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\S 1. Introduction.

Since Thurston described his geometric views on 3-manifold topology, we
have had quite many oPportunities of recognizing its incredible importance.
According to this recognition, a couple of expository descriptions of geometric
structures on 3-manifolds, say in [4] [6], have been presented. In particular in
the article by Peter Scott [6] there is a complete description of geometric struc-
tures on Seifert fibered spaces. A geometric structure on a Seifert fibered space
there is given by finding a faithful discrete representation of its fundamental
group to the isometric transformation group. In this paper we shall give an
alternative construction of geometric structures by using the idea of Thurston’s
hyperbolic Dehn surgery. We shall describe this only for Seifert fibered spaces
over $S^{2}$ with Precisely 3 excePtional fibers since it is the tyPical case and
simultaneously the method is easily generalized to the other case.

An immediate aPplication of the construction is comPutation of volumes.
The normalized volume for a closed Lorentz manifold is known to be a topol-
ogical invariant (see [2], [4]). We shall take the trefoil knot as an example
for computing volumes of the resultant manifolds of Dehn surgery along it.
Though taking the trefoil seems to be special for general discussion, it is enough
to see how the volumes fill up $R^{+}$ , which is in contrast with the case of hyper-
bolic volumes.

In the next three sections, we discuss geometric Dehn surgery in general
situation and review 3-dimensional geometries in the sense of Thurston [8] and
Seifert fibrations. The main construction and Dehn surgery along the trefoil
knot are dealt in the last two sections.

\S 2. Geometric Dehn surgery.

In this section, we generalize Thurston’s hyperbolic Dehn surgery [7].

Roughly speaking, it is the study of completion of an incomplete geometric toral
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end from the Dehn surgical viewpoint. We need several conditions in the
process that the completion turns out to be the result of Dehn surgery, and our
purpose is to establish those by Lemma 2.1.

We first have to describe our setting. Let (X, $G$ ) be a pair of a simply
connected 3-dimensional riemannian homogeneous space $X$ with its topological
transformation group $G$ which acts transitively and effectively as isometries. It
is called a geometry. An (X, $G$)-structure on a manifold is a riemannian struc-
ture locally modeled on (X, $G$ ). We are only interested in the completion of a
toral end, so let $U$ be a closed neighborhood of a toral end, which is homeo-
morphic to $T^{2}\cross(0,1$]. When $U$ has a specific (X, $G$)-structure, denote it by $\Sigma$ .
This notation means both the underlying space $U$ and its speciPc geometric
structure hereafter. Then by analytic continuation, we get a developing map
$d$ : $\tilde{\Sigma}arrow X$ of the universal covering $\overline{\Sigma}$ of $\Sigma$ to $X$ (see [7]). The developed
image is unique up to multiplication by elements of $G$ . Also using the developed
image $d(\Sigma)\subset X\sim$, we get a holonomy mapping $h$ : $\pi_{1}(\Sigma)=Harrow G$ , which represents
how $\Sigma$ is distorted (see also [7]). The holonomy group $h(H)$ is uniquely deter-
mined by $\Sigma$ up to conjugation in $G$ . Denote the developed image $d(\Sigma)\subset X-$ by
$V$ and the holonomy group $h(H)\subset G$ by $\Gamma$ Then our first condition is

(1) the completion $C(V)$ of $V$ is the union of $V$ with either a geodesic circle
or a geodesic line.

Notice that a neighborhood of this circle or line, which will be denoted by
$L$ , admits a geometric structure.

The developing map $d$ : $\tilde{\Sigma}arrow X$ extends to a surjective map: $C(\tilde{\Sigma})arrow C(V)$

between completions because $d$ does not increase distances. Let $\tilde{L}$ be the pre-
image of $L$ by this mapping. Since $d$ is also an isometric immersion, $\tilde{L}$ is
homeomorphic to a line by the condition (1). Then the action of $H$ on $\tilde{\Sigma}$

extends to one on $C(\tilde{\Sigma})=\tilde{\Sigma}\cup\tilde{L}$. Here we have two cases for the manner of
extensions. One is the case when the orbit of any point on $\tilde{L}$ by $H$ is dense
in $L\sim$. The other case is our second condition,

(2) the orbit of $x\in\tilde{L}$ by $H$ is discrete in $\tilde{L}$.
Since the projection : $\Sigmaarrow\Sigma\sim$ extends to a surjective map: $C(\Sigma)arrow C(\Sigma)\sim$ between
completions by the same reason as before, $C(\Sigma)$ turns out to be topologically a
manifold and is homeomorphic to the union of $U$ and a circle.

We now specify the longitude 1 and the meridian $m$ of $U$ . These represent
the loops in $U$ and simultaneously the elements of $\pi_{1}(U)$ . Let $J\subset H$ be the
stabilizer of $\tilde{L},$ { $g\in H;g\cdot x=x$ for all $x\in\tilde{L}$}. Since $H/J$ acts non trivially,
discontinuously and effectively on the line $\tilde{L}$, it is isomorphic to an infinite
cyclic group $Z$ and hence $J$ is also an infinite cyclic group generated by $m^{p}l^{q}$

where $p$ and $q$ are coprime integers. The third condition is
(3) $J$ is contained in the kernel $of’ h$ .
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This means that $\Gamma$ acts effectively on $L$ and $J$ acts trivially on $C(V)$ .
The third condition implies that the mapping: $C(\tilde{\Sigma})arrow C(V)$ induces a surjec-

tive map: $C(\tilde{\Sigma})/J=C(\Sigma\sim/J)arrow C(V)$ . Our last condition is
(4) it is an immersion.

This is to avoid overlaps around $L$ .
On the other hand, if (1) $\sim(4)$ hold, then $C(\tilde{\Sigma}/J)$ admits a geometric structure

induced by this immersion and also it follows from the construction that the
surjective map: $C(\tilde{\Sigma}/J)arrow C(V)$ becomes a covering so that the group of covering
transformations, $H/J\cong Z$ , acts on $C(\Sigma\sim/J)$ as isometries with respect to its
geometric structure. Thus its quotient $C(\Sigma)$ also admits a geometric structure
which is an extension of the original one $\Sigma$ . Notice that a loop representing
$m^{p}l^{q}$ bounds a disk in $C(\Sigma)$ . We have then established

LEMMA 2.1. If $\Sigma$ satisfies the conditions (1) $\sim(4)$ , then by completion, $\Sigma$ extends
to a geometric structure on some solid torus bounded by $\partial U$ . A simple closed
curve representing $m^{p}l^{q}$ bounds a disk in the resultant solid torus.

Here are two viewpoints for the resultant solid torus. If we originally had
a solid torus with a specified meridian $m$ instead of the toral end, then the
resultant solid torus would be the result of $(p, q)$ Dehn surgery along the core
of the original one. If we consider the parallel loops to the longitude as forming
a Seifert fibration on $U$ , then the core of the resultant solid torus becomes an
exceptional fiber with Dehn surgical index $(p, q)$ .

\S 3. Geometries.

Following Thurston [8], we briefly describe 3-dimensional geometries. How-
ever, before going into details, let us note that we require our geometries (X, $G$ )

to have the common properties below:
(i) There is an equivariant projection $p$ : (X, $G$ ) $arrow(P, K)$ , where $(P, K)$ is a 2-

dimensional geometry that is either the spherical geometry $(S^{2}, SO(3))$ , the
euclidean geometry $(E^{2}, Isom^{+}E^{2})$ or the hyperbolic geometry $(H^{2}, PSL_{2}R)$ .

(ii) The kernel of $p$ : $Garrow K$ is a l-parameter subgroup $S$ of $G$ which acts
principally on X. $S$ is isomorphic to $S^{1}$ or $Raccord^{i}ng$ to whether $G$ is
compact or not.

The product of any of the 2-dimensional geometry with the l-dimensional
euclidean geometry has of course these properties and will be in our interest.
Also there is a twisted geometry for each 2-dimensional geometry and hence we
will get six geometries.

Since we required the properties above for simplicity, our geometries are
not quite equal to Thurston’s, however they are actually subgeometries which
have smaller transformation groups. Let us start with (X, $G$ ) which covers the
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2-dimensional spherical geometry. The product geometry in this case is $S^{2}\cross E$

$=(S^{2}\cross E, SO(3)\cross R)$ . The topological type of closed manifolds in this geometry
is just $S^{2}\cross S^{1}$ and hence there is almost nothing interesting for us. The twisted
geometry is a subgeometry $S^{3}=(S^{3}, G)$ of the 3-dimensional spherical geometry
$(S^{3}, SO(4))$ . To see what $G$ is, let us think of the Hopf fibration: $S^{3}arrow CP^{1}$ ;
$(z_{1}, z_{2})arrow[z_{1} : z_{2}]$ where $(z_{1}, z_{2})\in C^{2}$ such that $|z_{1}|^{2}+|z_{2}|^{2}=1$ . Then the subgroup
$\tilde{K}$ of $SO(4)$ which consists of the left rotations,

$\{U(\begin{array}{llll}\cos\phi -\sin\phi \sin\phi \cos\phi 0 0 \cos\phi \sin\phi -\sin\phi \cos\phi\end{array})U^{-1}$ ; $U\in SO(4)\}$

is isomorphic to $SU(2)\cong S^{3}$ , and induces the orthogonal action of $\tilde{K}/\{\pm I\}\cong SO(3)$

on downstairs $CP^{1}=S^{2}$ . Then $G$ is a subgroup of $SO(4)$ generated by $\tilde{K}$ and
the l-parameter subgroup $S$ parametrized by

$R/2\pi Z$ $arrow S\subset SO(4)$

u)

$(\cup\theta$

$-(\begin{array}{llll}\cos\theta -\sin\theta \sin\theta \cos\theta 0 0 \cos\theta -\sin\theta \sin\theta \cos\theta\end{array})$

.

Since $\tilde{K}$ commutes with $S$ and $\tilde{K}\cap S=\{\pm I\},$ $G$ is isomorphic to $S^{3}\cross S^{1}/Z_{2}$ as a
group.

We next describe geometries which cover the 2-dimensional euclidean geometry.
The product geometry in this case is $E^{3}=(E^{2}\cross E^{1}, Isom^{+}E^{2}\cross R)$ , which is a sub-
geometry of the 3-dimensional euclidean geometry. The twisted geometry is
the nilpotent geometry $N=(X, G)$ . Here $X$ is a twisted product of $E$ with $E^{2}$ ,

and $G$ is an extension of the group of isometries of $E^{2}$ by $R$ ,

$Rarrow Garrow Isom^{+}E^{2}$ ,

which is embedded in the affine transformation group $A^{3}$ by

$A^{3} \cong GL(3)\ltimes R^{3}\cup c_{1}\ni|_{\langle}(\sin\phi\frac{-b\cos\phi+a\sin\phi}{2}\cos\phi$
$\frac{b\sin\phi+a\cos\phi}{2}-\sin\phi\cos\phi$ $001||_{\theta}^{O}b]\}$

$Isom^{+}E^{2}\cong SO(2)\ltimes R^{2}\ni((\begin{array}{ll}\cos\phi -\sin\phi\sin\phi \cos\phi\end{array})(\begin{array}{l}ab\end{array}))$

where $\tilde{\theta}$ runs over all $R$ . The fiber of the identity of $Isom^{+}E^{2}$ forms $S$ in this
geometry, which is clearly contained in the center of $G$ . We parametrize $S$ by
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$\theta=2\pi\tilde{\theta}$ for uniformity in future.
The last two geometries cover the 2-dimensional hyperbolic geometry. The

product geometry is $H^{2}\cross E=(H^{2}\cross E, PSL_{2}R\cross R)$ . The twisted geometry in
this case is the Lorentz geometry $S\tilde{L}_{2}=(X, G)$ . Here $X$ can be seen as the
universal covering of the unit tangent sphere bundle $T(H^{2})$ over $H^{2}$ . Since
$PSL_{2}R$ acts on $H^{2}$ as isometries, its derivative acts on $T(H^{2})$ and then we get
the action of the universal covering group $S\tilde{L}_{2}R$ of $PSL_{2}R$ on $X$. Also
$S^{1}\cong R/2\pi Z$ acts on $T(H^{2})$ as simultaneous rotations of all vectors keeping their
base point fixed, so does $R$ on $X$. Let $\tilde{I}\in S\tilde{L}_{2}R$ be the lift of the identity
element of $PSL_{2}R$ which acts on $X$ as the unit simultaneous translation of fibers
in the positive direction and let $N$ be an infinite cyclic subgroup of the direct
product $S\tilde{L}_{2}R\cross R$ generated by $1\cross\{-1\}$ . Then $G=S\tilde{L}_{2}R\cross R/N$.

REMARK. The universal covering group $\tilde{K}$ of $K$ is embedded in $G$ in the
spherical and Lorentz geometries.

\S 4. Seifert fibered spaces.

The normalized Dehn surgical invariant to describe a Seifert fibered space
consists of the topological type of the orbit manifold, the obstruction class and
the normalized Dehn surgical indices for singular fibers. See for example [5].

To avoid insigniPcant confusion, just think of orientable Seifert fibered spaces
over orientable surfaces. Then its bundle structure is determined by genus $g$

of the orbit manifold, an integral obstruction class $n$ and indices of singular
fibers $(p_{1}, q_{1}),$ $\cdots$ , $(p_{r}, q_{r})$ where $p_{j}$ and $q_{j}$ are coprime integers such that
$0<q_{j}<p_{j}$ . For example, a manifold with these data has the fundamental group
isomorphic to

\langle $a_{1},$ $b_{1},$ $\cdots$ , $a_{g},$ $b_{g},$ $s_{1},$
$\cdots$ , $s_{r},$ $h|$ [a $i,$

$h$] $=[b_{i}, h]=[s_{j}, h]=e$ ,

$s_{f^{p_{j}}}h^{q_{j}}=e,$ $s_{1}\cdots s_{r}[a_{1}, b_{1}]$ $[a_{g}, b_{g}]=h^{n}\rangle$ .
There are two important invariants when we regard it as a circle fibration

over a 2-dimensional orbifold as in \S 13 of [7]. Those are euler number of the
fibration and euler characteristic of the orbit orbifold and they can be computed
by

$e^{orb}=q_{1}/p_{1}+\cdots+q_{r}/p_{r}+n$ and

$x^{orb}=(2-2g)- \sum_{j\Rightarrow 1}^{r}(1-1/p_{j})$

respectively.

This description is useful to construct a geometric structure on a given
Seifert fibered space, however it has some disadvantage to construct a continuous
family of structures as in the case of hyperbolic Dehn surgery and we had
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better use the unnormalized Dehn surgical invariant which has no obstruction
class. It is defined again by pairs of exPonents of $s_{j}$ and $h$ in the relation of
the fundamental group but by choosing meridional elements $s_{1},$

$\cdots$ , $s_{r}$ so that

$s_{1}\cdots s_{r}[a_{1}, b_{1}]\cdots[a_{g}, b_{g}]=e$ ,

and hence we cannot expect normalizing inequalities $0<q_{j}<p_{j}$ . In case there is
no singular fiber, a regular fiber should be considered temporarily as a singular
fiber with index $(1, n)$ . The integer $n$ in this case represents the euler class of
the bundle.

In the next section, we deal only with Seifert fibered spaces over the 2-sphere
with precisely 3 exceptional fibers. It can be seen as a result of Dehn surgery
on (3 punctured $2- sphere$) $\cross S^{1}$ . When its unnormalized indices are $(p, P’),$ $(q, q’)$

and $(r, r’)$ , the orbifold invariants are $e^{orb}=p’/p+q’/q+r’/r$ and $x^{orb}=1/p+1/q$

$+1/r$ respectively.

\S 5. Construction of geometric structures.

Let $\Delta$

. be a triangle and let $\Delta$ be $\Delta\cdot-\{vertices\}$ . By specifying $\Delta_{ABC}$ , we
mean the geodesic triangle on $P$ having the vertices $A,$ $B,$ $C$ with corner angles
$\sigma_{A},$ $a_{B}$ and $\sigma_{C}$ . Here $P$ is either $S^{2},$ $E^{2}$ or $H^{2}$ according to whether $\sigma_{A}+\sigma_{B}+\sigma_{C}$

is greater than, equal to or less than $\pi$ . Also $\Delta_{ABC}$ stands for $\Delta_{ABC}-\{A, B, C\}$ .
Choose a geometric structure $\Sigma_{1}$ on $\Delta\cross S^{1}$ such that

(1) $d(\Sigma_{1})$ is isometric to $p^{-1}(\Delta_{ABC})$ , and
(2) $h$ (a generator of $\pi_{1}(\Sigma_{1})$ ) $=\theta\in S\subset G$ .
This is unique up to isometry. Choose also a geometric structure $\Sigma_{2}$ on $\Delta\cross S^{1}$

satisfying (2) and (l)*instead of (1).

(1) $d(\Sigma_{2})$ is isometric to $p^{-1}(\overline{\Delta}_{ABC})$ , where $AABC$ is the reflection image of $\Delta_{ABC}$

along the geodesic $\overline{AB}$ on $P$.
Let us now construct an incomplete geometric structure on $Q\cross S^{1}$ where $Q$

is a 3 punctured 2-sphere. We first study the case of product geometries. By
the definition of $\Sigma_{1}$ and $\Sigma_{2}$ , we have an orientation reversing isometry $\psi$ : $\Sigma_{1}arrow\Sigma_{2}$

induced by an isometry of $X$ which covers the reflection of $P$ along $\overline{AB}$. We
now use the symbol $-to$ indicate the face of $\Sigma$ whose developed image projects
to the geodesic specified under it. Then identify the face $AB\wedge$ of $\Sigma_{1}$ with $AB\wedge$

of $\Sigma_{2}$ by $\psi|A^{\wedge}B,$ $AC\wedge$ of $\Sigma_{1}$ with $AC’\wedge$ of $\Sigma_{2}$ by $-\theta_{A^{*}}\cdot\psi|\overline{AC}$ and $BC\wedge$ of $\Sigma_{1}$ with
$BC’\wedge$ of $\Sigma_{2}$ by $\theta_{B^{*}}\cdot\psi|BC’\wedge$ where $C’$ is the new vertex of $\overline{\Delta}_{ABC}$ . Here $-\theta_{A^{*}}(\theta_{B^{*}})$

means an isometry of $AC’\wedge(BC’)\wedge$ to itself induced by $-\theta_{A}\in S$ $(\theta_{B}\in S)$ . This
determines an incomplete geometric structure on $Q\cross S^{1}$ . Denote it by $\Omega$ .

We then compute the holonomy of $\Omega$ . To see this, we first need to specify
the meridional loops $\alpha$ and $\beta$ in $\Omega$ . Choose a base point $b$ in $\Sigma_{1}$ and take three
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arcs which start from $b$ and which terminate at three faces respectively. The
union of the arcs with its image by $\psi$ is a tree in $\Omega$ . The loop $\alpha$ is defined
by travelling from $b$ to $AC’\wedge$ along the tree through $A^{\wedge}B$ , going down along the
fiber on $AC’\wedge$ by $\theta_{A}$ (it then meets the tree again) and coming back to $b$ again
along the tree. The loop $\beta$ is defined by travelling from $b$ to $BC\wedge$ along the
tree, going down along the fiber on $BC’\wedge$ by $\theta_{B}$ and coming back to $b$ again
along the tree through $AB\wedge$ . Then by the construction of $\Omega$ , we have

LEMMA 5.1. The holonomy of $\Omega$ is determined by

$\{\begin{array}{l}h(\alpha)=r_{A}(2\sigma_{A})\theta_{A}h(\beta)=r_{B}(2\sigma_{B})\theta_{B}h(f)=\theta,\end{array}$

where $r_{*}(2\sigma_{*})$ stands for the element of $K\cong K\cross\{0\}\subset K\cross S=G$ which rotates $P$

round the specified pojnt $*$ with given angle $2\sigma_{*}$ and $f$ is a fiber which goes
through $b$ .

Let us now look at the end of $\Omega$ around $A$ . A pair of meridian and longi-
tude is then given by $\alpha$ and $f$ . To find when the completion of this end is a
result of geometric Dehn surgery, let us check the conditions of Lemma 2.1.
The condition (1) is obviously satisfied by the construction. To satisfy (2), $\theta$

and $\theta_{A}$ must be rationally related, say by $\theta_{A}^{p}=\theta^{-p’}$ for some pair of coprime
integers $P$ and $p’$ . Then we need to require by the condition (3) that $(h(\alpha))^{p}$

$=(h(f))^{-p’}$ . Since $h(f)$ is contained in $S\subset G$ , so must be $(h(\alpha))^{p}$ . This means
that $p(2\sigma_{A})\equiv 0(2\pi)$ . Finally the condition (4) requires that $2\sigma_{A}$ is actually equal
to $2\pi/p$ . Conversely since $(h(\alpha))^{p}=(r_{A}(2\pi/p)\theta_{A})^{p}=\theta_{A}^{p}$ , a non trivial solution of
the equation, $\theta_{A}^{p}=\theta^{-p’}$ with respect to $\theta_{A}$ and $\theta$ for some coprime integers $p$

and $p’$ , defines a geometric structure $\Omega$ of which the completion of the end
around $A$ becomes the result of $(p, p’)$ Dehn surgery with respect to $\alpha$ and $f$ .
The analogous condition for geometric completion of the end around $B$ is obtained
by the same way.

Since our geometry here is product, we have the identity.

$r_{A}(2\sigma_{A})r_{B}(2\sigma_{B})r_{C}(2\sigma_{C})=id\cross\{0\}$

in $G$ . Then $\gamma=(\alpha\beta)^{-1}$ and $f$ constitute a pair of meridian and longitude for the
end of $\Omega$ around $C$, and we get an equation in $S$ for geometric completion with
respect to $\theta_{A},$ $\theta_{B}$ and $\theta$ for some pairs $(p, P’),$ $(q, q’)$ and $(r, r‘)$ of coprime
integers,

(I) $\{\begin{array}{l}p\theta_{A}+p’\theta=0q\theta_{B}+q’\theta=0-r(\theta_{A}+\theta_{B})+r’\theta=0.\end{array}$
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Its non trivial solution defines a geometric structure $\Omega$ which extends by com-
pletion to a geometric structure on the result of $(p, p’),$ $(q, q’)$ and $(r, r’)$ Dehn
surgeries on $Q\cross S^{1}$ . Here we wrote the equation linearly since $S$ is abelian.
Now there is a non trivial solution whenever $p’/p+q’/q+r’/r=0$ and by
completion we get a Seifert fibered space over $S^{2}$ with 3 exceptional fibers
unnormalizingly indexed by $(p, p’),$ $(q, q’)$ and $(r, r’)$ . The condition is equivalent
to the vanishing of euler numbers. The euler characteristic of the orbit orbifold,
$1/p+1/q+1/r-1$ , reflects on the geometry where AABC is in. Thus we have

PROPOSITION 5.2. A Seifert fibered space over $S^{2}$ with 3 excepti0nal fibers
with vanishing euler number admits a geometric structure of type either $S^{2}\cross E$ ,
$E^{3}$ or $H^{2}\cross E$ according to whether the euler characteristic of the orbit orbifold
is posjtjve, zero or negative.

REMARK. In fact there is no $S^{2}\cross E$ -manifold in this class but I state this
for the generalization.

We next discuss the twisted case. The first different point is how to identify
$\Sigma_{1}$ with $\Sigma_{2}$ . Since we have no natural orientation reversing isometry between
these as $\psi$ , we need to find its substitution. To see this, remember that the
identiPcation of $\Sigma_{1}$ with $\Sigma_{2}$ can be understood by looking at the developed
images. The developed images of $\Sigma_{1}$ and $\Sigma_{2}$ are $p^{-1}(A_{ABC})$ and $p^{-1}(\overline{\Delta}_{ABC})$

respectively, and the identity map of $X$ induces the identification of $A^{\wedge}B$ of $\Sigma_{1}$

with $A^{\wedge}B$ of $\Sigma_{2}$ . Let $r_{*}(2\sigma_{*})$ be an isometry in $G$ such that its projected image
in $K$ is $r_{*}(2\sigma_{*})$ and such that it moves each point of the Pber on $*by2\sigma_{*}$ in
the positive direction. Then $r_{A}(2\sigma_{A})$ induces the isometry $\psi_{A}$ of $AC\wedge$ to $AC’\wedge$

and $r_{B}(2\sigma_{B})$ induces the isometry $\psi_{B}$ of $BC\wedge$ to $BC’\wedge$ . Notice that $r_{*}(2\sigma_{*})$ is
contained in the universal covering group KCG of $K$ in the case of spherical
and Lorentz geometries. Then identify $A\overline{C}$ with $AC’\wedge$ by $-\theta_{A}^{*}\cdot\psi_{A}$ and identify
also $BC\wedge$ with $BC’\wedge$ by $\theta_{B}^{*}\cdot\psi_{B}$ . Here $-\theta_{A}^{*}$ and $\theta_{B}^{*}$ mean the same as before.
This clearly determines an incomplete geometric structure on $Q\cross S^{1}$ and let us
again denote it by $\Omega$ .

To see the holonomy of $\Omega$ , we specify the loops $\alpha$ and $\beta$ with the following
holonomical properties basically by the same method as before.

LEMMA 5.3. The holonomy of $\Omega$ is determined by

$\{\begin{array}{l}h(\alpha)=r_{A}(2\sigma_{A})\theta_{A}h(\beta)=r_{B}(2\sigma_{B})\theta_{B}\end{array}$

$(h(f)=\theta$ .
Then again by Lemma 2.1, we can find the condition for the end of $\Omega$

around $A$ to be completed geometrically. It says that $2\sigma_{A}$ is actually equal to
$2\pi/p$ for some integer $p$ , and since $(h(\alpha))^{p}=(r_{A}(2\pi/p)\theta_{A})^{p}=2\pi+p\theta_{A}$ , a solution
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of the equation; $2\pi+p\theta_{A}+p’\theta=0$ in $S$ with respect to $\theta_{A}$ and $\theta$ for some integer
$p’$ coprime to $p$ , defines a geometric structure $\Omega$ of which the completion of
the end around $A$ turns out to be the result of $(p, p’)$ Dehn surgery with respect
to $\alpha$ and $f$ . Here $2\pi$ means the unit simultaneous translation of fibers. There
is an analogous condition for the geometric completion of the end around $B$ .

We now come to the turning point. In the case of spherical and Lorentz
geometries, $\tilde{K}$ was embedded in $G$ , and $r_{*}(2\sigma_{*})$ was in $\tilde{K}$. The structure $\Omega$ is
modeled on these geometries when $\sigma_{A}+\sigma_{B}+\sigma_{C}\neq\pi$ . Then we have the identity;

$\langle*)$ $r_{A}(2\sigma_{A})r_{B}(2\sigma_{B})r_{C}(2a_{C})=2\pi\in S\subset G$ .

The proof of this identity can be found in [1]. Again since $\gamma=(\alpha\beta)^{-1}$ and $f$

constitute a pair of meridian and longitude for the end of $\Omega$ around $C$, to get
a geometric structure $\Omega$ of which three ends can be geometrically completed
simultaneously, we only need a non trivial solution of the linear equation in $S$ :

(II) $\{\begin{array}{l}2\pi+p\theta_{A}+p’\theta=02\pi+q\theta_{B}+q’\theta=02\pi-r(2\pi+\theta_{A}+\theta_{B})+r’\theta=0,\end{array}$

with respect to $\theta_{A},$ $\theta_{B}$ and $\theta$ for some pair of coprime integers $(p, p’),$ $(q, q’)$

and $(r, r’)$ . Again there is a solution iff $P’/p+q’/q+r’/r\neq 0$ and $1/p+1/q+1/r$

$-1\neq 0$ , and by replacing these conditions by euler numbers and euler character-
istics, we have

PROPOSITION 5.4. A Seifert fibered space over $S^{2}$ with 3 excepfional fibers
with non vamsheng euler number and non vamshing euler characteristic admits a
spherjcal or Lorentz structure according to whether the euler characteristic of its
orbit orbifold is Positive or negative.

The remaining is the nilpotent case. Turning point was the identity $(*)$ .
In this case, $\sigma_{A}+\sigma_{B}+\sigma_{C}=\pi$ and we have the corresponding identity by elemen-
tary trigonometric calculus:

$r_{A}(2\sigma_{A})r_{B}(2\sigma_{B})r_{C}(2\sigma_{C})=2\pi(1-area\Delta_{ABC})\in S\subset G$ .
Then the corresponding linear equation which follows from the same argument is

(III) $\{\begin{array}{l}2\pi+p\theta_{A}+p’\theta=02\pi+q\theta_{B}+q’\theta=02\pi-r ( 2\pi ( 1-- area \Delta_{ABC})+\theta_{A}+\theta_{B}) +r’\theta=0 ,\end{array}$

and we have

PROPOSITION 5.5. A Seifert fibered space over $S^{2}$ with 3 excepti0nal fibers
with non vanishing euler number but vanishing euler characteristic admits a
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nilpotent structure.
To construct a geometric structure for a given Seifert fibered space in

general, the same argument works out almost equally well by starting with the
fundamental domain of the orbit orbifold, which in our case is an a priori fixed
quadrangle ACBC’. The only point we further need is a generalization of $(*)$ .
In the case of Lorentz geometry, which is the most general case, if the orbit
manifold has genus $g$ with $r$ elliptic point singularities of order $p_{1},$ $\cdots$ , $p_{r}$ , then
the formula is

$r_{A_{1}}(2\pi/p_{1})\cdots r_{A_{r}}(2\pi/p_{r})[a_{1}b_{1}]\cdots[a_{g}b_{g}]=2\pi(r-(2-2g))$ ,

where $A_{j}$ is the vertices of the fundamental domain corresponding to the singu-
larities and $a_{\dot{i}}$ and $b_{i}$ are any lifts of the projective images of $a_{i}$ and $b_{i}$ into the
Fuchsian group $\pi_{1}(M)/\langle h\rangle\subset PSL_{2}R$ to the universal covering group $S\tilde{L}_{2}R$ .
There is also a corresponding generalization of the formula for each other
geometry. Eventually we can verify existence theorems in [4] and [6].

THEOREM. A Serfert fibered sPace admits a geometric structure according to
the table;

\S 6. Dehn surgery along the trefoil knot.

The complement of a torus knot admits a Seifert fibration over $D^{2}$ with 2
exceptional fibers. Thus every Dehn surgery along it produces a Seifert fibered
space over $S^{2}$ with at most 3 exceptional fibers except when the Dehn surgical
slope matches up with a regular fiber. This is the result of [3]. Taking the
trefoil knot as an example, we review this fact from the geometric viewpoint.

The circle action on $S^{3}=\{|z_{1}|^{2}+|z_{2}|^{2}=1\}$ dePned by $(z_{1}, z_{2})arrow(e^{3i\theta}z_{1}, e^{2i\theta}z_{2})$

for $\theta\in S^{1}\cong R/2\pi Z$ gives a Seifert fibration of $S^{3}$ over $S^{2}$ with 2 exceptional
fibers, $\{z_{1}=0\}\cap S^{3}$ and $\{z_{2}=0\}\cap S^{3}$ . Any regular fiber is a trefoil knot in $S^{3}$

and therefore the Pbration of $S^{3}$ also gives one on the complement of a trefoil
knot by deleting one regular fiber $K$.



Geometric structures on Seifert fibered spaces 493

$K$

Figure 1.

We can choose meridional loops $\alpha$ and $\beta$ for the singular fibers so that $\gamma=(\alpha\beta)^{-1}$

represents the ordinal meridian of $K$ and so that the Dehn surgical invariants
of singular fibers in terms of $\alpha,$

$\beta$ and a regular fiber $f$ are $(2, -1)$ and $(3, 1)$ .
Notice that the ordinal longitude is represented by $f\gamma^{6}$ , and hence the $(p, q)$

Dehn surgery along $K$ in terms of $\gamma$ and $f$ is the $(p-6q, q)$ Dehn surgery along
$K$ in the usual sense.

Start with the geodesic triangle $\Delta_{ABC}$ on $P$ such that $\sigma_{A}=\pi/2,$ $\sigma_{B}=\pi/3$ and
$\sigma_{C}=\pi/r$ . $P$ is again either $S^{2},$ $E^{2}$ or $H^{2}$ according to whether $r>6,$ $=6$ or $<6$ .
Here $r$ moves continuously in $6/5<r<\infty$ . Introducing new continuous variable
$x$ and $y$ , let us think of the linear equations $(I)^{*}$ , (II)* and (III)* obtained by
letting $(p, p’)=(2, -1)$ , $(q, q’)=(3,1)$ and $(r, r’)=(x+6y, y)$ in (I), (II), (III).

Constructing a geometric structure on $Q\cross S^{1}$ as in \S 5 and then taking com-
pletions around $A$ and $B$ , we eventually get an incomplete geometric structure
on $S^{3}-K$. Then form a family of geometric structures on $S^{3}-K$ continuously
parametrized by $x$ and $y$ with some catastrophe. The structures corresponding
to the solution of (I)*lie on the line: $\{x=0\}$ since it is the condition to get a
non trivial solution. Similarly, the structures corresponding to the solutions of
(II)*and (III)*lie on the open domain: $\{x\neq 0\}\cap\{x+6y\neq 6, >6/5\}$ and the line:
$\{x\neq 0\}\cap\{x+6y=6\}$ respectively. Look at the x-y plane which is a coordinate
of generalized Dehn surgery invariants in the usual sense. We describe it only
for $x+6y\geqq 0$ because of its symmetry.

The geometric structure on $S^{3}-K$ at $(x, y)$ , which is primitive in the integral
lattice on the x-y plane, can be geometrically completed and its completion is
diffeomorphic to the resultant manifold of $(p, q)$ Dehn surgery along $K$ in the
usual sense. Thus we have eventually described geometric structures of such
manifolds except when $(p, q)=(6, -1)$ and $(1-6q, q)$ . Now think of the latter
case. Since in this surgery the surgery slope intersects a regular fiber once,
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Figure 2.

the resultant manifold inherits a Seifert fibration from $S^{3}-K$ without producing
a new exceptional fiber, and hence is a lens space. The resultant fibration is
a circle fibration over a 2-orbifold underlying on $S^{2}$ with two elliptic point
singularities of order 2 and 3. Since it is bad, in particular it is not a 2-
dimensional spherical orbifold. This is why our construction does not work out
for this case. When $(p, q)=(6, -1)$ , it lies completely outside of our argument.
In fact the resultant manifold of the $(6, -1)$ Dehn surgery along $K$ is a con-
nected sum of lens spaces $L(3,2)\# L(2,3)$ , and hence is not irreducible (see [3]).

Now we want to discuss the limit of geometric structures on $S^{3}-K$ when
$(x, y)$ goes to $(\infty, \infty)$ along the line, $y=kx$ , for some $k\in R\cup t\infty$ }. Then the
geodesic triangle $\Delta_{ABC}$ on $H^{2}$ tends to a generalized one by making $C$ approach
the circle at $\infty$ . At the limit, we get a complete end around $C$ and hence a
complete geometric structure on $S^{3}-K$ itself. Notice that $S^{3}-K$ admits both
$H^{2}\cross E$ and Lorentz structures according to $k=\infty$ or not. Let $M_{(x,y)}$ be a
geometric structure on $S^{3}-K$ at the point $(x, y)$ . Then since area $\Delta_{ABC}=$

$(x+6y-6)\pi/6(x+6y)$ by the Gauss-Bonnet theorem, we have

volume $M_{(x,y)}= \frac{2(x+6y-6)^{2}\pi^{2}}{3|x(x+6y)|}=\frac{2(1+6y/x-6/x)^{2}\pi^{2}}{3|1+6y/x|}$

except for the case $x=0$ . Thus if $y=kx(k\neq\infty)$ , then

$\lim_{xarrow\infty}$ volume $M_{(x,y)}= \frac{2|1+6k|\pi^{2}}{3}$ .

In particular, the limiting complete geometric structure on $S^{3}-K$ depends on the
slope $k$ . When $x=0$ , the structure of $M_{(x,y)}$ itself is not uniquely determined
and also there is no primitive pair on this line except $(0,1)$ . Hence we do not
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examine this case any more.
Now, the completion of $M_{(p,q)}$ was a Lorentz manifold for $p+6q>6$ and its

Lorentz volume was a topological invariant. For a given $k\in R$ , there is a
sequence of a pair of coprime integers $\{(p_{i}, q_{i})\}_{i\geqq 1}$ so that $p_{i}arrow\infty$ and $q_{i}/p_{i}arrow k$

when $iarrow\infty$ . Since the volume of $M_{(p_{i},q_{i})}$ is equal to the volume of its comple-
tion, we have

THEOREM. The set of Lorentz volumes of the resultant manifolds of $(p, q)$

Dehn surgery along the trefoil knot is dense in $R^{+}$ , where $(p, q)$ runs over all
primitive pairs with $p+6q>6$ .

REMARK. The distribution of Lorentz volumes in $R^{+}$ contrasts with the
results of $J\emptyset rgensen$ and Thurston [7].

REMARK. Lorentz volume is a topological invariant for closed manifolds but
not for non-compact manifolds. Actually $S^{3}-K$ takes a Lorentz structure with
arbitrary given volume.
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