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Introduction.

Gelfand patterns and strict Gelfand patterns are triangular arrays of non-
negative integers satisfying certain conditions. I. M. Gelfand and M. L. Zetlin
used Gelfand patterns for the parametrization of the weight vectors of repre-
sentation spaces of general linear groups [4].

Since then, many mathematicians and physicists have used them in order
to study representations of the classical groups and corresponding particles.
Still, strict Gelfand patterns have mainly been studied from the combinatorial
point of view. However, R. P. Stanley has demonstrated an interesting relation
between a generating function of strict Gelfand patterns and the ’most singular’
values of the Hall-Littlewood polynomials [14], [10].

Since the Hall-Littlewood polynomial is a fundamental tool for investigating
the representations of general linear groups over finite fields and local fields,
there must be a strong connection between the Gelfand-Zetlin parametrization
and the formula of Stanley.

The initial motivation of this paper was to find a natural deformation of
Stanley’s formula so that it involves the Gelfand-Zetlin parametrization as a
specialization. In the course this searching, we encountered a more important
formula, Weyl’s character formula, as another specialization of our formula.
The following is Weyl’s character formula for $GL(n, C)$ .

$(3.2.1^{*})$
$S_{\lambda}(z_{1}, z_{2}, z_{n-1}, z_{n})= \frac{V_{\lambda+\delta}}{\prod_{J>i}(z_{i}-z_{f})}$ .

In the above formula, $\delta$ is “the half of sum of positive roots“, and $V_{\beta}$ de-
notes the “Vandermonde-type determinant” of type $\beta$ .

The left side of $(3.2.1^{*})$ is called the Schur function associated with the
highest weight $\lambda$ , which is the character of an irreducible representation of
$GL(n, C)$ . Its actual definition will be shown in Section 2. We often denote
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$U_{a}$ for $S_{\lambda}$ when $\alpha=\lambda+\delta$ .
Our formula is the following:

THEOREM 2.1.

$J(\alpha;tjZ_{1}, Z_{2}, z_{n-1}, z_{n})=$ $\{\prod_{J>i}(z_{i}+z_{j}t)\}U_{a}(z_{1}, z_{2}, z_{n-1}, z_{n})$

where $J$ is the generating function of strict Gelfand Pattems defined in 1.3, and
the prOduct is taken over all Pairs $(i, j)$ satisfying $n\geqq j>i\geqq 1$ .

From the specializations substituting $0,1,$ $-1$ for the parameter $t$ in our
theorem, we get three classical formulas mentioned above: Gelfand’s parametri-
zation, Stanley’s formula, and Weyl’s character formula.

Besides, as a corollary, we have a neat generalization of Weyl’s denominator
formula for general linear groups.

COROLLARY $3.4.-(*)$.
$\alpha\in H_{+}^{(1+te^{\alpha})=}\sum_{X\in Alt_{n}}(1+\frac{1}{t})^{sCX)}t^{i(X)}e^{\delta- X\delta}$ .

$\Delta_{+}$ is the Positive root system of $tyPeA_{n-1}$ (cf. [2]), $Alt_{n}$ is the set of all alter-
nating sign matrices (see Definition 3.4.3) of size $n,$ $s(X)$ and $i(X)$ are the num-
ber of special elements” and “number of inversions” of $X$ respectjvely, and $\delta$ is
the half sum of all the Positive roots of the root system of type $A_{n-1}$ .

One of the motivations of this article is the work of Mills, Robbins, and
Rumsey Jr. [9]. The notations required in the corollary above had been given
there.

1. Combinatorial notations.

A partition is a weakly decreasing finite sequence of nonnegative integers.
A distinct partition is a strictly decreasing sequence of nonnegative integers
\langle its last entry may be a zero).

For a partition (or distinct partition) $\lambda=(\lambda_{1}, \lambda_{2}, \cdots , \lambda_{n}),$ $|\lambda|=\Sigma_{i=1}^{n}\lambda_{i}$ .
DEFINITION 1.1. A Gelfand pattern $T(a_{i.j})$ of size $n$ is a triangular array

$a_{11}$ $a_{12}$ $a_{13}\ldots\ldots\ldots\ldots\ldots a_{1n}$

$a_{22}$ $a_{23}\ldots\ldots\ldots\ldots\ldots a_{2n}$

$a_{83}$ $a_{S4}\ldots\ldots\ldots a_{Sn}$

$a_{nn}$
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of nonnegative integers which is weakly decreasing in each row and satisfying

$a_{i-1.j-1}\geqq a_{i.j}\geqq a_{i-1.j}$ for any indices $i$ and $j$ .
For a partition $\lambda,$ $G(\lambda)$ is the set of all Gelfand patterns having $\lambda$ as their

top rows.
A Gelfand pattern is called strict if each row of it is a strictly decreasing

sequence. For a distinct partition $\alpha,$ $SG(\alpha)$ is the set of all strict Gelfand pat-
terns having $\alpha$ as their top rows.

$SG((3,2,1))=\{321 321 321 321 321 321 321\}$
21 21 31 31 31 32 32
1 2 1 2 3 2 3

Figure 1. Example of strict Gelfand patterns: This is the set of all
strict Gelfand patterns having (3,2,1) as their top rows.

An entry $a_{i.j}$ of a strict Gelfand pattern $T$ is called “special” if

$2\leqq i\leqq j$ and $a_{i-1.j-1}>a_{i.j}>a_{i-1.j}$ .
An entry $a_{i.j}$ of a strict Gelfand pattern $T$ is called “lefty” if

$2\leqq i\leqq j$ and $a_{i.j}=a_{i-1.j-1}$ .
$s(T)$ (resp. $1(T)$ ) is the number of special (resp. lefty) entries in the strict

Gelfand pattern $T$ .
$d_{i}(T)$ denotes i-th row sum, the summation of the entries in the i-th row

of $T$ . We set

$m_{i}(T)=d_{i}(T)-d_{i+1}(T)$ for $i=1,2,$ $\cdots$ , $n-1$ and $m_{n}(T)=d_{n}(T)$ .

31
EXAMPLE 1. If $T=$ , $s(T)=1,$ $l(T)=0$ , and $(m_{1}(T), m_{2}(T))=(2,2)$ . If

231
$T=$ , $s(T)=0,$ $l(T)=1$ and $(m_{1}(T), m_{2}(T))=(1,3)$ .

3

DEFINITION 1.2. Let $\alpha$ be a distinct partition of length $n$ . Then we define
the generating function $H$ of $SG(\alpha)$ by

$H( \alpha;x ; y;z_{1}, z_{2}, ’ z_{n-1\prime}z_{n})=\sum_{T\in SG(\alpha)}x^{s(T)}y^{l(T)}Z_{n}^{M(T)}def$

In the above, $Z_{n}^{M(T)}=\Pi_{i=1}^{n}(z_{i}^{m_{i}(T)})$ .
We shall study it in the special case of $x=y+1$ .

DEFINITION 1.3. $J(\alpha;t;z_{1}, z_{2}, \cdots, z_{n- 1}, z_{n})=H$( $\alpha;t+1;t;z_{1},$$z_{2}def\ldots$ , Zn-l, $z_{n}$ ).
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NOTE. $H(\alpha)$ and $J(\alpha)$ should be regarded as generalizations of the more
simple generating function $f_{\alpha}$ ( $z_{1},$ $z_{2},$

$\cdots$ , Zn-l’ $z_{n}$ ) $= \sum_{T\in SG(a)}Z_{n}^{M(T)}$ .
EXAMPLE 2. (1) $H((2,0);x;y;z_{1},$ $z_{2}$) $=z_{1}^{2}+xz_{1}z_{2}+yz_{2}^{2}$ , and

$J((2,0);t;z_{1},$ $z_{2}$) $=(z_{1}+z_{2}t)(z_{1}+z_{2})$ .
(2) $H((3,2,1);x;y;z_{1}, z_{2}, z_{3})=z_{1}^{3}z_{2}^{2}z_{3}+yz_{1}^{3}z_{2}z_{3}^{2}+yz_{1}^{2}z_{2}^{3}z_{a}+y^{2}z_{1}^{2}z_{2}z_{3}^{3}+y^{2}z_{1}z_{2}^{3}z_{3}^{2}$

$+y^{3}z_{1}z_{2}^{2}z_{3}^{3}+xyz_{1}^{2}z_{2}^{2}z_{3}^{2}$ , and

$J((3,2,1);t;z_{1}, z_{2}, z_{3})=(z_{1}+z_{2}t)(z_{1}+z_{3}t)(z_{2}+z_{3}t)z_{1}z_{2}z_{a}$ .

2. Schur functions and theorem.

Let us recall some basic notations in the representation theory of general
linear groups. $GL(n, C)$ is the general linear group of rank $n$ over the complex
number field $C$ . The equivalence classes of irreducible finite dimensional poly-
nomial rePresentations of $GL(n, C)$ are usually parametrized by means of Parti-
tions of length $n$ . Here ‘length’ of a partition $\lambda$ means the length of the
sequence $\lambda$ regarded as a sequence of nonnegative integers. More precisely,
there is a canonical one-to-one correspondence between the set of partitions of
length $n$ and the set of equivalence classes of irreducible (finite dimensional
polynomial) representations of $GL(n, C)$ . Refer [12] and [13] for details.

We write $\rho_{\lambda}$ for the irreducible representation of $GL(n, C)$ corresponding
to the partition $\lambda$ of length $n$ . The character $S_{\lambda}$ of $\rho_{\lambda}$ is called the Schur
function associated with $\lambda$ . It is regarded as a symmetric polynomial in $n$

variables defined as
$S_{\lambda}(z_{1}, z_{2}, z_{n-1}, z_{n})=Tr(\rho_{\lambda}(DZ_{n}))$

where Tr is the usual trace symbol and $DZ_{n}=diag(Z_{n})$ denotes the diagonal $n$

by $n$ matrix with $z_{i}$ as its each $(i, i)$ component. Note that since the poly-
nomial representation $\rho_{\lambda}$ is extended uniquely into a polynomial map on $M_{n,n}(C)$ ,
$S_{\lambda}$ is well defined even if some $z_{i}$ are zero.

As is well known, we can write $S_{\lambda}$ as a quotient of a Vandermonde-type
determinant of rank $n$ by the Vandermonde determinant of rank $n$ . See Section
3, (3.2.1) and $(3.2.1^{*})$ .

For a partition $\lambda$ of length $n$ , we correspond a distinct partition $\lambda+\delta$ of
length $n$ defined by $(\lambda+\delta)_{i}=\lambda_{i}+n-i$ .

NOTE. This $\delta$ corresponds to the “half sum of the positive roots” of the root
system of type $A_{n-1}$ .

Our theorem is the following:
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THEOREM 2.1. Let $\lambda$ be a partition of length $n$ and let $\alpha=\lambda+\delta$ . Then the
following formula (2.1) holds.

(2.1) $J( \alpha;t;z_{1}, z_{2}, \cdots, z_{n-1}, z_{n})=\{\prod_{J>i}(z_{i}+z_{j}t)\}S_{\lambda}(z_{1}, z_{2}, \cdots, z_{n-1}, z_{n})$

where the product is taken over all pajrs $(i, j)$ satisfyng $n\geqq j>i\geqq 1$ .
To prove this theorem, we shall recall some branching rules of representa-

tions of general linear groups. We refer to [13] for the proof of the following
lemma 2.2 and lemma 2.4.

$L_{n}=\{g=(g_{i,j})_{i.j=1.2\ldots..n}\in GL(n, C)$ satisfying $g_{n.j}=g_{j.n}=0$

for any $j=1,2,$ $\cdots,$ $n-1$ }

is a Levi subgroup of $GL(n, C)$ , which is isomorphic to the direct product
$GL(n-1, C)\cross GL(1, C)$ . First we shall recall the branching rule of the restricted
representation of the irreducible representation $\rho_{\lambda}$ of $GL(n, C)$ to $L_{n}$ .

LEMMA 2.2 ([13], Section 66).

(2.2) $\rho_{\lambda}|_{L_{n}}\cong\Sigma\rho_{\mu}\cross e^{|\lambda|-|\mu 1}$

$ca)$

where $\rho_{\mu}$ is the irreducible representatjOn of $GL(n-1, C)$ correspOndjng to the
partition $\mu=(\mu_{1}, \mu_{2}, \cdots , \mu_{n-1})$ , and $e^{q}$ denotes the linear character of $C^{\cross}=GL(1, C)$

defined by $e^{q}(z)=z^{q}$ for any element $z$ of $C^{\cross}$ . The summation is taken over all
partitiom $\mu$ of length $n-1$ satisfying the condition

(a) $\lambda_{i}\geqq\mu_{i}\geqq\lambda_{i+1}$ for any $i=1,2,$ $\cdots$ , $n-1$ .

We shall write the identity 2.2 in terms of Schur functions. For conveni-
ence’ sake, we shall write $U_{a}$ for the Schur function $S_{\lambda}$ where $\alpha=\lambda+\delta$ . Then
2.2 becomes the equation 2.3 below.

(2.3) $U_{\alpha}(z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})=\sum_{\alpha_{i}>\beta_{i}\geqq\alpha_{i+1}}U_{\beta}(z_{1}, z_{2}, \cdots , z_{n-1})\cross z_{n}^{|\alpha|-|\beta_{|-n+1}}$ ,

where the summation runs over all distinct partitions $\beta$ of length $n-1$ satisfying
the indicated condition $\alpha_{i}>\beta_{i}\geqq\alpha_{i+1}$ .

Now we introduce the k-th exterior tensor product representation $\Lambda_{(k.m)}$ of
$GL(m, C)$ . For any element $g$ of $GL(m, C),$ $A_{(k,m)}(g)$ is an automorphism of

the k-th exterior tensor space $\Lambda^{k}C^{m}$ of $C^{m}$ defined by

$\Lambda_{(k.m)}(g)(v_{1}\wedge v_{2}\wedge\cdots\wedge v_{k})=g(v_{1})\wedge g(v_{2})\wedge\cdots\wedge g(v_{k})$

for any element $V_{k}=(v_{1}\wedge v_{2}\wedge\cdots\wedge v_{k})$ of $\Lambda^{k}C^{m}$ .
In the notation using partitions, $\Lambda_{(k.m)}\cong\rho_{(1)}k=\rho_{(1.1\ldots..1)}$ .
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Let us recall the branching rule of the tensor product representation of
$\Lambda_{(k,m)}$ and an arbitrary representation of $GL(m, C)$ .

LEMMA 2.4 ([13], Section 79). Let $\rho_{\mu}$ be an irreducible representation of
$GL(m, C)$ . Then,

(2.4) $\rho_{\mu}\otimes\Lambda_{(k,m)}\cong$ $\sum$

(b1), (b2)

where $\otimes is$ the inner tensor product symbol among the representati0ns of $GL(m, C)$ ,
and the summation runs over all partitjons $\nu$ of length $m$ satisfying both

(b1) $|\nu|=|\mu|+k$ , and
(b2) $\mu_{i}+1\geqq\nu_{i}\geqq\mu_{i}$ for any $i=1,2,$ $\cdots$ , $m$ .

Taking the character value at $DZ_{m}$ of both sides of (2.4), we have

$S_{\mu}(z_{1}, z_{2}, z_{m})\cross Tr\{\Lambda_{Ck.m)}(DZ_{m})\}=$ $\sum$

(b1). (b2)

In another expression, using $\beta=\mu+\delta$ and $\gamma=\nu+\delta$ instead of $\mu$ and $\nu$ themselves,

$(2.4^{*})$
$U_{\beta}(z_{1}, z_{2}, z_{m}) \cross Tr\{\Lambda_{(k,m)}(DZ_{m})\}=\beta\sum_{i+1\geqq\gamma\iota\geqq\beta_{i}}U_{\gamma}(z_{1}, z_{2}, z_{m})$

where $\beta$ and $\gamma$ are distinct partitions of length $m$ satisfying

$(b1^{*})$ $|\gamma|=|\beta|+k$ .
Now we begin the proof of Theorem 2.1. Let us keep our eye upon the

identity (2.1). Since both sides of (2.1) are polynomials, it suffices to show it
under the condition (2.5) below.

(2.5) $t$ is a posttive real number and $z_{i}$ are real numbers which are
larger than $t$ for all $i=1,2,$ $\cdots$ , $n$ .

From now on, we shall assume the condition (2.5).

Let $\alpha=(\alpha_{1}, \alpha_{2}, \cdots , \alpha_{n})$ and $\beta=(\beta_{1}, \beta_{2}, \cdots , \beta_{n-1})$ be distinct partitions. We
say $\betaarrow\alpha$ if $\alpha_{i}\geqq\beta_{i}\geqq\alpha_{i+1}$ for any $i=1,2,$ $\cdots$ , $n-1$ . When $\betaarrow\alpha$ , we set $s(\alpha, \beta)$

and $l(\alpha, \beta)$ to denote the numbers of indices $i$ such that $\alpha_{i}>\beta_{i}>\alpha_{i+1}$ and $\beta_{i}=\alpha_{i}$

respectively. We shall use
$\tilde{H}(\alpha;x;y;z_{1}, z_{2}, z_{n-1}, z_{n})=H(\alpha;defx;y;z_{n}, z_{n-1} , z_{2}, z_{1})$

and
$j(\alpha;t;z_{1}, z_{2}, z_{n- 1}, z_{n})=\tilde{H}(\alpha;r+1_{j}r;z_{1\prime}z_{2z}def$ ,

$=J(\alpha;t;z_{n}, z_{n-1}, z_{2}, z_{1})$

instead of $H$ and $J$ themselves in order to shorten the expressions occurring in
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our proof.
The following formula is easily seen from the dePnition of the generating

function of the strict Gelfand patterns.

(2.6) $\tilde{H}(\alpha;x ; y ; z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})=\sum_{\betaarrow\alpha}\tilde{H}(\beta;x ; y ; z_{1}, z_{2}, \cdots , z_{n-1})$

$\cross z_{n}^{|\alpha|-|\beta_{1}}x^{S(\alpha,\beta)}y^{l(\alpha.\beta)}$ .
Fixing $t$ and $(z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})$ satisfying (2.5). We can define a real number

$p_{m}=\log(z_{m+1^{-1}}t)/\log(\Pi_{j=1}^{m}z_{j})$ and a representation $\Psi_{m}$ of $GL(m, C)$ given as

$\Psi_{m}(g)=\sum_{k=0}^{m}$ { $|$ det $(g)|^{kp_{m}}\cross\Lambda_{(k,m)}(g)$ } where $g\in GL(m, C)$

for each $m=1,2,$ $\cdots$ , $n-1$ .
Let us calculate the product of Tr $\{\Psi_{n-1}(DZ_{n-1})\}$ , the character value of the

representation $\Psi_{n-1}$ at the diagonal element $DZ_{n-1}$ of $GL(n-1, C)$ , and the Schur
function $U_{a}(z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})$ using the identities (2.3) and $(2.4^{*})$ .

We set
$(L)=U_{\alpha}(z_{1}, z_{2}, z_{n-1}, z_{n})\cross Tr\{\Psi_{n-1}(DZ_{n-1})\}$ .

Applying (2.3),

$(L)= \{\sum_{a_{i}>\beta_{i}\geqq\alpha_{i+1}}U_{\beta}(z_{1}, z_{2}, z_{n-1})\cross z_{n}^{|\alpha|-|\beta_{|-n+1}}\}\cross Tr\{\Psi_{n-1}(DZ_{n-1})\}$ .

On the other hand, from $(2.4^{*})$ ,

$U_{\beta}(z_{1}, z_{2}, z_{n-1})\cross Tr\{\Psi_{n-1}(DZ_{n-1})\}$

$=_{\beta} \sum_{i+1\geqq\gamma_{i}\geqq\beta_{i}}[\{U_{\gamma}(z_{1}, z_{2}, z_{n-1})\}\cross(z_{j}\gamma$ .

Then

$(L)= \sum_{(C1)}[\sum_{(C2)}\{z_{n}^{|a|-|\beta_{|-n+1}}\cross(\prod_{j=1}^{n-1}z_{j})^{(1|-|}\gamma\beta^{1)p_{n-1}}\cross U_{\gamma}(z_{1}, z_{2}, z_{n-1})\}]$

$= \sum_{(C1)}[\sum_{(C2)}\{z_{n}^{|\alpha|-I\beta|- n+1}\cross(z_{n}^{-1}t)^{|\gamma|-|\beta_{\{}}\cross U_{\gamma}(z_{1}, z_{2}, z_{n-1})\}]$ .

The summations run over the distinct partitions $\beta$ and $\gamma$ of length $n-1$ satisfy-
ing the indicated conditions

(c1) $a_{i}>\beta_{i}\geqq\alpha_{i+1}$ and

(c2) $\beta_{i}+1\geqq\gamma_{\iota}\geqq\beta_{i}$ for any $i=1,2,$ $\cdots$ , $n-1$ .
It follows (c1) and (c2) that $\gammaarrow\alpha$ . Calculating the number of $\beta$ satisfying both
(c1) and (c2) for a fixed $\gamma$ using the binomial theorem, we have

(2.7) $(L)= \sum_{\gammaarrow\alpha}z_{n}^{|aI-|\gamma|-n+1}(t+1)^{s(\alpha.\gamma)}t^{l(\alpha.\gamma)}\cross U_{\gamma}(z_{1}, z_{2}, z_{n-1})$ .
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Let us consider the polynomial $F$ defined below.

$\{\begin{array}{ll}F(\alpha;t;z_{1}, z_{2}, z_{n- 1}, z_{n})=def[\prod_{m=1}^{n-1}z_{m+1}^{m}\cross Tr\{\Psi_{m}(DZ_{m})\}]\cross U_{a}(z_{1}, z_{2}, z_{n- 1}, z_{n}) for n\geqq 2, andF((P);t;z)=U_{p}(z)def=z^{p} in case n=1.\end{array}$

It follows (2.7) that

(2.8) $F( \alpha;t;z_{1}, z_{2}, z_{n-1}, z_{n})=\sum_{\gammaarrow a}F(\gamma;t;z_{1}, z_{2}, z_{n-1})$

$\cross z_{n}^{|\alpha|-|\gamma|}(t+1)^{s(\alpha.\gamma)}t^{l(\alpha.\gamma)}$ .

Comparing (2.8) with (2.6), we deduce that both $\tilde{J}(\alpha;t;z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})$ and
$F(\alpha;t;z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})$ satisfy a same inductive formula with respect to $n$ .
Moreover, since

$J((p);t;z)=z^{p}=F((p);t;z)$ ,

the initial conditions coincide. So, by induction on $n$ , we have

$\tilde{J}(\alpha;t;z_{1}, z_{2}, z_{n- 1}, z_{n})=F(\alpha;t;z_{1}, z_{2}, z_{n-1}, z_{n})$

(2.9)

$=[m\ldots$ Zn-l, $z_{n}$),

while

(2.10) Tr $\{\Psi_{m}(DZ_{m})\}=\sum_{k=0}^{m}(z_{m+1^{-1}})^{k}Tr\{\Lambda_{(k.m)}(DZ_{m})\}=\prod_{k=1}^{m}(z_{m+1^{-1}}z_{k}t+1)$

Substituting (2.10) into (2.9), we have

$\tilde{J}(\alpha;t;z_{1}, z_{2}, Z_{n-1}, z_{n})=\{\prod_{j\geqq i}(z_{i}t+z_{j})\}\cross U_{\alpha}(z_{1}, z_{2}, z_{n- 1}, z_{n})$ .

Since $U_{\alpha}$ is a symmetric polynomial, exchanging the roles of suffixes $i$ and $j$ ,

$J( \alpha;t;z_{1}, z_{2}, z_{n-1}, z_{n})=\{\prod_{j\geqq i}(z_{j}t+z_{i})\}\cross U_{\alpha}(z_{1}, z_{2}, z_{n-1}, z_{n})$ .

This is the identity we have been looking for.

3. Specializations.

Now we shall show how classical results come out of our formula. We
may remark that we do not intend to give a ’new proof’ of these, since we
essentially used Weyl’s character formula and Gelfand’s Parametrization in the
proof of our theorem. What we would like to claim is that our formula is a
deformation with respect to the parameter $t$ which connects at least three im-
portant classical results. In this section, we fix a partition $\lambda$ of length $n$ and
the distinct partition $\alpha=\lambda+\delta$ .



Formulas on characters 679

3.1. Gelfand’s parametrization. I. M. Gelfand and M. L. Zetlin used Gelfand
patterns to parametrize the weight spaces of the representation spaces of general
linear groups. In particular, in the representation space of $\rho_{\lambda}$ , the dimension
of the weight space corresponding to the weight $(m_{1}, m_{2}, \cdots , m_{n})$ with respect
to an arbitrary maximal torus coincides with the number of the Gelfand patterns
$T$ equipped with $\lambda$ as their top rows and satisfying $m_{i}(T)=m_{i}$ for any $i$ . That
is,

(3.1.1) $\sum_{T\in G(\lambda)}\{\prod_{i=1}^{n}z_{i}^{m_{i}(T)\}}=S_{\lambda}(z_{1}, z_{2}, z_{n- 1}, z_{n})$ .

This formula comes from our formula as follows. Substituting $0$ for $t$ in (2.1),

we have the following identity (3.1.2).

(3.1.2) $J( \alpha;0;z_{1}, z_{2}, \cdots, z_{n-1}, z_{n})=\{\prod_{i=1}^{n}z_{i^{n-i}}\}\cross S_{\lambda}(z_{1}, z_{2}, \cdots z_{n-1}, z_{n})$ .

From the definition of the generating function $J$, the left side of (3.1.2) equals

(3.1.3) $\tau\in l(T)=08_{(\alpha)}\{\prod_{i=1}^{n}z_{i^{m_{i}(T)\}}}$ .

There is an injection $\Theta$ from $G(\lambda)$ into $SG(\alpha)$ defined as
$G(\lambda)$ ......... $arrow SG(\alpha)$

$\Theta$ :
$T=(t_{i,j})$ $arrow\Theta(T)=(t_{i.j}+n-j)$ .

It is easy to see that $m_{i}(\Theta(T))=m_{i}(T)+n-i$ , and the image of $\Theta$ coinsides with
the set of all strict patterns in $SG(\alpha)$ with no lefty element. By means of $\Theta$ ,
we exchange the summation occurring in (3.1.3) into the summation over $G(\lambda)$

to modify (3.1.3) as

(3.1.4) $\sum_{\tau\in G(\lambda)}\{\prod_{i=1}^{n}z_{t^{m_{i}(T)+(n-i)\}}}$ .
Substituting (3.1.4) for the left side of (3.1.2), we have (3.1.1) easily.

NOTE. The results of Gelfand and Zetlin are far deeper than (3.1.1) itself.
These show a nice orthogonal basis corresponding to the symmetry breaking
$GL(n, C)\supset GL(n-1, C)\supset\cdots\supset GL(1, C)$ by means of Gelfand patterns. That
basis plays a significant role in quantum mechanics. See [1], [4] and [11] for
their theory and its applications. Algebraically, that basis is often called
“standard monomials”.

3.2. Weyl’s character formula. The standard form of Weyl’s character
formula for $GL(n, C)$ is the following. Cf. [3], [6] and [12].
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(3.2.1) $w \in 8_{n}\{(-1)^{i(w)}\prod_{i=1}^{n}z_{\iota^{\alpha_{w(i)\}=}}}\{\prod_{J>i}(z_{i}-z_{j})\}\cross S_{\lambda}$ ( $z_{1},$ $z_{2},$
$\cdots$ , Zn-l, $z_{n}$),

where $S_{n}$ is the symmetric group of degree $n$ , whose element $w$ acts on the
set $\{1, 2, \cdots n\}$ in usual way, and $i(w)$ denotes the number of inversions of $w$ .
$i(w)$ is often called the length of $w$ , cf. [5].

We remark that the left side of (3.2.1) can be written as a determinant, say
$V_{\lambda+\delta}$ , which resembles the Vandermonde determinant $V_{\delta}$ . Then we can rewrite
(3.2.1) into the following $(3.2.1^{*})$ refered in the introduction.

$(3.2.1^{*})$
$S_{\lambda}(z_{1}, z_{2}, z_{n-1}, z_{n})= \frac{V_{\lambda+\delta}}{\prod_{J>i}(z_{i}-z_{j})}$ .

The formula (3.2.1) comes from our formula as follows:
Substituting $-1$ for $t$ in (2.1), we have

(3.2.2) $J$( $\alpha;-1$ ; $z_{1},$ $z_{2},$
$\cdots$ , Zn-l, $z_{n}$ ) $= \{\prod_{J>i}(z_{i}-z_{j})\}\cross S_{\lambda}$ ( $z_{1},$ $z_{2},$

$\cdots$ , Zn-l, $z_{n}$).

From the definition of $J$, the left side of (3.2.2) equals

(3.2.3) $t \in s(T)=0ae_{(\alpha)}\{(-1)^{l(T)}\prod_{i=1}^{n}z_{t^{m_{i}(T)\}}}$ .

For an element $w$ of the symmetric group $S_{n},$ $T_{w,a}$ denotes the strict Gel-
fand Pattern belonging to $SG(\alpha)$ defined such as its any J-th row is the sequence
consisting of all the elements of $\{\alpha_{w(j)}, \alpha_{w(j+1)}, \cdots , \alpha_{w(n)}\}$ arranged in the de-
creasing order.

541
EXAMPLE 3. Let $w=(\begin{array}{l}123312\end{array})$ . Then $T_{w.(5..1)}=544$

It is easy to see that $\{T\in SG(\alpha)|s(T)=0\}=\{T_{w.\alpha}|w\in S_{n}\}$ . Moreover,
$l(T_{w.\alpha})$ is independent of $\alpha$ , and is equal to the number of inversions of the
permutation $w$ . Since the i-th row $T_{w.a}$ consists of both $\alpha_{w(\ell)}$ and the entries
of its $(i+1)$-th row,

$m_{i}(T_{w,i})=\alpha_{w(i)}$ .
Then (3.2.3) becomes

(3.2.4) $\sum_{w\in S_{n}}\{(-1)^{i(w)}\prod_{i=1}^{n}z_{i}^{\alpha_{w(i)\}}}$ .
Substituting (3.2.4) for the left side of (3.2.2), we get (3.2.1).

NOTE. Weyl’s character formula was firstly given by H. Weyl for the
classical groups in [12]. It has more general expressions applied for any reduc-
tive algebraic group and Kac-Moody algebra. Cf. [6].
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3.3. Stanley’s formula.

DEFINITION 3.3.1. The Hall-Littlewood polynomial of type $\alpha$ is

(3.3.1) $R_{\alpha}(z_{1}, z_{2}, z_{n-1}, z_{n} ; q)= \sum_{w\in S_{n}}w\{(\prod_{i=1}^{n}z_{i}^{\alpha_{i}})\cross\prod_{j>l}(z_{i}-qz_{j})(z_{i}-z_{j})^{-1}\}$ ,

where the permutation $w$ acts naturally on the polynomials in $z_{1},$ $z_{2},$
$\cdots$ , $z_{n-1},$ $z_{n}$ .

NOTE. This definition is a convenient version. The Hall-Littlewood poly-
nomial has a more general expression in which we can loosen the condition for
$\alpha$ in (3.3.1) from a distinct partition to an arbitrary partition. Cf. [8].

The following formula was given by Stanley [14], and was also given by
Mills et al. [9] for a special case using different methods.

(3.3.2) $\sum_{T\in SG(a)}\{2^{s(T)}\prod_{\ell=1}^{n}z_{i}^{m_{l}(T)\}}=R_{\alpha}(z_{1}, z_{2}, \cdots , z_{n-1}, z_{n} ; -1)$ .

This formula is an easy corollary of Theorem 2.1. Substituting 1 for $t$ in (2.1),

we get

(3.3.3) $J$( $\alpha;1;z_{1},$ $z_{2},$
$\cdots$ , Zn-l’ $z_{n}$ ) $= \{\prod_{J>i}(z_{i}+z_{j})\}XS_{\lambda}(z_{1}, z_{2}, \cdots , z_{n-1}, z_{n})$ .

Substituting $-1$ for $q$ in (3.3.1), we get

(3.3.4) $R_{\alpha}(z_{1}, z_{2}, \cdots , z_{n-1}, z_{n} ; -1)=\{\prod_{J>i}(z_{i}+z_{j})\}\cross S_{\lambda}$ ( $z_{1},$ $z_{2},$
$\cdots$ , Zn-l, $z_{n}$ ).

From (3.3.3) and (3.3.4),

(3.3.5) $J(\alpha;1;z_{1}, z_{2}, z_{n-1}, z_{n})=R_{\alpha}(z_{1}, z_{2}, \prime^{Z_{n-1},Z_{n}} -1)$ .
From the definition of the generating function $J$,

(3.3.6) $J$( $\alpha;1$ ; $z_{1},$ $z_{2},$
$\cdots$ , Zn-l, $z_{n}$ ) $= \sum_{T\in SG(\alpha)}\{2^{s(T)}\prod_{i=1}^{n}z_{\ell^{m_{i^{(T)}}}}\}$ .

(3.3.5) and (3.3.6) mean (3.3.2).

The Hall-Littlewood polynomial is a basic tool to determine the characters
of Chevalley groups over finite fields and local fields. The value of it at $q=-1$

is its most singular value, which shows very interesting behavior from both
combinatorial and representation theoretic points of view. Cf. [8], [14]. In
particular, Stanley showed (3.3.2) using an expansion formula of the Hall-Little-
wood polynomials.

3.4. Weyl’s denominator formula and alternating sign matriceg. In case
$\lambda=(0,0, \cdots , 0),$ $\alpha=\delta=(n-1, n-2, \cdots , 1, 0)$ and Weyl’s character formula (3.2.1)

becomes
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(3.4.1) $w g_{\in n}\{(-1)^{i(w)}\prod_{i=1}^{n}z_{i}^{w(n+1-i)-1}\}=\{\prod_{J>i}(z_{i}-z_{j})\}$ .

This formula is called Weyl’s denominator formula for $GL(n, C)$ . Although it
is known as a expansion formula of the Vandermonde matrix of rank $n$ clas-
sically, it is generalized for the category of the reductive algebraic groups play-
ing significant roles in the representation theory.

Now, what should we have from our formula (2.1) specializing it to the
case $\lambda=(0,0, \cdots , 0)$ ?

From the definition of the generating function $J$,

$J( \delta;t;z_{1}, z_{2}, z_{n-1})=\tau\in\S_{(\delta)}\{(t+1)^{s(T)}t^{l(T)}\prod_{i=1}^{n}z_{i}^{m_{i}(T)\}}$ .

Thus, it follows (2.1) that

(3.4.2) $\tau\in 8_{(\delta)}\{(t+1)^{s(T)}t^{l(T)}\prod_{i=1}^{n}z_{i}^{m_{i}(T)\}}=\prod_{J>i}(z_{i}+z_{j}i)$ .

To investigate the meaning of (3.4.2), we must study the set $SG(\delta)$ .

DEFINITION 3.4.3. An $n$ by $n$ matrix $X$ is called an alternating sign matrix
if $X$ satisfies the following four conditions:

1. Any entry of $X$ is 1, $0$ , or $-1$ .
2. In any row $(x_{i.1}, x_{i.2}, \cdots x_{i,n})$ of $X$, its k-th partial row sum $R(i;k)$

satisfies

$R(i;k)= \sum_{j=1}^{k}x_{i,j}=0$ or 1 for any $k=1,2,$ $\cdots$ , $n$ .

3. In any column ${}^{t}(x_{1.j}, x_{2.j}, \cdots x_{n,j})$ of $X$, its k-th partial column sum
$C(j;k)$ satisfies

$C(j;k)= \sum_{i=1}^{k}x_{i.j}=0$ or 1 for any $k=1,2,$ $\cdots,$ $n$ .
4. For any i-th row and J-th column of $X$, the row sum and column sum

$R(i;n)=C(j;n)=1$ .
Any permutation matrix is an alternating sign matrix, although there exists

some alternating sign matrices which are not permutation matrices.

EXAMPLE 4. The number of the 3 by 3 alternating sign matrices is 7, and
that of 4 by 4 alternating matrices is 42. The following is the only 3 by 3
alternating sign matrix which is not a permutation matrix.

$(\begin{array}{lll}0 l 01 -1 10 1 0\end{array})$
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DEFINITION 3.4.4. Let $X$ be an $n$ by $n$ alternating sign matrix, then $i(X)$ ,
the number of inversion of $X$, is defined by

$i(X)= \sum_{i=1}^{n}\sum_{f=1}^{n}\{x_{i,j}\cross\sum_{k<i}\sum_{p>J}x_{k,p}\}$ .

REMARK. If $X$ is a permutation matrix, $i(X)$ equals to the usual “number
of inversion” of a permutation.

DEFINITION 3.4.5. The number of the entries -1 in $X$ is denoted by $s(X)$ ,

which is called the number of special elements in $X$.
Now we refer a proposition from [9]. For an element $T$ of $SG(\delta)$ , we

define an $n$ by $n$ matrix $Q(T)$ as follows.

$Q(T)_{i.j}=1$ if and only if $n-j$ is an entry in the i-th row of $T$ ,

and otherwise it is $0$ .
Let us consider the matrix $\Omega(T)=BQ(T)$ , where $B$ is the $n$ by $n$ matrix de-
fined by

$B_{i.j}=\{\begin{array}{ll}1 if j=i-1 if j=i+10 otherwise.\end{array}$

PROPOSITION 3.4.6. 1. $\Omega$ is a canonical lnjective $maP\ovalbox{\tt\small REJECT} ng$ from $SG(\delta)$ onto
$Alt_{n}$ , the set of $n$ by $n$ alternating stgn matrices.

2. For any element $T$ of $SG(\delta),$ $s(\Omega(T))=s(T)$ .
3. $i(\Omega(T))=l(T)+s(T)$ .
4. $m_{i}(T)c\alpha n\alpha des$ with the i-th component of $\Omega(T)\delta$ where we constder $\delta$ as

an n-dimensional vector.

3210
320EXAMPLE 5. Suppose $T=$ 31 Then,

2

$Q(T)=(\begin{array}{llll}1 1 1 11 1 0 11 0 1 00 1 0 0\end{array})$ , $B=(\begin{array}{llll}1 -1 0 00 1 -1 00 0 1 -10 0 0 1\end{array})$ and $\Omega(T)=(\begin{array}{lll}0 0 1 00 1-1 11-1 1 00 1 0 0\end{array})$ .

REMARK. $\Omega(T_{w,\delta})$ coincides with the permutation matrix corresponding to
the permutation $w$ .

Applying this proposition to (3.4.2), we get the following formula.

COROLLARY 3.4.7.
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(3.4.7) $\prod_{J>i}(z_{i}+z_{j}t)=\sum_{X\in Alt_{n}}(t+1)^{S(X)}t^{(i(X)-S(X))}\prod_{i=1}^{n}z_{\iota^{(X\delta)i}}$ ,

where $\delta$ is the n-dimensional vector ${}^{t}(n-1, n-2, \cdots 1,0)$ .
If we substitute $-1$ for $t$ in (3.4.7), since an alternating matrix is a per-

mutation matrix if and only if it has no $-1$ entry, we have

$\prod_{j>i}(z_{i}-z_{j})=\sum_{w\in S_{n}}(-1)^{i(w)}\prod_{i=1}^{n}z_{i}^{w(n+1-i)-1}$ .

This is nothing but Weyl’s denominator formula.
For readers who know the notations of the representation theory of semi-

simple groups, we write (3.4.7) in “root language”.

Let $e^{\gamma}$ denote the linear character of the maximal torus of $SL(n, C)$ corre-
sponding to the weight $\gamma$ . We define the weight $\gamma_{\ell}$ for $i=1,2,$ $\cdots$ $n$ such that
$e^{\gamma_{i}}(Z_{n})=z_{t^{-1}}$ . Then $\{\gamma_{i}-\gamma_{j}|i\neq j\}$ is a root system $\Delta$ of type $A_{n-1}$ , and $\Delta_{+}:=$

$\{\gamma_{i}-\gamma_{j}|j>i\}$ is a positive root system of $\Delta$ . The action of an alternating
matrix $X$ on a weight $\gamma$ of $SL(n, C)$ naturally comes from the action of $X$ on
the weight space of $GL(n, C)$ , since $X$ stabilizes the n-dimensional vector
${}^{t}(1,1, \cdots 1)$ .

COROLLARY $3.4-(*)$ . Let $\delta$ be the half of the sum of the all Positive roots.
Then (3.4.7) is rewritten as follows:

$\alpha\in H_{+}^{(1+te^{\alpha})=}$ $\sum_{X\in Alt_{n}}$

$(1+ \frac{1}{t})^{s(X)}t^{i(X)}e^{\delta-X\delta}$ .
This corollary gives evidence that “alternating sign matrix” is a naturally

extended notion of permutation, although $Alt_{n}$ is not a group.
Some analogues of Gelfand pattern are given for other classical groups. But

it is an open problem to define nice generating functions of “strict Gelfand
patterns” for orthogonal groups (or symplectic groups) which describe some de-
formations of character formulas for those groups.
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