represents w,, «([5,]), and we get a topological (n—2k)-chain BN+1Z:U6ELO,2z]Bo
in ¥, contained in \Ujgero.ox1FWe, 0, ,00) =1 Hw4+,([0, 27])), with the orientation
satisfying 8§+1:BO—BZR. For each ve[—», ], we also have a topological
(n—1—2Fk)-cycle Tyqy in F(W. ;o) which deforms continuously in v and satisfies

(3.10) ([Tyw]) =M-[tyw] for each ve[—1, 5].

We get a topological (n—2k)-chain ’]N“::Uvez-@,,ﬂT-,m in &, with the orientation
satisfying 07 =T, —Tyc_y. Since dB,,=B,—B,. and T, represent the same
homology class in Hp_1_o.(F(W. ypp), Z), we have a topological (n—2k)-chain
JreyCFW. o) such that 8J,,y=Bo—Bo—T,¢n. Then d((— By )+ Jrop,+T)=
—Tycyp. Now, around 7(—1)=s_,, we can construct in the same way a topo-
logical (n—2k)-chain B_, contained in I7-*(w_,([0, 27])) such that 95, is a
topological (n—1—2k)-cycle contained in F(W. ,.,,) which represents the same
homology class as [—T, ;] in Hoyon(FWepoyp), Z). Let e p CTFWe peoyy)
be a topological (n—2k)-chain such that 6],»<_,l,):6§_1+T7(_,/>. Then
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(=Bt frop+ T4+ Jiep—B-) =0,
Thus we get a topological (n—2k)-cycle in 9., which we will denote by [

There is a natural morphism 7: &.—F(W.) induced by the inclusion F(W. ;)
. F(W.). Because of and (3.10), we have

(3.1 V' o(l[Tyw]) = M ([ST;0])) in Hued(We s, Q)

for v<[—m, »]. Recall that the n-dimensional sphere {p_;}\UUec-1, 56 7m0\
{p+1} with an appropriate choice of the orientation represents [§ Flin H,(W., Z).
We see that

WG D=M,-([S:D or W )GLLD+M-([S:])
can be represented by a topological n-cycle C.,-+C_, with coefficients in @ such
that the support of C,, (resp. C_;) is contained in UseaHVVE,SCWE (resp.

Usea We o €W where 6ui=w,,([0, 22])Ur([n, 1]) (resp. 4-,=w_,([0, 2z])U
7(—1, —5D).

——— ————
- -~

5-1 5+1
Figure 2.

In fact, the topological cycle C,;+C_, is constructed as follows. For a topo-
logical chain A in &., let ¢(A) denote the topological chain ng,-m;PuCWE.
By [B.1I1) the cycle M;-[S¢ ;] —[(Trw)]EHn (We y, Z) is contained in the
torsion part of H, (W ,u, Z). Let N’ be a non-zero integer such that N’-
(torsion part of H,_(W. ,w, Z))=0, which is independent of ve[—», »]. Then,
because of N'-M;-[S{;w]1=N"-[¢(T;w)] in Hyoi(W. 00, Z), we have a topo-
logical n-chain I, CW. ,» such that

a[r(v) = 1\7’-¢(T7<v))-N/-AL-S;L,TW .

Let b: W!—W. be the blowing up of W. along the base locus of the pencil
{W. s}sepr. We have the natural morphism W.—P*, which is topologically trivial
over 7([—=, p])CP'. Thus we may assume that I, deforms continuously as
v moves. Let M. be the n-chain Urer-5. 91596y 1D W. with the orientation
satisfying 8]\?15:5;7(,]3—S§T(_Z>. We have an (n-+1)-chain I,.=b(User-q, 11la0)
in W, with the orientation satisfying

0. = Ly —ILpy+N'-M,-M.—N"- ().
Let ﬁs.ﬂ (resp. D. _)) be the n-chain

{pﬂ}u\dce[ﬁ 0Se (resp. {p~1}uure(—1,—n]Ss,rw))
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with the orientation satisfying 655,+1:——S';T(,7> (resp. ali, 1=S%,cp). Then we
see that
Deyi+M.+D. . =+8: or =8, and

N (L) =N""My-(De i +M+D. )
= -aja*i'j\’”'¢;,7‘(~§+1+]T(77)))+]7(n>—N"1\41'ﬁ5,+1
‘*‘A‘V‘Sz’(]‘("“§»1“‘:"]7(—1))))*’[r(—y)_i\"’,'ﬂ/ll‘ﬁa,—1-
Then we have

1 7 - ) \ T ~
Chn= “7\77(1\//'(ﬁ(]K—B+1".‘]7(;7>))+[7(n>_1\/ ‘M;-D. ;y), and

1 .., ... = _ ~
C-1 = T\F‘O\’J/'SDQ](_B—l_{_.]}'(—n)))_Ir(—v))_A/,'A/[l'De.—l)-

it is easy to see that the cycle C; can be deformed to the cycle contained in
W. ., u (i==1). Hence [C,,], [C.,J€im¢x. Thus we get

M, [S§51 € imTW)+im tx.
In Case 2, i.e., V,_.(W/W, @)=0 for general W and W, we shall prove that
vV n‘\W/CV, Q) C im x

for a general W. It is enough to show that [Sf]<imc.. By the assumption
of this case, we may assume that the homology class [S{;w]1EH-i(We o, £)
is a torsion for v&[—y, y]. Hence there is an topological n-chain F. ,,»C
We ;o such that 0F, ;y=N"-S{,. where N” is a non-zero integer which does
not depend on veE[—y, p]. We may assume that the n-chain F, ,q, deforms
continuously as » moves, and we get an (n-+1)-chain FE::UUE[_,?,,?]FE,,(U).
Now, by the similar argument as in Case 1, we have a topological n-cycle
E. +E_, in W’ such that the support of E., (resp. E_;) is contained in
Usern, 1We, 1w CW? (resp. Ureror -y We ;e CW1), and

A/V”'SNEL“(‘EH“:‘E—J or —N’I'§j~<E+1+E-1>

is the boundary oF.. Because [E,.], [E_,Jimes, we see that N”-[St1€imes.
O
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