On the boundary limits of Green potentials of functions

By Yoshihiro MIZUTA

(Received March 2, 1987)

1. Introduction.

In the half space $D=\{x=(x_1, \dots, x_n); x_n>0\}$, $n\geq 2$, let $G(\cdot, \cdot)$ be the Green function in D, that is,

$$G(x, y) = \begin{cases} |x-y|^{2-n} - |\bar{x}-y|^{2-n} & \text{if } n > 2, \\ \log(|\bar{x}-y|/|x-y|) & \text{if } n = 2, \end{cases}$$

where $\bar{x}=(x_1, \dots, x_{n-1}, -x_n)$ for $x=(x_1, \dots, x_{n-1}, x_n)$. For a nonnegative measurable function f on D, we define

$$Gf(x) = \int_{\mathcal{D}} G(x, y) f(y) dy$$
.

Then it is noted (see e.g. [2; Lemma 2]) that $Gf \not\equiv \infty$ if and only if

(1)
$$\int_{\mathbf{p}} (1+|y|)^{-n} y_n f(y) dy < \infty.$$

In this paper we study the existence of nontangential limits of Gf with f satisfying (1) and the additional condition:

(2)
$$\int_{\mathbf{D}} y_n^{\alpha} f(y)^{n/2} \omega(f(y)) dy < \infty,$$

where $\omega(t)$ is a positive nondecreasing function on R^1 . In case $n \ge 3$, ω is assumed to satisfy the following conditions:

- ($\omega 1$) There exists a positive constant A such that $\omega(2r) \leq A\omega(r)$ for any r > 0.
- $(\omega 2) \int_{1}^{\infty} \omega(t)^{-1/(n/2-1)} t^{-1} dt < \infty.$
- $(\omega 3) \quad \lim_{r \to \infty} \omega(r)^{-1/(n/2-1)} \int_{r}^{\infty} \omega(t)^{-1/(n/2-1)} t^{-1} dt = \infty.$

As typical examples of ω , we give

$$\omega(t) = [\log(2+t)]^{\delta}, [\log(2+t)]^{n/2-1} [\log(2+(\log(2+t)))]^{\delta}, \dots,$$

where $\delta > n/2-1$.

We say that a function u on D has a nontangential limit l at $\xi \in \partial D$ if u(x)

tends to l as x tends to ξ along any cone $\Gamma(\xi, a) = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; | (x', 0) - \xi| < ax_n\}$. To evaluate the size of the set of all points at which u fails to have a nontangential limit, we use the Hausdorff measures. For a positive nondecreasing function h on an interval $(0, A_h)$, $A_h > 0$, we denote by H_h the Hausdorff measure with the measure function h; if $h(r) = r^{\alpha}$, $\alpha > 0$, then we shall write H_{α} for H_h . Our aim in this paper is to give generalizations of results of Widman [6], and, in fact, our main result is as follows:

THEOREM 1. Let $n \ge 3$, $0 < \alpha \le n-1$ and f be a nonnegative measurable function on D satisfying (1) and (2). Then there exists $E \subset \partial D$ such that $H_h(E) = 0$ and Gf has nontangential limit zero at any $\xi \in \partial D - E$, where $h(r) = r^{\alpha} \mathbf{w}^*(r^{-1})$ with $\mathbf{w}^*(r) = \left(\int_r^{\infty} \mathbf{w}(t)^{-1/(n/2-1)} t^{-1} dt\right)^{-n/2+1}$.

In the case $\alpha=n-1$, this theorem gives an improvement of Widman [6; Theorem 6.7], where he proved that $H_{n-1}(E)=0$. As will be shown later, Theorem 1 is best possible as to the size of the exceptional sets.

If ω fails to satisfy condition (ω 2), then we are concerned with the existence of weak sense limits such as they were discussed in the author's papers [2], [3], [4]. As to the existence of fine limits of Green potentials, in the final section we shall add one result, which is an extension of the result of [4] to the case p>1.

In case n=2, letting $\omega(r)=\log(2+r)$, we aim to generalize the results of Tolsted [5].

2. Proof of Theorem 1.

We first note by condition $(\omega 1)$ that $\omega^*(r) \leq A^*\omega(r)$ and $\omega^*(2r) \leq A^*\omega^*(r)$ for r>0 with a positive constant A^* . Further, in view of $(\omega 3)$, we can show that $r^{-\delta}\omega^*(r)$ is nonincreasing on an interval (A_{δ}, ∞) for any $\delta>0$. Thus, H_{\hbar} with $h(r)=r^{\alpha}\omega^*(r^{-1})$ is well defined.

For a proof of Theorem 1, we need several lemmas.

LEMMA 1. For a nonnegative function g in $L^1(D)$, set $E = \{ \xi \in \partial D ; \limsup_{r \downarrow 0} k(r)^{-1} \int_{B(\xi, r) \cap D} g(y) dy > 0 \}$, where k is a positive nondecreasing function on an interval $(0, A_k)$, $A_k > 0$, such that $k(2r) \leq Mk(r)$ whenever $0 < 2r < A_k$, with a positive constant M. Then $H_k(E) = 0$.

PROOF. Letting $E_a = \{ \xi \in \partial D ; \limsup_{r \downarrow 0} k(r)^{-1} \int_{B(\xi,r) \cap D} g(y) dy > a \}$, a > 0, we shall prove that $H_k(E_a) = 0$. For this we have only to prove that $H_k(K) = 0$ for any compact subset of E_a , since E_a is seen to be a Borel subset of ∂D . Let ε ,

 $0<\varepsilon<10A_h$, and K be a compact subset of E_a . By the definition of E_a , for each $\xi \in K$ there exists $r(\xi)<\varepsilon$ such that $\int_{B(\xi, r(\xi))\cap D} g(y)dy>ak(r(\xi))$. Now we can find a finite family $\{B(\xi_j, r(\xi_j))\}$ of $\{B(\xi, r(\xi))\}$ such that $\{B(\xi_j, r(\xi_j))\}$ is mutually disjoint and $\bigcup_j B(\xi_j, 5r(\xi_j)) \supset K$. Then we note that

$$\int_{\{y\in D; y_n<\varepsilon\}} g(y)dy \geq \sum_j \int_{B(\xi_j, r(\xi_j))\cap D} g(y)dy \geq \sum_j ak(r(\xi_j)) \geq M'a \sum_j k(5r(\xi_j))$$

with a positive constant M'. Letting $\varepsilon \to 0$, we establish $H_k(K)=0$. Thus the proof of Lemma 1 is completed.

LEMMA 2. Let $n \ge 3$, $0 < \alpha \le n-1$ and f be a nonnegative measurable function on D satisfying (2). If we set $F = \{ \xi \in \partial D ; \limsup_{r \downarrow 0} r^{1-n} \int_{B(\xi, r) \cap D} y_n f(y) dy > 0 \}$, then $H_h(F) = 0$ with $h(r) = r^{\alpha} \omega^*(r^{-1})$.

PROOF. For simplicity, we set p=n/2 and p'=p/(p-1). By Hölder's inequality we have

$$\begin{split} & r^{1-n} \int_{\{y \in B(\xi, r) \cap D; f(y) > 1/y_n\}} y_n f(y) dy \\ & \leq r^{1-n} \Big(\int_{B(\xi, r) \cap D} y_n^{\alpha} f(y)^p \omega(f(y)) dy \Big)^{1/p} \Big(\int_{B(\xi, r) \cap D} y_n^{p'(1-\alpha/p)} \omega(1/y_n)^{-p'/p} dy \Big)^{1/p'} \\ & \leq M_1 \Big(r^{-\alpha} \omega^* (r^{-1})^{-1} \int_{B(\xi, r) \cap D} y_n^{\alpha} f(y)^p \omega(f(y)) dy \Big)^{1/p} \end{split}$$

with a positive constant M_1 independent of r. On the other hand we easily find a positive constant M_2 such that

$$r^{1-n} \int_{\{y \in B(\hat{\xi}, r) \cap D; f(y) \le 1/y_n\}} y_n f(y) dy \le M_2 r$$

for any r>0. Now we can apply Lemma 1 to prove that $H_h(F)=0$. Thus the lemma is established.

LEMMA 3. For a nonnegative measurable function f on D satisfying (1), we set

$$u_1(x) = \int_{D-B(x, x_n/2)} G(x, y) f(y) dy.$$

Then $\lim_{x\to\xi, x\in\Gamma(\xi,a)}u_1(x)=0$ for any a>0 if and only if $\xi\in\partial D-F$, where F is defined as in Lemma 2.

PROOF. We shall prove the lemma in the case $n \ge 3$, because the case n=2 can be proved similarly. In case $n \ge 3$, we note easily that $G(x, y) \le M_1 x_n y_n |x-y|^{2-n} (|x-y|^2 + x_n^2)^{-1}$ for any x and y in D, where M_1 is a positive constant. Let $\xi \in \partial D - F$ and $\varepsilon > 0$. Then we have

$$\begin{split} & \lim\sup_{x\to\xi,\;x\in\varGamma(\xi,\;a)}u_1(x) \\ & \leq M_1 \lim\sup_{x\to\xi,\;x\in\varGamma(\xi,\;a)} \int_{B(\xi,\;\varepsilon)\cap D} x_n(|\xi-y|+x_n)^{-n}y_nf(y)dy \\ & \leq M_1 \lim\sup_{x\to\xi,\;x\in\varGamma(\xi,\;a)} \Big\{ x_n \int_0^\varepsilon \Big(\int_{B(\xi,\;r)\cap D} y_nf(y)dy \Big) d(-(r+x_n)^{-n}) \\ & \quad + x_n(\varepsilon+x_n)^{-n} \int_{B(\xi,\;\varepsilon)\cap D} y_nf(y)dy \Big\} \\ & \leq M_2 \sup_{\tau\leq\varepsilon} r^{1-n} \!\! \int_{B(\xi,\;r)\cap D} y_nf(y)dy \,, \end{split}$$

where M_2 is a positive constant independent of x and ε . Since $\xi \in \partial D - F$, the right hand side tends to zero as $\varepsilon \downarrow 0$, and hence the "if" part follows.

On the other hand it follows that

$$u_1(x) \ge \int_{B(\xi, x_n/2) \cap D} G(x, y) f(y) dy \ge M_3 x_n^{1-n} \int_{B(\xi, x_n/2)} y_n f(y) dy$$

with a positive constant M_3 independent of x. Hence if $u_1(x)$ tends to zero as x tends to ξ along $\Gamma(\xi, a)$ for some a>0, then we see readily that $\xi\in\partial D-F$. Thus the "only if" part of the lemma follows, and the lemma is established.

LEMMA 4. If $n \ge 3$ and g is a nonnegative measurable function on R^n , then

$$\int_{\{y; g(y) \ge a\}} |x - y|^{2-n} g(y) dy$$

$$\leq M \Big(\int g(y)^{n/2} \omega(g(y)) dy \Big)^{2/n} \Big(\int_a^\infty \omega(t)^{-1/(n/2-1)} t^{-1} dt \Big)^{1-2/n}$$

for a>0, where M is a positive constant independent of g, x and a.

PROOF. Define $G_j = \{y \in D; 2^{j-1}a \leq g(y) < 2^ja\}$ for each positive integer j, and take $r_j \geq 0$ such that $|G_j| = |B(0, r_j)|$, where |E| denotes the Lebesgue measure of a set $E \subset \mathbb{R}^n$. Then we note that

$$\begin{split} &\int_{\{y;g(y)\geq a\}} |x-y|^{2-n}g(y)dy = \sum_{j=1}^{\infty} \int_{G_j} |x-y|^{2-n}g(y)dy \\ &\leq \sum_{j=1}^{\infty} 2^j a \int_{G_j} |x-y|^{2-n} dy \leq \sum_{j=1}^{\infty} 2^j a \int_{B(x,r_j)} |x-y|^{2-n} dy \\ &= M_1 \sum_{j=1}^{\infty} 2^j a |G_j|^{2/n} \\ &\leq M_2 \Big(\sum_{j=1}^{\infty} (2^{j-1}a)^{n/2} \omega(2^{j-1}a) |G_j| \Big)^{2/n} \Big(\sum_{j=1}^{\infty} \omega(2^j a)^{-1/(n/2-1)} \Big)^{1-2/n} \\ &\leq M_3 \Big(\int g(y)^{n/2} \omega(g(y)) dy \Big)^{2/n} \Big(\int_a^{\infty} \omega(t)^{-1/(n/2-1)} t^{-1} dt \Big)^{1-2/n} , \end{split}$$

where M_1 , M_2 and M_3 are positive constants independent of g, x and a.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Suppose f is a nonnegative measurable function on D satisfying (1) and (2), and define F as in Lemma 2. Then, in view of Lemmas 1 and 2, it follows that $H_h(F)=0$ with $h(t)=t^\alpha \omega^*(t^{-1})$. Write $Gf=u_1+u_2$, where u_1 is defined as in Lemma 3 and $u_2(x)=\int_{B(x,x_n/2)}G(x,y)f(y)dy$. If $\xi\in\partial D-F$, then Lemma 3 implies that u_1 has nontangential limit zero at ξ . On the other hand, since $u_2(x)\leq \int_{B(x,x_n/2)}|x-y|^{2-n}f(y)dy$, it follows from Lemma 4 that

$$\begin{split} u_2(x) &\leq x_n^{-1} \int_{B(x, x_n/2)} |x-y|^{2-n} dy \\ &+ M_1 \Big(\int_{B(x, x_n/2)} f(y)^{n/2} \omega(f(y)) dy \Big)^{2/n} \Big(\int_{x_n^{-1}}^{\infty} \omega(t)^{-1/(n/2-1)} t^{-1} dt \Big)^{1-2/n} \\ &\leq M_2 x_n + M_2 \Big(\omega^*(x_n^{-1})^{-1} \int_{B(x, x_n/2)} f(y)^{n/2} \omega(f(y)) dy \Big)^{2/n} \,, \end{split}$$

where M_1 and M_2 are positive constants independent of x. Hence we derive

$$u_2(x) \leq M_2 x_n + M_3 \Big(h(x_n)^{-1} \int_{B(x, x_n/2)} y_n^{\alpha} f(y)^{n/2} \omega(f(y)) dy \Big)^{2/n}$$

with a positive constant M_3 . By Lemma 1 we see that the right hand side has nontangential limit zero at $\xi \in \partial D - F'$, where $H_h(F') = 0$. Therefore Gf has nontangential limit 0 at $\xi \in \partial D - F \cup F'$ and $H_h(F \cup F') = 0$. Thus the theorem is established.

3. Further results concerning nontangential limits.

We begin with giving a similar result in the two dimensional case.

THEOREM 2. Let n=2 and $0 < \alpha \le 1$. If f is a nonnegative measurable function on D satisfying (1) and

Then Gf has nontangential limit zero at $\xi \in \partial D$ except for those in a set E such that $H_{\alpha}(E)=0$.

In case $\alpha=1$, this theorem was proved by Tolsted [5].

PROOF OF THEOREM 2. We write $Gf = u_1 + u_2$ as in the proof of Theorem 1. By Lemmas 1 and 3 we see that u_1 has nontangential limit zero at $\xi \in \partial D - E_1$, where E_1 is a subset of ∂D such that $H_{\alpha}(E_1) = 0$. If we note the following

588 Y. Mizuta

result instead of Lemma 4, then we can show that u_2 has nontangential limit zero at $\xi \in \partial D$ except those in a set E_2 satisfying $H_{\alpha}(E_2) = 0$.

LEMMA 5. If f is a nonnegative measurable function on D, then $\int_{\{y:f(y)\geq 1\}} G(x,y)f(y)dy \leq M\eta \log(1/\eta), \text{ whenever } \eta \equiv \int_{D} f(y)\log(2+f(y))dy < e^{-1},$ where M is a positive constant independent of x and f.

PROOF. For each positive integer j, set $F_j = \{y \in D; 2^{j-1} \le f(y) < 2^j\}$. Then we have

$$\begin{split} &\int_{\{y;f(y)\geq 1\}} G(x,\,y)f(y)dy \leq \sum_{j=1}^{\infty} 2^{j} \int_{F_{j}} \log(1+4x_{n}y_{n}|\,x-y\,|^{-1}|\,\bar{x}-y\,|^{-1})dy \\ &\leq \sum_{j=1}^{\infty} 2^{j} \int_{B(x,\,r_{j})} \log(1+4|\,x-y\,|^{-1})dy \leq M_{1} \sum_{j=1}^{\infty} 2^{j} r_{j}^{2} \log(2+4r_{j}^{-1})\,, \end{split}$$

where $x_n < 1$, $|F_j| = |B(0, r_j)|$ and M_1 is a positive constant. Let I' be the set of all positive integer j such that $r_j \le \eta^j$ ($< e^{-j}$), and note

$$\sum_{j \in I'} 2^{j} r_{j}^{2} \log(2 + 4r_{j}^{-1}) \leq \sum_{j \in I'} 2^{j} \eta^{j} \log(2 + 4\eta^{-j})
\leq \sum_{j \in I'} 2^{j} j \eta^{j} \log(2 + 4\eta^{-1}) \leq M_{2} \eta \log(1/\eta)$$

with a positive constant M_2 . On the other hand, letting I'' be the set of all positive integers j such that $j \notin I'$, we obtain

$$\begin{split} \sum_{j \in I'} 2^j r_j^2 \log(2 + 4 r_j^{-1}) & \leq \sum_{j \in I'} 2^j r_j^2 \log(2 + 4 \eta^{-j}) \\ & \leq \sum_{j \in I'} 2^j j r_j^2 \log(2 + 4 \eta^{-1}) \leq M_3 \eta \log(2 + 4 \eta^{-1}) \end{split}$$

with a positive constant M_3 . Thus the lemma is proved.

THEOREM 3. Let $n \ge 3$ and f be a nonnegative measurable function on D satisfying (1) and (2) with $\alpha = 0$. Then $\lim_{x \to 0, x \in D} (1+|x|)^{-n} Gf(x) = 0$.

PROOF. Let $\varepsilon > 0$. Then we can find a positive number M_1 depending on ε such that $G(x, y) \leq M_1 x_n y_n (1+|x|)^n (1+|y|)^{-n}$ whenever $y_n > \varepsilon$ and $0 < x_n < \varepsilon/2$. By (1) we can apply Lebesgue's dominated convergence theorem to obtain $\lim_{x_n \downarrow 0} (1+|x|)^{-n} \int_{\{y \in D: y_n > \varepsilon\}} G(x, y) f(y) dy = 0$. On the other hand, in view of Lemma 4, we establish

$$\int_{\{y \in D; y_n < \varepsilon\}} G(x, y) f(y) dy \leq \int_{\{y \in D; y_n < \varepsilon\}} G(x, y) dy + \int_{\{y \in D; y_n < \varepsilon, f(y) \ge 1\}} |x - y|^{2-n} f(y) dy$$

$$\leq M_2 x_n \varepsilon + M_2 \left(\int_{\{y \in D; y_n < \varepsilon\}} f(y)^{n/2} \omega(f(y)) dy \right)^{2/n}$$

with a positive constant M_2 , which tends to zero with ε uniformly on the set

 $\{x \in D; x_n < 1\}$. Thus the theorem is obtained.

In the same manner we can prove the following result.

THEOREM 4. Let n=2 and f be a nonnegative measurable function on D satisfying (1) and (3) with $\alpha=0$. Then $\lim_{x\to +0} (1+|x|)^{-2} Gf(x)=0$.

4. The existence of nontangential limits of $x_n^{\beta}Gf(x)$, $\beta > 0$.

In this section we deal with the Green potentials of functions satisfying condition (2) with $\alpha > n-1$.

THEOREM 5. Let $n \ge 3$, $0 < \beta < n-1$ and f be a nonnegative measurable function on D satisfying (1) and

$$(4) \qquad \qquad \int_{D} y_{n}^{n-1-\beta} [y_{n}^{\beta} f(y)]^{n/2} \omega(f(y)) dy < \infty.$$

Then $x_n^{\beta}Gf(x)$ has nontangential limit zero at any $\xi \in \partial D - E$, where $H_{n-1-\beta}(E) = 0$.

PROOF. Let f be as in the theorem and consider $E_1 = \{\xi \in \partial D; \lim \sup_{r \downarrow 0} r^{\beta+1-n} \int_{B(\xi,r) \cap D} y_n f(y) dy > 0 \}$. Since (1) holds, we find, with the aid of Lemma 1, that $H_{n-1-\beta}(E_1) = 0$. Write $Gf = u_1 + u_2$ as in the proof of Theorem 1. For $\varepsilon > 0$, we set $F(\varepsilon) = \sup \left\{ r^{\beta+1-n} \int_{B(\xi,r) \cap D} y_n f(y) dy; 0 < r \le \varepsilon \right\}$, where $\xi \in \partial D$. Then we note that

$$\begin{split} & \lim_{x_{n} \to 0, \ x \in \varGamma(\xi, a)} x_{n}^{\beta} u_{1}(x) \\ & \leq M_{1} \lim_{x_{n} \to 0, \ x \in \varGamma(\xi, a)} x_{n}^{\beta+1} \int_{B(\xi, \, \varepsilon) \cap \mathcal{D}} (|\xi - y| + x_{n})^{-n} y_{n} f(y) dy \leq M_{2} F(\varepsilon) \end{split}$$

with positive constants M_1 and M_2 , which implies that the left hand side is equal to zero as long as $\xi \in \partial D - E_1$. On the other hand, we derive from Lemma 4

$$\begin{split} x_{n}^{\beta}u_{2}(x) & \leq x_{n}^{\beta} \int_{B(x, x_{n}/2)} |x-y|^{2-n} f(y) dy \\ & \leq M_{3} x_{n}^{\beta+2} + M_{3} x_{n}^{\beta} \Big(\int_{B(x, x_{n}/2)} f(y)^{n/2} \omega(f(y)) dy \Big)^{2/n} \\ & \leq M_{3} x_{n}^{\beta+2} + M_{4} \Big(x_{n}^{\beta+1-n} \int_{B(x, x_{n}/2)} y_{n}^{n-1-\beta} [y_{n}^{\beta} f(y)]^{n/2} \omega(f(y)) dy \Big)^{2/n} \end{split}$$

with positive constants M_3 and M_4 . Consequently, Lemma 1 implies that $x_n^{\beta}u_2(x)$ has nontangential limit zero at any $\xi \in \partial D - E_2$, where $H_{n-1-\beta}(E_2) = 0$. Thus $E = E_1 \cup E_2$ satisfies the required conditions in the theorem.

In the same manner we can prove the following result.

THEOREM 6. Let n=2, $0<\beta<1$ and f be a nonnegative measurable function on D satisfying (1) and (3) with $\alpha=1$. Then $x_2^{\beta}Gf(x)$ has nontangential limit zero at any $\xi\in\partial D-E$, where $H_{1-\beta}(E)=0$.

Finally we note the following results, which can be proved in the same way as the above theorems.

THEOREM 7. Let $n \ge 3$ and f be a nonnegative measurable function on D satisfying (1) and (4) with $\beta = n-1$. Then $x_n^{n-1}(1+|x|)^{-n}Gf(x)$ has limit zero as x tends to the boundary ∂D .

THEOREM 8. Let n=2 and f be a nonnegative measurable function on D satisfying (1) and (3) with $\alpha=1$. Then $x_2(1+|x|)^{-2}Gf(x)$ has limit zero as x tends to ∂D .

5. Best possibility as to the size of the exceptional sets.

We here prove that Theorem 1 is best possible as to the size of the exceptional set if we assume further that

 $(\omega 4) \quad \omega(r^2) \leq A'\omega(r) \quad \text{whenever } r > 1,$

where A' is a positive constant independent of r.

PROPOSITION 1. For a compact set $K \subset \partial D$ such that $H_h(K) = 0$ there exists a nonnegative measurable function f on D satisfying (1) and (2) such that Gf does not have nontangential limit zero at any $\xi \in K$.

PROOF. First take a mutually disjoint finite family $\{B(x_{j,1}, r_{j,1})\}$ of balls such that $x_{j,1} \in \partial D$, $\bigcup_j B(x_{j,1}, 5r_{j,1}) \supset K$ and $\sum_j h(r_{j,1}) < 1$, and define $f_1(y) = a_{j,1}|z_{j,1}-y|^{-2}\omega(|z_{j,1}-y|^{-1})^{-1/(n/2-1)}$ for $y \in B(z_{j,1}, r_{j,1})$, where $z_{j,1} = x_{j,1} + (0, 2r_{j,1})$ and $a_{j,1} = \omega^*(r_{j,1}^{-1})^{1/(n/2-1)}$; set $f_1(y) = 0$ otherwise. Letting $\varepsilon_1 = \min_j r_{j,1}$, we take a mutually disjoint finite family $\{B(x_{j,2}, r_{j,2})\}$ of balls such that $x_{j,2} \in \partial D$, $r_{j,2} < \varepsilon_1/4$, $\sum_j h(r_{j,2}) < 2^{-1}$ and $\bigcup_j B(x_{j,2}, 5r_{j,2}) \supset K$. As above, we define $f_2(y) = a_{j,2}|z_{j,2}-y|^{-2}\omega(|z_{j,2}-y|^{-1})^{-1/(n/2-1)}$ for $y \in B(z_{j,2}, r_{j,2})$, where $z_{j,2} = x_{j,2} + (0, 2r_{j,2})$ and $a_{j,2} = \omega^*(r_{j,2}^{-1})^{1/(n/2-1)}$; define $f_2(y) = 0$ otherwise. In the same manner, for each positive integer m we can find a mutually disjoint finite family $\{B(x_{j,m}, r_{j,m})\}$ and a function f_m such that $x_{j,m} \in \partial D$, $\sum_j h(r_{j,m}) < 2^{-m+1}$, $\bigcup_j B(x_{j,m}, 5r_{j,m}) \supset K$ and $f_m(y) = a_{j,m}|z_{j,m} - y|^{-2}\omega(|z_{j,m} - y|^{-1})^{-1/(n/2-1)}$ for $y \in B(z_{j,m}, r_{j,m})$, where $z_{j,m} = x_{j,m} + (0, 2r_{j,m})$, $a_{j,m} = \omega^*(r_{j,m}^{-1})^{1/(n/2-1)}$ and $r_{j,m} < \varepsilon_{m-1}/4$ with $\varepsilon_{m-1} = \min_j r_{j,m-1}$; we set $f_m(y) = 0$ outside $\bigcup_j B(z_{j,m}, r_{j,m})$ as above. Then, since $f_m(y) \le M_1|z_{j,m} - y|^{-2}$ on $B(z_{j,m}, r_{j,m})$ with a positive constant M_1 , we note by the aid of condition $(\omega 4)$

$$\begin{split} \int_{D} y_{n}^{\alpha} f_{m}(y)^{n/2} \omega(f_{m}(y)) dy \\ & \leq M_{2} \sum_{j} a_{j,m}^{n/2} \int_{B(z_{j,m},r_{j,m})} y_{n}^{\alpha} |z_{j,m} - y|^{-n} \omega(|z_{j,m} - y|^{-1})^{1 - (n/2)/(n/2 - 1)} dy \\ & \leq_{j}^{n} M_{3} \sum_{j} a_{j,m}^{n/2} r_{j,m}^{\alpha} \int_{0}^{r_{j,m}} \omega(t^{-1})^{-1/(n/2 - 1)} t^{-1} dt \\ & = M_{3} \sum_{j} h(r_{j,m}) < M_{3} 2^{-m+1}, \\ & \int_{D}^{m} y_{n} f_{m}(y) dy \leq M_{4} \sum_{j} a_{j,m} \int_{B(z_{j,m},r_{j,m})} y_{n} |z_{j,m} - y|^{-2} \omega(|z_{j,m} - y|^{-1})^{-1/(n/2 - 1)} dy \\ & \leq M_{5} \sum_{j} a_{j,m} r_{j,m}^{n-1} \int_{0}^{r_{j,m}} \omega(t^{-1})^{-1/(n/2 - 1)} t^{-1} dt \\ & = M_{5} \sum_{j} r_{j,m}^{n-1} \leq M_{6} \sum_{j} h(r_{j,m}) \leq M_{6} 2^{-m+1} \end{split}$$
 and
$$Gf_{m}(z_{j,m}) \geq M_{7} \int_{B(z_{j,m},r_{j,m})} |z_{j,m} - y|^{2-n} f_{m}(y) dy \\ & \geq M_{8} a_{j,m} \int_{0}^{r_{j,m}} \omega(t^{-1})^{-1/(n/2 - 1)} t^{-1} dt = M_{8}, \end{split}$$

where $M_2 \sim M_8$ are positive constants independent of j and m. Consequently, since $\{B(z_{j,m},r_{j,m})\}$ is mutually disjoint, $f = \sum_{m=1}^{\infty} f_m$ satisfies conditions (1) and (2). Moreover, if $\xi \in K$, then for each m there exists j(m) such that $\xi \in B(x_{j(m),m}, 5r_{j(m),m})$, so that $z_{j(m),m} \in \Gamma(\xi, 5)$. This implies that $\limsup_{x \to \xi, x \in \Gamma(\xi, 5)} Gf(x) \ge M_8 > 0$ and hence Gf does not have nontangential limit zero at ξ .

PROPOSITION 2. Let ω be a positive nondecreasing function on R^1 such that ω satisfies condition $(\omega 1)$, $r^{-1}\omega(r)$ is nonincreasing on $[1, \infty)$ and ω does not satisfy condition $(\omega 2)$. Then for a sequence $\{x_j\}\subset D$ which is everywhere dense in D, there exists a nonnegative measurable function f on D satisfying (1) and (2) (with $\alpha=0$) such that $\inf_j Gf(x_j)>0$, so that Gf does not have nontangential limit zero at any $\xi\in\partial D$.

PROOF. For each positive integer j, take r_j and s_j such that $1>r_j>2s_j>0$, and define

$$f_{j}(y) = \begin{cases} a_{j} | x_{j} - y|^{-2} \omega(|x_{j} - y|^{-1})^{-1/(n/2 - 1)} & \text{on } B(x_{j}, r_{j}) - B(x_{j}, s_{j}), \\ 0 & \text{elsewhere,} \end{cases}$$
where $a_{j} = \left(\int_{s_{j}}^{r_{j}} \omega(t^{-1})^{-1/(n/2 - 1)} t^{-1} dt\right)^{-1}$. Then
$$\int_{\mathcal{D}} f_{j}(y)^{n/2} \omega(f_{j}(y)) dy$$

$$\leq M_{1} a_{j}^{n/2} \int_{B(x_{j}, r_{j}) - B(x_{j}, s_{j})} |x_{j} - y|^{-n} \omega(|x_{j} - y|^{-1})^{1 - (n/2)/(n/2 - 1)} dy$$

$$= M_{2} a_{j}^{n/2 - 1}.$$

On the other hand, if r_j is chosen so that $B(x_j, 2r_j) \subset D$, then

$$Gf_j(x_j) \ge M_3 \int_{B(x_j, r_j) - B(x_j, s_j)} |x_j - y|^{2-n} f_j(y) dy \ge M_4.$$

Now we choose $\{r_j\}$, $\{s_j\}$ so that $B(x_j, 2r_j) \subset D$, $\sum_{j=1}^{\infty} j^{n/2} A^j a_j^{n/2-1} < \infty$ and $\max_{k \le j} f_k(y) \le f_{j+1}(y)$ on $B(x_{j+1}, r_{j+1})$. Then it is not difficult to see that $f = \sum_{j=1}^{\infty} f_j$ satisfies the required conditions.

6. Fine boundary limits.

If f is a nonnegative measurable function on D satisfying (1) and $\int_D y_n^\alpha f(y)^{n/2} dy < \infty$ with $0 \le \alpha < n-1$, then Gf may fail to have nontangential limit zero at any $\xi \in \partial D$ as seen in Proposition 2, but Gf is shown to have a weak sense limit at many boundary points. For example, in view of [2], Gf has fine nontangential limit zero at any $\xi \in \partial D - E$, where $H_\alpha(E) = 0$. In this section we investigate a global behavior of Gf near the boundary. More precisely, we aim to find a function A(x) such that A(x)Gf(x) tends to zero as x tends to ∂D along a set $F \subset D$ whose complement is thin near ∂D in a certain sense.

For a set $E \subset D$ and an open set $G \subset R^n$, we define $C_{2,p}(E;G) = \inf_G f(y)^p dy$, where the infimum is taken over all nonnegative measurable functions f on G such that $\int_G |x-y|^{2-n} f(y) dy \ge 1$ for every $x \in E$.

We now give the following result.

THEOREM 9. Let $1 , <math>p-n < \alpha < 2p-1$ and f be a nonnegative measurable function on D such that $\int_D y_n^{\alpha} f(y)^p dy < \infty$. Then there exists a set $E \subset D$ having the following properties.

- (i) $\lim_{x_n \downarrow 0, x \in D-E} x_n^{(n-2p+\alpha)/p} Gf(x) = 0.$
- (ii) $\sum_{j=j_0}^{\infty} 2^{j(n-2p)} C_{2,p}(E_j \cap G_1; G_2) < \infty$ for any open sets G_1 and G_2 for which there exists r>0 such that $B(x,r) \subset G_2$ whenever $x \in G_1$, where $E_j = \{x \in E; 2^{-j} \le x_n < 2^{-j+1}\}$ and j_0 is a positive integer which may depend on G_1 and G_2 .

PROOF. Write $Gf = u_1 + u_2$ as in the proof of Theorem 1. In this proof, M_1, M_2, \cdots will denote positive constants. First we shall prove

$$\int_{D-B(x,x_n/2)} [|x-y|^{2-n}(|x-y|+x_n)^{-2}y_n^{1-\alpha/p}]^{p'}dy \leq M_1 x_n^{-p'(n-p+\alpha)/p},$$

where 1/p+1/p'=1. If $1-\alpha/p \le 0$, then

$$\begin{split} &\int_{D-B(x,x_{n}/2)} \left[|x-y|^{2-n} (|x-y|+x_{n})^{-2} y_{n}^{1-\alpha/p} \right]^{p'} dy \\ & \leq \int_{\{y \in D-B(x,x_{n}/2); y_{n} > x_{n}/2\}} \left[|x-y|^{2-n} (|x-y|+x_{n})^{-2} |x_{n}-y_{n}|^{1-\alpha/p} \right]^{p'} dy \\ & + \int_{\{y \in D-B(z,x_{n}/2); y_{n} \leq x_{n}/2\}} \left[|z-y|^{2-n} (|z-y|+x_{n})^{-2} y_{n}^{1-\alpha/p} \right]^{p'} dy \\ & + M_{2} x_{n}^{-n} p' \int_{D \cap B(z,x_{n}/2)} y_{n}^{(1-\alpha/p)p'} dy \leq M_{3} x_{n}^{p' \lceil -n+1-\alpha/p \rceil + n} \,, \end{split}$$

where z=(x', 0) with $x=(x', x_n)$. If $1-\alpha/p>0$, then

$$\begin{split} & \int_{D-B(x, x_n/2)} \left[|x-y|^{2-n} (|x-y|+x_n)^{-2} y_n^{1-\alpha/p} \right]^{p'} dy \\ & \leq \int_{D-B(x, x_n/2)} \left[|x-y|^{2-n} (|x-y|+x_n)^{-2} (|x_n-y_n|+x_n)^{1-\alpha/p} \right]^{p'} dy \\ & \leq M_4 x_n^{(1-\alpha/p) \ p'} x_n^{-n \ p'+n} \\ & \quad + M_4 \! \int_{D-B(x, x_n/2)} \left[|x-y|^{2-n} (|x-y|+x_n)^{-2} |x_n-y_n|^{1-\alpha/p} \right]^{p'} dy \\ & \leq M_5 x_n^{-p' \cdot (n-p+\alpha)/p} \,. \end{split}$$

Hence we obtain from Hölder's inequality

$$\begin{split} u_{1}(x) & \leq M_{6}x_{n} \int_{\{y \in D-B(x, x_{n}/2); y_{n} > \delta\}} |x-y|^{2-n} |\bar{x}-y|^{-2}y_{n}f(y)dy \\ & + M_{6}x_{n} \int_{\{y \in D-B(x, x_{n}/2); y_{n} \leq \delta\}} |x-y|^{2-n} |\bar{x}-y|^{-2}y_{n}f(y)dy \\ & \leq M_{7}x_{n} \delta^{-(n-p+\alpha)/p} \Big(\int_{D} y_{n}^{\alpha}f(y)^{p}dy \Big)^{1/p} + M_{7}x_{n}^{-(n-2p+\alpha)/p} \Big(\int_{\{y \in D; y_{n} \leq \delta\}} y_{n}^{\alpha}f(y)^{p}dy \Big)^{1/p} \end{split}$$

whenever $\delta > 4x_n$. Consequently,

$$\limsup_{x_n \downarrow 0} x_n^{(n-2p+\alpha)/p} u_1(x) \leq M_7 \left(\int_{\{y \in D; y_n \leq \delta\}} y_n^{\alpha} f(y)^p dy \right)^{1/p},$$

which implies that the left hand side is equal to zero.

Put $D_j = \{y = (y', y_n); 2^{-j-1} < y_n < 2^{-j+2}\}$ for each positive integer j. Since $\sum_{j=1}^{\infty} \int_{D_j} y_n^{\alpha} f(y)^p dy < \infty$, we can find a sequence $\{a_j\}$ of positive integers such that $\lim_{j\to\infty} a_j = \infty$ and $\sum_{j=1}^{\infty} a_j \int_{D_j} y_n^{\alpha} f(y)^p dy < \infty$. Now we define the sets

$$E_{j} = \left\{ x \in D; \ 2^{-j} \leq x_{n} < 2^{-j+1}, \int_{B(x, x_{n}/2)} |x - y|^{2-n} f(y) dy > a_{j}^{-1/p} 2^{j(n-2p+\alpha)/p} \right\}$$

and $E = \bigcup_{j=1}^{\infty} E_j$. Let G_1 and G_2 be open sets for which there exists r > 0 such that $B(x, r) \subset G_2$ whenever $x \in G_1$. If $2^{-j} \le 2^{-j_0} < r$, then $B(x, x_n/2) \subset D_j \cap G_2$ for $x \in E_j \cap G_1$. Hence we obtain by the definition of capacity $C_{2, p}$

$$C_{2,p}(E_j \cap G_1; G_2) \leq a_j 2^{-j(n-2p+\alpha)} \int_{D_j} f(y)^p dy \leq M_8 a_j 2^{-j(n-2p)} \int_{D_j} y_n^{\alpha} f(y)^p dy,$$

so that,

$$\sum_{j=j_0}^{\infty} 2^{j(n-2p)} C_{2,p}(E_j \cap G_1; G_2) < \infty$$
.

Moreover, since $u_2(x) \le \int_{B(x, x_n/2)} |x-y|^{2-n} f(y) dy$, we see that

$$\lim_{x_n\downarrow 0, x\in D-E} x_n^{(n-2p+\alpha)/p} u_2(x) \leq M_9 \lim_{j\to\infty} \sup_{a_j^{-1/p}} a_j^{-1/p} = 0.$$

Thus Theorem 9 is proved.

COROLLARY. If $0 \le \alpha < n-1$, $n \ge 3$ and f is a nonnegative measurable function on D satisfying (2), then $\lim_{x_n \downarrow 0} x_n^{\alpha/(n/2)} Gf(x) = 0$.

REMARK. Following Aikawa [1], we say that a set E satisfying (ii) of Theorem 9 is $C_{2, p}$ -thin on ∂D .

Finally we collect some results corresponding to the case p=1. Let $0 \le \alpha \le 1$. Then:

- (i) If f is a nonnegative measurable function on D such that $\int_D y_n^{\alpha} f(y) dy < \infty$, then Gf has minimally semi-fine nontangential limit zero at $\xi \in \partial D E$, where $H_{\alpha}(E) = 0$ (cf. [3]).
- (ii) If f is as above, then $x_n^{n-2+\alpha}Gf(x)$ tends to zero as x tends to ∂D along D-F, where F is thin on ∂D (cf. [4]).
- (iii) In case n=2, if f is a nonnegative measurable function on D such that $\int_{\mathcal{D}} y_2^{\alpha} f(y) [\log(2+f(y))] dy < \infty$, then $x_2^{\alpha} Gf(x)$ has limit zero as x tends to ∂D .

References

- [1] H. Aikawa, Tangential behavior of Green potentials and contractive properties of L^p -potentials, Tokyo J. Math., 9 (1986), 221-245.
- [2] Y. Mizuta, Boundary limits of Green potentials of order α , Hiroshima Math. J., 11 (1981), 111-123.
- [3] Y. Mizuta, Minimally semi-fine limits of Green potentials of general order, Hiroshima Math. J., 12 (1982), 505-511.
- [4] Y. Mizuta, Boundary limits of Green potentials of general order, Proc. Amer. Math. Soc., 101 (1987), 131-135.
- [5] E.B. Tolsted, Nontangential limits of subharmonic functions, Proc. London Math. Soc., 7 (1957), 321-333.
- [6] K.-O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat., 6 (1967), 485-533.

Yoshihiro Mizuta

Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 730 Japan