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1. Introduction.

In the half space D={x=(xy, -+, xa); x. >0}, n=2, let G(-, -) bejthe ,Green
function in D, that is,

[x—y|>"—|x—y[*" if n>2,

G ) = log(Ix—yl/lx—y1)  if n=2,

where x=(x,, -+, Xn-1, —Xa) for x=(xy, -+, X,-1, xz). For a nonnegative
measurable function f on D, we define

Gfx) = | Glx, »f)dy.
Then it is noted (see e.g. [2; Lemma 2]) that Gf~oo if and only if
M |, A 15D750 /)y < oo,

In this paper we study the existence of nontangential limits of Gf with f
satisfying (1) and the additional condition :

@ [, 25 rGrmatfomdy < oo,

where () is a positive nondecreasing function on R'. In case n=3, w is as-
sumed to satisfy the following conditions:

(wl) There exists a positive constant A such that w(27)< Aw(r) for any »>0.
@2 [Towenvridr < oo,
(@) lima(r) oo () et = oo,

As typical examples of w, we give

o(t) = [log(2+1)1°, [log(2+)]""**[log(2+(log(2+NT, -,

where d>n/2—1.
We say that a function » on D has a nontangential limit [ at é=aD if u(x)
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tends to / as x tends to £ along any cone I'(§, a)={x=(x’, x,)ER"*XR*; |(x/, 0)—
&l<ax,}. To evaluate the size of the set of all points at which u fails to have
a nontangeniial limit, we use the Hausdorff measures. For a positive nondecreas-
ing function 2 on an interval (0, A,), A,>0, we denote by H, the Hausdorff
measure with the measure function A ; if A(r)=r%, a>0, then we shall write
H, for H,. Our aim in this paper is to give generalizations of results of
Widman [6], and, in fact, our main result is as follows:

THEOREM 1. Let n=3, 0<a<n—1 and f be a nonnegative measurable func-
tion on D satisfying (1) and (2). Then there exists ECOD such that H,(E)=0 and

Gf has nontangential limit zero at any E€0D—E, where h(r)=r®w*(r ') with
n/2+1

a)*(r)=(5:°w(t)‘”‘”/z‘”t"dt)— :

In the case a=n—1, this theorem gives an improvement of Widman [6;
Theorem 6.7], where he proved that H,_,(E)=0. As will be shown later,
is best possible as to the size of the exceptional sets.

If o fails to satisfy condition (w2), then we are concerned with the existence
of weak sense limits such as they were discussed in the author’s papers [2],
3], [4] As to the existence of fine limits of Green potentials, in the final
section we shall add one result, which is an extension of the result of [4] to
the case p>1.

In case n=2, letting w(»)=log(2+r), we aim to generalize the results of

Tolsted [5].

2. Proof of Theorem 1.

We first note by condition (wl) that w*(r)< A*w(r) and w*@2r)<A*w*(r) for
r>0 with a positive constant A*. Further, in view of (w3), we can show that
r~%w*(r) is nonincreasing on an interval (A4; oo) for any 6>0. Thus, H, with
h(r)=r*w*(r-') is well defined. ,

For a proof of [Theorem 1, we need several lemmas.

LEMMA 1. For a nonnegative function g in LYD), set E:{SEGD;

lim¢so,up k(r)‘lg Dg( y)dy>0}, where k is a positive nondecreasing function on an

B, N
interval (0, Ay), Ar>0, such that k(2r)< Mk(r) whenever 0<2r < A,, with a positive
constant M. Then H(E)=0.

PROOF. Letting Eaz{SEGD ; lim¢soup k(r)"S ng(y)dy>a}, a>0, we shall

B(, T
prove that H,(E,)=0. For this we have only to prove that H,(K)=0 for any
compact subset of E,, since E, is seen to be a Borel subset of 0D. Let ¢,
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0<e<10A4,, and K be a compact subset of E,. By the definition of E,, for

each £=K there exists »(£)<e such thats g(ydy>ak(r(&)). Now we
B, r(éHND

can find a finite family {B(§;, 7(§,))} of {B(¢§, r(§))} such that {B(&,, (&)} is
mutually disjoint and \ J;B(§;, 57(¢,))>K. Then we note that

dy = S
Sweb;yncxg(y) v = %’ B, 16 OND

with a positive constant M’. Letting ¢—0, we establish H,(K)=0. Thus the
proof of is completed.

LEMMA 2. Let n=23, 0<a=n—1 and f be a nonnegative measurable function
ynf(y)dy>0}, then

g(y)dy = %] ak(r(é;)) = M'a EjJ k(5r(§;)

on D satisfying (2). If we set F:{&eaD; limﬁ)upr“"g
H,(F)=0 with h(r)=rw*@").

B(&, mHND

Proor. For simplicity, we set p=n/2 and p’=p/(p—1). By Holder’s in-
equality we have

Yo f(3)dy

1-n
S(yeB(e,r)r\D;f(y»l/yn)

<r((, . arorarond) (L spesameysrindy) "

= M(rewre|  yaforefondy)

B, mHND

with a positive constant M, independent of . On the other hand we easily find
a positive constant M, such that

ynf(y>dy < M,r

oo
YEBE, MIND; f(¥I<1/yp)

for any »>0. Now we can apply to prove that H,(F)=0. Thus the
lemma is established.

LEMMA 3. For a nonnegative measurable function f on D satisfying (1), we set

w(x) = | G(x, D) f()dy.

D-B(x,zqn/2)

Then limg.¢, zer e oyu:1(x)=0 for any a>0 if and only if ¢€0D—F, where F is
defined as in Lemma 2.

PrOOF. We shall prove the lemma in the case n=3, because the case
n=2 can be proved similarly. In case n=3, we note easily that G(x, y)<
Mix, .l x—y|*"™(|x—y|*+x2)"* for any x and y in D, where M, is a positive
constant. Let édD—F and ¢>0. Then we have
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lim Sup uy(x)
z-§, zel(E, a)

<M, limsu xa(1E=Y ]+ %2) " Yaf(¥)dy

P,
z-§, xel(§,a)) B(&, eXND

<M timsup {m'(( 5. fdy)d=Gr+x)

z-¢, zel(§, a)

+ xn(e+x,)"" ynf(y>dy}

SB(E.E)ﬂD

< M;supr'™™ Yo f(¥)dy,

rse SB(f,T)ﬂD

where M, is a positive constant independent of x and e. Since £é€0D—F, the
right hand side tends to zero as ¢ | 0, and hence the “if” part follows.
On the other hand it follows that

(0 z | Glx, fdy 2 Muri™[ 9. o)y,

B¢, zp/2XND

with a positive constant M; independent of x. Hence if u,(x) tends to zero as
x tends to & along I'(¢, a) for some a>0, then we see readily that £€€9D—F.
Thus the “only if” part of the lemma follows, and the lemma is established.

LEMMA 4. If n=3 and g is a nonnegative measurable function on R™, then

[x—y > "g(y)dy

S(y;g(y)za)

< M(Sg(y)"/%(g(y))dy)Z/n(S:w(t)-x/(n/z-nt—ldt)

for a>0, where M is a positive constant independent of g, x and a.

1-2/n

ProOF. Define G,={yeD; 2/"'a<g(y)<2’a} for each positive integer 7,
and take ;=0 such that |G,|=|B(0, ;)|, where |E| denotes the Lebesgue
measure of a set ECR". Then we note that

=y gdy = J] | 15—y g00dy

Sw;g(y)aa)

< 52|, lx—ylrdy< Spa( eyl

B(z,Tj)

é alGiZ/n

1-2/n

%(21 la)nlzw(zj la)IG ') (]gw(zja)q/(n/z—l))

(2
(e atgmay) ([Tawenniar) ™,
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where M,, M, and M, are positive constants independent of g, x and a.
We are now ready to prove [Theorem ]

PRrROOF OF THEOREM 1. Suppose f is a nonnegative measurable function on
D satisfying (1) and (2), and define F as in Then, in view of Lemmas
1 and 2, it follows that H,(F)=0 with h(t)=t%w*(t"'). Write Gf=u,+u,, where

u, is defined as in and ug(x):S Glx, v)f(»)dy. 1f £cdD—F,

B(z,Zxpn/2)

then implies that u, has nontangential limit zero at & On the other
hand, since ug(x)ég | x— 12" f()dy, it follows from that

B(x,x27/2)

u(x) < x;*S |x—y[*""dy

B(z, xn(2)

(=5}
T

(. foretrond) (| ;1a)(t)‘”‘"’z‘”t‘ldt>1—2/n

< Myra+ MG, forretsondy)

(r,xqn/2)

where M, and M, are positive constants independent of x. Hence we derive

() £ Maxat MR s el ondy)

B(x,

with a positive constant M;. By [Lemma I we see that the right hand side has
nontangential limit zero at £é=0D—F’, where H,(F’)=0. Therefore Gf has
nontangential limit 0 at £€0D—FUF’ and H,(FUF")=0. Thus the theorem is
established.

3. Further results concerning nontangential limits.
We begin with giving a similar result in the two dimensional case.

THEOREM 2. Let n=2 and 0<a<l. If f is a nonnegative measurable func-
tion on D satisfying (1) and

® [ yeroioa@+ 7y < oo

Then Gf has nontangential limit zero at 0D except for those in a set E such
that H,(E)=0.

In case a=1, this theorem was proved by Tolsted [5].

PROOF OF THEOREM 2. We write Gf=u,+u, as in the proof of [Theorem 1.
By Lemmas 1 and 3 we see that u, has nontangential limit zero at £€90D—E,,
where E, is a subset of dD such that H,(E,)=0. If we note the following
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result instead of [Lemma 4, then we can show that u, has nontangential limit
zero at £0D except those in a set E, satisfying H,(E,)=0.

LEMMA 5. If f is a nonnegative measurable function on D, then
Lo G Y M Tog(1/ ), whemever 9= f(3) log(@-+f(sdy<e™
where M is a positive constant independent of x and f.

ProoOF. For each positive integer 7, set F;={y=D; 2/"'< f(y)<2’}. Then
we have

o T
Sw;fcwzz;G(x’ y)f(y)dyé;Z{ZJSFJ,IOg(l“*“‘lxnynlx Y E=ylDdy

< E‘,wg log(L+4] x—y|Ddy < M, 3292 log(2+4r31),
J B(x,'r]-) ji=1

=1

where x,<1, |F;|=1B(0, ;)| and M, is a positive constant. Let I’ be the set
of all positive integer ; such that ;<% (<e~7), and note

3 2rilog2+4r7) £ 3 2/’ log(2+4n )
JeI’

jer’
= 2,277 log(2+47™) = May log(1/7)

with a positive constant M,. On the other hand, letting I” be the set of all
positive integers j such that j& 1/, we obtain

5 2rilog@+4r7) S 3 27} log(2-+477))
<1 1
< X 25rilog(24+4n™Y) £ Myplog(2+49~")

JjeI”

with a positive constant M;. Thus the lemma is proved.

THEOREM 3. Let n=3 and f be a nonnegative measurable function on D
satisfying (1) and (2) with a=0. Then lim;, .o, zep (1+|x])7"Gf(x)=0.

PrROOF. Let ¢>0. Then we can find a positive number M, depending on &
such that G(x, y)EM x,y.(1+]x])"(1+]y]|)~™ whenever y,>e¢ and 0<x,<g/2.
By (1) we can apply Lebesgue’s dominated convergence theorem to obtain

limznw(l%—lxl)‘"g by G(x, v)f(»)dy=0. On the other hand, in view of
{y Y p >t
[Lemma 4, we establish

< . 2-n
S(yeD;ynG)G(x’ y)f(y)dy - S(yeD;yn<e)G(x, y)dy+giyeD;yn<s.f(y)zl)Ix yl f<y>dy

2/n
n/2
= Myt ([ FO o))

with a positive constant M,, which tends to zero with ¢ uniformly on the set
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{xeD; x,<1}. Thus the theorem is obtained.
In the same manner we can prove the following result.

THEOREM 4. Let n=2 and f be a nonnegative measurable function on D
satisfying (1) and (3) with a=0. Then lim,,,. (1+|x])*Gf(x)=0.

4. The existence of nontangential limits of x2Gf(x), ;9>0.

In this section we deal with the Green potentials of functions satisfying
condition (2) with a>n—1.

THEOREM 5. Let n=3, 0<8<n—1 and f be a nonnegative measurable func-
tion on D satisfying (1) and

@ [ yirryrorratrondy < oo

Then x£Gf(x) has nontangential limit zero at any £€0D—E, where H,_,_s(E)=0.
PROOF. Let f be as in the theorem and consider EI:{EEaD;

sy dnf(D)dy>0}. Since (1) holds, we find, with the aid of

Lemma 1, that H,-,-5(E,)=0. Write Gf=u,+u, as in the proof of [Theorem 1.

y,,f(y)dy;0<r§s}, where &€aD.

lim sup”orﬂ“""g

For &>0, we set F(e)=sup {rﬂ“-nS
Then we note that

B, nHND

limsup xfu,(x)
zp~0, 2§, @)

<M, limsup x¢;+1§ (&= 1+ 2a) 9o f()dy < MoF(e)
B(&,IN\D

zp-0, zel(¢, @)

with positive constants M, and M,, which implies that the left hand side is
equal to zero as long as £0D—E,. On the other hand, we derive from

o q 4

xhusx) = XQSB(I puy | XTI )y
Forre )"

y%"“ﬁ[yﬁf(y)]"’2w<f(y>>dy)2/n

with positive constants M; and M,. Consequently, implies that x£us(x)
has nontangential limit zero at any §€dD—FE,, where H,.,-5(E;)=0. Thus
E=E,\UE, satisfies the required conditions in the theorem.

< Maxﬁ"z—l-Maxﬁ(g

Bz, zp

= M3x£+z+M4(xr€+l_nS

B(z,23/2)

In the same manner we can prove the following result.
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THEOREM 6. Let n=2, 0<B<1 and f be a nonnegative measurable function

on D satisfying (1) and (3) with a=1. Then x8Gf(x) has nontangential limit zero
at any §€dD—E, where H,_g(E)=0.

Finally we note the following results, which can be proved in the same way
as the above theorems.

THEOREM 7. Let n=3 and f be a nonnegative measurable function on D
satisfying (1) and (4) with B=n—1. Then x3'(1+1x1)""Gf(x) has limit zero as
x tends to the boundary oD.

THEOREM 8. Let n=2 and f be a nonnegative measurable function on D
satisfying (1) and (3) with a=1. Then x,(1+|x|)2Gf(x) has limit zero as x
tends to aD.

5. Best possibility as to the size of the exceptional sets.

We here prove that is best possible as to the size of the excep-
tional set if we assume further that

(wd) o) < Ao@r) whenever r>1,

where A’ is a positive constant independent of r.

PROPOSITION 1. For a compact set KCoD such that H,(K)=0 there exists a
nonnegative measurable function f on D satisfying (1) and (2) such that Gf does
not have nontangential limit zero at any =K.

Proor. First take a mutually disjoint finite family {B(xj i, 7;,)} of balls
such that x;,€dD, \U;B(x;., 57;,1)DK and X;h(r;1)<l, and define f,(y)=
ajlzj—y | %025, —y | 7)) HPED for yE B(2),1, 74.1), Where z;,1=x,1+(0, 2r;,,)
and a;,,=w*(r;})"/"%D; set f,(y)=0 otherwise. Letting ¢;,=min;r;,, we take
a mutually disjoint finite family {B(x;,, 7;2)} of balls such that x;.=0D, r;,<
&1/4, X;h(r;2)<2* and \UJ;B(xj., 575,:)DK. As above, we define f(y)=
@j2|z5 2=y 0| zj,,—y | ") M0 for yE B(2),2, 75.2), Where z;,:=x;,5-+(0, 27,,,)
and a;,,=w@*(r;5)! "% D ; define fy(y)=0 otherwise. In the same manner, for
each positive integer m we can find a mutually disjoint finite family {B(x;, n,
r;,m)} and a function f, such that x;, »,€0D, X; h(r;, m)<2" ™+, \J; B(xj, m, 57}, m)
DK and fo(y)=a; nlzj,n— | 20(|2;, n—y| 1) "2V for ye B(2j, m, ¥j,m), Where
Z5,m=%j, m+(0, 27, m), aj,m:w*(rzlm)"‘"’z“> and 7jn<én-/4 with e, ,=
min;7; m-1; we set f,(y)=0 outside \J; B(zj, m, *;,m) as above. Then, since
FaNEM\ 25, m—y17% on B(zj,m, 75,m) With a positive constant M;, we note by
the aid of condition (w4)
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[ 8 7m0yratfaondy

< MzEj ar’z Yelz5, m— 3| (| 25, m—y | ) - DICRIZ=D gy

SB(’j,m'Tj,m)
H ni2pa P 1\o1j¢niz-1p-1
giMsgaj_mrj,m . o(t™Y) t1dt

= M, ; h(rj, m) < M2 ™+,

230 fa()dy < M. S a5 9125 m— 310123, n— | =MDy

B(Gzj,m» Tjm)
< My a, ot " ety - ng- gy
= Ms2uQ5, mVj,m o @

J

= M5§7’}1’,—;1{ SEM (g m) = M2 ™4
and ’

Gf nlzsm) 2 My 21— 317" u3)dy

BCzj, m.Tj, m

@t~ D = M,

= Msaj. mg:j.m
where M,~M, are positive constants independent of ; and m. Consequently,
since {B(zj, m, 7j,m)} is mutually disjoint, f=3m-1f~ satisfies conditions (1) and
(2). Moreover, if é=K, then for each m there exists j(m) such that &
B(xj¢m3, ms 57 jcmy, m), SO that zjcmy, mSI'(&, 5). This implies that lim sup,., zere, s
Gf(x)=My>0 and hence Gf does not have nontangential limit zero at &.

PROPOSITION 2. Let w be a positive nondecreasing function on R* such that @
satisfies condition (wl), r~'w(r) is nonincreasing on [1, ) and w does not satisfy
condition (w2). Then for a sequence {x;}CD which is everywhere dense in D,
there exists a nonnegative measurable function f on D satisfying (1) and (2) (with
a=0) such that inf;Gf(x;)>0, so that Gf does not have nontangential limit zero
at any £<aD.

Proor. For each positive integer j, take »; and s; such that 1>#;>2s;>0,
and define

)= {

a;lx;—y1 ol 2=y 7)1 =Don B(xj, v))—B(xj, s3),
0 elsewhere,

; -1
where a,:(gr]w(t“)“‘/<"/2‘1>t"dt) . Then
85

[, for s (dy

é Mla:';:/zg lxj___yl—nw(lxj____yl—l)l—(n/z)/(n/z_l)dy

B(zj,T;3-B(Zj, 8
— 2-1
= M,a%}"*"?,
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On the other hand, if 7; is chosen so that B(xj, 2r;)CD, then

GFi(x) 2 M| | %= 3 )y 2 M.

BCxj,rj)-B(Zj 85
Now we choose {r;}, {s;} so that B(xj, 2r;)CD, X%.j"?A’a?*'<co and

max,<; f2(3)<fi4:(y) on B(xje1, rj+1). Then it is not difficult to see that f=
2%, f; satisfies the required conditions.

6. Fine boundary limits.

If f is a nonnegative measurable function on D satisfying (1) and
SDy%f(y)"’zdy<oo with 0<a<n—1, then Gf may fail to have nontangential limit

zero at any £<dD as seen in but Gf is shown to have a weak
sense limit at many boundary points. For example, in view of [2], Gf has fine
nontangential limit zero at any é€0D—E, where H,(E)=0. In this section we
investigate a global behavior of Gf near the boundary. More precisely, we aim
to find a function A(x) such that A(x)Gf(x) tends to zero as x tends to 0D
along a set FCD whose complement is thin near 6D in a certain sense.

For a set ECD and an open set GC R", we define C,, ,(E; G):infSGf(y)pdy,
where the infimum is taken over all nonnegative measurable functions f on G
such that | 1x—y1*"f(»)dy=1 for every x&F.

We now give the following result.

THEOREM 9. Let 1<p=n/2, p—n<a<2p—1 and f be a nonnegative mea-
surable function on D such that SD Y& f(y)?dy<oco. Then there exists a set ECD
having the following properties.

(i) lim  x{-22+0IPGf(x) = 0.
X0, xeED-E

(ii) {.Zj, 212 C, (E;NGy; Gy) < oo for any open sets G, and G, for which
J=Jo
there exists r>0 such that B(x, r)CG, whenever x=G,, where E;={x<E;

279K x, <279} and j, is a positive integer which may depend on G, and G,.

ProoF. Write Gf=u,+u, as in the proof of [Theorem 1. In this proof,
M,, M,, --- will denote positive constants. First we shall prove

[yoncs o LIE= YU 2y 4 20 294707 dy < My ropeeors,
- ' ZTn

where 1/p+1/p’=1. If 1—a/p=0, then
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— 2-n . -2, 1-a/pT D’
SD—B(.r,znlz)[lx vl (lx—y[+x.)2y% ] dy

<

Clx—=y* (I x—y [+ xa) 2 [ xa—ya | "*/*]1% dy

gweD—B(z, Zpl2);Yn>Tql2}

Clz—y 2 *(Jz—y| +x.) 2y %P7 dy

S(yeD—B(z. Tpl2)sypsxplel

_}_sz;np'g y-aiPP dy < MyxB C-n+i-alpltn
DNB(z, 27 (2)

where z=(x’, 0) with x=(x’, x,). If l—a/p>0, then

=y x— -2 y1-a/pp’
SD—B(z,.z-n/z)[lx yl (lx y!+xn) Ya ] dy

=

-y Mlx— -2 — 1-a/pp’
S,,_B(z,znmﬂx YU =3+ x2) (| X0 — Yl +x2)' ¢/ P17 dy

§ M4x7(ll~ﬂ'lp)17' x;np'-i-n

i 2-n __ -9 _ 1-a/ ,
+M4SD~B(.z',xn/2)[!x yl (Ix yl+xn) |xn ynl p]pdy

< Mix;? (n-ptadip,
Hence we obtain from Holder’s inequality

u(x) £ Mexng [x—y > =]y f(¥)dy

(yED-B(z, T1/2);¥ >0}

+Myxa| | 5=y #5515 f(3)dy

{yeD-B(x, 2/2); y s}

< M7xn5""‘p+“”p<gpy%f(y)pdy)”p +M7x;(n-2p+a)/p(g y;’,f(y)%y)llp

(YED;y =6}
whenever 0>4x,. Consequently,
. 1/p
lim sup x {*~22+0 /Py (x) < M7<S y;’,f(y)%y) ,
Zpl0 {yED; Y 50}
which implies that the left hand side is equal to zero.
Put D;={y=(y’, y.); 279" '<y,<277*%} for each positive integer j. Since
‘;f;lSD y2f(y)Pdy<co, we can find a sequence {a;} of positive integers such
i

that lim; . a;=oc0 and >33, a,-SD Y2 f(¥)?dy<co. Now we define the sets
i

E;= {xED; 2‘j§xn<2‘j+‘,g |x—y|2'"f(y)dy>ajl’pZK"““"““’/p}

B(z,xpn/2)
and E=\_U7, E;. Let G, and G, be open sets for which there exists »>0 such
that B(x, »)CG, whenever xG,. If 2-7<2-%<r, then B(x, x,/2)CD;NG, for
x€E;NG,. Hence we obtain by the definition of capacity C,,,

Co(EsNGi; G < a2 rn-2wo( | f(y)edy < Ma s  yaf(y)edy,
j A

J
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so that,
jf:_ 212 C, (E;NGy; Gy) < 0.
=Jo
Moreover, since uz(X)ég |x—y|2"f(y)dy, we see that
B(zx,xp/2)

limsup x( 2P+®/Py,(x) < M,limsupaj'’? =0,
Zpi0, z&D-E Jjooo

Thus is proved.

COROLLARY. If 0Za<n—1, n=3 and f is a nonnegative measurable function
on D satisfying (2), then limg o x5/ */®Gf(x)=0.

REMARK. Following Aikawa [1], we say that a set E satisfying (ii) of
is C,, ,-thin on aD.

Finally we collect some results corresponding to the case p=1. Let 0<a=<l.
Then:
(i) If f is a nonnegative measurable function on D such that SDy%f(y)dy< 0,

then Gf has minimally semi-fine nontangential limit zero at £=dD—E, where

Ho(E)=0 (cf. [3].

(ii) If f is as above, then x27%**Gf(x) tends to zero as x tends to 0D along
D—F, where F is thin on 0D (cf. [4)).

(iii) In case n=2, if f is a nonnegative measurable function on D such that
SDyfjf(y)[log(2+f(y))]dy<00, then x$Gf(x) has limit zero as x tends to 0D.
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